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GDR 2434 (CNRS)

Derivation of the Zakharov equations

Benjamin Texier

1. Introduction

1.1. Physical context

The study of laser-plasma interactions is a field of intense activity, with large-scale
experiments being led in the US at the NIF and in France by the CEA. Energy
losses due to Raman scatterring and Landau damping are key issues. Models based
on the fundamental equations of physics, such as the Euler-Maxwell or the Vlasov-
Maxwell equations, are too complex to allow efficient numerical simulations of these
phenomena. Hence a need for simpler models. We study here the mathematical
validity of a model system of equations introduced by V. Zakharov in the seventies,
starting from the Euler-Maxwell equations.

1.2. The equations

We work on the non-dimensional form of the Euler-Maxwell equations introduced
in [12], in a “cold ions” regime. For small amplitudes, the system has the form:

(EM)



∂tB +∇× E = 0,

∂tE −∇×B =
1

ε
eneve −

1

θe
enivi,

∂tve + θe(ve · ∇)ve = −θe∇ne −
1

ε
(E + θeve ×B),

∂tne + θe∇ · ve + θe(ve · ∇)ne = 0,

∂tvi + ε(vi · ∇)vi = −α2ε∇ni +
1

θe
(E + εvi ×B),

∂tni + ε∇ · vi + εvi · ∇ni = 0.

The variable is U = (B,E, ve, ne, vi, ni), where (B,E) ∈ R3+3 is the electromagnetic
field, (ve, vi) ∈ R3+3 are the velocities of the electrons and of the ions and (ne, ni) ∈
R1+1 are the fluctuations of densities of both species. The variable u depends on
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time t ∈ R+ and space x ∈ R3. A brief discussion of the relevance of this model
is given in [12]. The small parameter ε is ε := 1

ωpt0
, where t0 is the duration of

the laser pulse and ωp is the plasma frequency: ωp :=
√

4πe2n0

me
, depending on me

the mass of the electrons and n0 the background density of the plasma. A typical
value for ε in realistic physical applications is ε ' 10−6. The fixed parameter θe
is the electronic thermal velocity, while α is the ratio of the electronic and ionic
temperatures. Typically, α � θe ' 10−3. The “cold ions” hypothesis consists here
in setting the ionic thermal velocity θi to be equal to ε. We investigate the high-
frequency limit ε→ 0, as θe and α are held fixed.

Formal computations led in [12] show that in some specific regime, the high-
frequency limit of (EM) is the following Zakharov system:

(Z)c

 i(∂t + c∂z)Ẽ + ∆⊥Ẽ = n̄Ẽ,

∂2
t n̄−∆⊥n̄ = ∆⊥|Ẽ|2,

where Ẽ is the envelope of the electric field and n̄ is the mean mode of the ionic
fluctuations of density in the plasma, z is the direction of propagation of the laser
pulse and ∆⊥ is the Laplace operator in the directions transverse to z. This model
was derived by V. Zakharov and his collaborators in the seventies [14].

1.3. Mathematical context

Formal WKB expansions led in [12] showed how the weakly nonlinear limit of (EM)
fails to describe nonlinear interactions; such a phenomenon had been observed by
Joly, Métivier and Rauch in the context of the Maxwell-Bloch equations. This ex-
plains why we consider large-amplitude solutions in this paper. In [2], Klein-Gordon-
waves systems were formally derived from Euler-Maxwell, and the Zakharov system
(Z)0 was rigorously derived as a high-frequency limit of these Klein-Gordon-waves
systems. We extend here the results of [12, 2], as we rigorously derive (Z)0 from
(EM).

The (local in time) initial value problem for the Zakharov model (Z)0 has received
much attention. Ozawa and Tsutsumi [9] and Schochet and Weinstein [10] proved
existence of smooth solutions. Many authors studied weak solutions, see [13] for
references.

Following the formal derivation in [12] of the systems (Z)c with a non-zero group
velocity c, Linares, Ponce and Saut showed its well-posedness in Hs(Rd), for large
s, and Colin and Métivier showed ill-posedness in a periodic setting.

The study of highly nonlinear geometric optics was originated in [5] for semilinear
Maxwell-Bloch equations. Stability and instability results for systems of conservation
laws in this regime are established in [1]. We deal here with quasi-linear dispersive
equations.

Our proof relies on pseudo-differential and para-differential changes of variables.
As usual in nonlinear problems, we are led to deal with symbols with limited reg-
ularity. Such classes of symbols were studied by Taylor[11] and Grenier [4]. We use
here the precise bounds of Lannes [6].
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2. Statement of the result

We are interested in solutions of (EM) in the form

u(t, x) = εU(εt, x). (2.1)

That is, we study large-amplitude solutions in a diffractive regime. For solutions in
the form (2.1), the system (EM) takes the form

∂tu+
1

ε2
A(ε, εu, ε∂x)u =

1

ε
B(u, u) + Gε(u), (2.2)

where A has the form

A(ε, εv, εξ) = A(0)(εξ) + εA(1)(ε, v, εξ), (2.3)

where A(0) is affine in ξ (not homogeneous, as the equations modelling light-matter
interactions are dispersive), and where A(1) is linear in ξ and encodes in particular
the convective terms in Euler. We work with the classical Sobolev spaces Hs(R3)
for profiles with values in R14, endowed with the norms

‖v‖2
ε′,s :=

∑
|β|≤s

‖(ε′∂x)βv‖2
L2(R3).

We will use ε′ = 1 and ε′ = ε. We say that a family of profiles vε is bounded in
Hs
ε (R3) when it is bounded with respect to the semi-classical norm ‖·‖ε,s, uniformly

in ε ∈ (0, ε0), for some ε0 ∈ (0, 1). Note that the injection Hs
ε ↪→ W k,∞ has norm

O(ε−k−3/2).
Consider an initial datum a(x) of the form a = (0, E0, v0

e , 0, 0, 0) ∈ Hσ, for some
large σ.

Proposition 1. For any l such that σ − l > σ0 + 3/2, for some σ0 ∈ N, the system
(EM) has a unique approximate solution uεa of the form (2.1) satisfying the initial
condition uεa(0, x) = a(x) and such that:

• uεa is defined over a time interval [0, t∗) independent of ε;

• uεa satisfies (EM) up to a residual of the form εlRε
a, where Rε

a is a bounded
family in Hσ−l

ε , locally uniformly in t ∈ [0, t∗);

• uεa decomposes as uεa = (u0,−1e
−it/ε2 + u0,1e

it/ε2 + εu1,0) + εvεa, where vεa, ε2∂tv
ε
a

are bounded families in Hσ−l−1
ε , locally uniformly in t ∈ [0, t∗), and where the

components of u0,1, u0,−1 and u1,0 satisfy a system of the form (Z)0.

Consider now a perturbation aε := a + εkϕε, where ϕε is a bounded family in
Hσ−l
ε .

Theorem 2. If k > 3 + 3
2
, then the system (EM) has a unique solution uε of the

form (2.1) satisfying the initial condition uε(0, x) = aε(x) and defined over [0, t∗).
Moreover, for all 0 < t0 < t∗, for s smaller than σ − l but large enough, there holds

sup
0≤t≤t0

‖uε − uεa‖ε,s ≤ Cεk−1. (2.4)
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That uε is defined over a time interval independent of ε is not trivial. A direct Hs

estimate for solutions of (2.2) with data of size O(1) would indeed give a bound in
eCt/ε, hence an existence time O(ε) only, precisely because of the large-source term
B/ε in the right-hand side. Note that in contrast, the contribution of the propagator
A/ε2 in the Hs estimate is not singular with respect to ε, because of the specific
scaling that we chose – see (2.3).

The above theorem asserts that the approximate solution uεa is stable under per-
turbations of the form εkϕε, where ϕε belongs to Hs

ε , that is may contain fast
oscillations of the form eikx/ε. Remark that the initial datum a is not oscillating.
This amounts to a polarization condition at k = 0 for the initial datum and implies
in particular that the group velocity is c = 0; see Figures 1 and 2. It would be
interesting to consider more general initial data of the form a(x)eikx/ε, with k 6= 0.
Then, as shown in [12], the limit system is (Z)c, with c 6= 0. The result of Linares,
Ponce and Saut [7] asserts that an approximate solution can be constructed. Is is
stable, in the sense of Theorem 2 ? This is an interesting direction for future work.

In the lower bound for k, 2 + 3/2 powers of ε account for the embedding Hs
ε ↪→

W 2,∞, and the extra power of ε comes from the rescaling of section 6.2.
Note finally that the estimate (2.4) and the condition k > 3 + 3

2
imply

sup
0≤t≤t0

sup
x∈R3

(|Eε − (E0,1e
iωt/ε2 + c.c.)|+ |nε − εne1,0|) ≤ Cε2. (2.5)

(2.5) is the estimate that validates the Zahkarov model, as it actually gives a de-
scription of the electric field Eε and the fluctuation of density nε in (EM) by means
of the solution (E0,1, ne1,0) of (Z)0.

3. WKB approximate solution

We sketch the proof of Proposition 1 in this section. We look for uεa in the form of a
WKB expansion: uεa =

∑M
m=0 ε

mum, where for all m, um has a finite decomposition
in oscillating terms: um =

∑
p∈Rm

eipωt/ε
2
um,p(t, x), where the profiles um,p are sought

in W 1,∞([0, t∗(ε)], L∞(R3)), for some t∗(ε) > 0 and where the sets Rm ⊂ Z are finite.
Plugging this ansatz in (EM), one finds a cascade of WKB equations. We also use
below the notation (v)p to denote the p−th harmonic of a profile v admitting a finite
decomposition in oscillating terms as above.

Terms in O(1/ε2): The equations are

ipω(E0,p, ve0,p) = (ve0,p,−E0,p), (3.1)

while the oscillating components (i. e. corresponding to p 6= 0) of all the other profiles
of order 0 vanish. From (3.1), one obtains the dispersion relation: ω(ω2 − 1) = 0.
We choose ω = 1. Thus R0 ⊂ {−1, 0, 1}. The leading electric field and electronic
velocity are

E0 = E0,1e
it/ε2 + E0,−1e

−it/ε2 , ve0 =
i

ω
E0,1e

it/ε2 − i

ω
E0,−1e

−it/ε2 . (3.2)

Terms in O(1/ε): The equations contain the compatibility condition

ipω(ne0ve0)p − θe(ve0 ×B0)p = 0. (3.3)
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The nonoscillating terms satisfy in particular

−∇×B0,0 = ve1,0 −
1

θe
vi0,0, E1,0 = θe∇ne0,0. (3.4)

Terms in O(1): These equations imply in particular that ∂tB0,0 = 0, because
E1,0 is a gradient. Hence B0,0 = 0, and (3.3) implies that ne0,0 = 0. As usual in
geometric optics when the ansatz involves three scales, the compatibility condition
for the equations in (E2, ve2 is a Schrödinger equation for E0,p, p ∈ {−1, 1}. For the
variable Ẽp := eipt/θ

2
eE0,p (correction of frequency due to the ions), the equation is

− 2ipω∂tẼp + ∆̃Ẽp = −ne1,0Ẽp +
θe
ipω

Ẽp ×B1,0, (3.5)

where ∆̃v := θ2
e∇(∇ · v)−∇× (∇× v). The nonoscillating terms satisfy

θe
(
(ve0 · ∇)ve0

)
0

= −θe∇ne1,0 − (E2,0 + θe(ve0 ×B1)0). (3.6)

(3.6) is the crucial equation that provides the noninear coupling between (3.5) and
the evolution equation for ne1,0. The third term of the expansion also contains the
relation:

∇×B1,0 = ve2,0 −
1

θe
vi1,0 + (ne1ve0)0. (3.7)

vi0,0 and ni1,0 satisfy a linear wave equation, with null initial data. Hence ni0,0 = 0
and vi0,0 = 0. With (3.4) and B0,0 = 0, one has therefore ve1,0 = 0.

Terms in O(ε): The nonoscillating terms satisfy in particular

∂tvi1,0 + α2∇ni1,0 =
1

θe
E2,0,

∂tni1,0 +∇vi1,0 = 0,

∂tne1,0 + θe∇ · (ve2,0 + (ne1ve0)0) = 0.

This last equation and (3.7) imply the quasineutrality relation: ne1,0 = ni1,0. The
density n̄ := ne1,0 = ni0,0 satisfies the wave equation:{

∂tvi1,0 + (α2 + 1)∇n̄ = −((ve0 · ∇)ve0 − ve0 ×B1))0

∂tn̄+∇ · vi1,0 = 0.

The nonlinear term in the wave equation is Thus the equation satisfied by n̄ is

(∂2
t − (α2 + 1)∆)n̄ = −∆|Ẽp|2. (3.8)

Besides, we have ∂tB1,0 + ∇ × E2,0 = 0, and this implies with (3.6) that E2,0 is
a gradient. Hence B1,0 = 0, and the system (3.5)-(3.8) is the announced Zakharov
system (with an elliptic operator operating in three space dimensions). Note that the
crucial coupling term ∆|Ẽp|2 comes from the convective term and from the Lorentz
force term.

High-order terms: For m ≥ 2, the terms Em,p, ni,m+1,0, p = −1, 1 are seen to
satisfy a system that corresponds to the linearization of (3.5)-(3.8) around E0,p,
which can be solved as (Z)0, with an existence time that is a priori smaller than
the existence time of the first profiles. The other components of um,p are given by
polarization and compatibility conditions as in the first terms of the expansion.
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4. Resonances and transparency

For each fixed z ∈ R14, the characteristic variety is the set of all (ω, k) ∈ R×R3, such
that det (−ω+A(ε, εz, k)) = 0. This polynomial equation factorizes as a transverse,
degree 4 equation:

ω′ω′′(ω2 − 1− |k|2 − ε2

θ2
e

) = εz[ve]ω
′′ +

ε2

θ2
e

ε2z[vi]ω
′,

and a longitudinal, degree 5 equation:

ω(ω′′2 − ε2α2|k|2)(ω′2 − 1− θ2
e |k|2) = −εz[ve](ω

′′2 − ε2α2|k|2) +
ε2

θ2
e

ω′′(ω′2 − θ2
e |k|2),

where z[ve] and z[vi] are the electronic and ionic velocity components of z, and where
ω′ := ω− εz[ve], ω

′′ := ω− ε2z[vi]. There are six Klein-Gordon modes: {λj}1≤j≤6, and
eight acoustic modes: {λk}7≤k≤14. The corresponding eigenprojectors are denoted by
Πj,Πk. The acoustic velocities are all O(ε), as a result of the “cold ions” hypothesis.

Resonances correspond to constructive interactions of characteristic waves. As
in [2], because the crucial interaction term B is bilinear, writing the system as a
perturbation system around the approximate solution allows to consider only the
resonance relations

Φj,k,p(ξ) := λj(0, 0, ξ)− λk(0, 0, ξ) + pω = 0,

for p ∈ {−1, 1}. Examples of resonances for the Euler-Maxwell system are pictured
on Figures 1 and 2.

ω KG⊥

KG‖

O(1) k

Figure 1: Resonances between the Klein-Gordon branches on the
characteristic variety.

Eigenvalues cross at the origin. As a consequence, the eigenvalues and the eigen-
projectors may not be infinitely smooth at k = 0, and one has to deal with symbols
with limited regularity in k. This wil not be mentioned in the following (the symbols
defined in section 5 are smooth); for more details, see [13].

We let Π0 be the total projector on the Klein-Gordon modes and Πs be the total
projector on the acoustic modes, so that Π0 :=

∑6
j=1 Πj, Πs :=

∑14
k=7 Πk.
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KG⊥

KG‖

ac

ω

kO(ε)

Figure 2: Resonances between the Klein-Gordon and the acoustic
branches on the characteristic variety.

To prove existence over time intervals independent of ε for large-amplitude so-
lutions of the (EM) system, we need to compute how characteristic waves interact
through the large source term B/ε. The eigenvalues can be locally described (with
the dispersion relations above) and the eigenvectors can be explicitly computed in
terms of the eigenvalues. We can compute

B(ua, ·) + B(·, ua) =

(
∗ O(1)
∗ ∗

)
Π0

Πs,
(4.1)

in a basis of eigenvectors. We notice three different behaviours:

(a) transparency: the bottom left entry in (4.1) is small for k close to the Klein-
Gordon/acoustic resonance depicted on Figure 2.

(b) absence of transparency: the top right entry in (4.1) is large for k close to the
Klein-Gordon/acoustic resonance depicted on Figure 2.

(c) symmetrizability: the top left entry in (4.1) is not small for k close to the Klein-
Gordon/Klein-Gordon resonance depicted on Figure 1, but is symmetrizable.

Because of (b), we will rescale the acoustic component of the solution in section 6.2.
This procedure makes the equations more singular, but the interaction coefficient
mentioned in (a) is sufficiently small to allow such a transformation (it is reduced in
section 6.3). Finally, the interaction coefficient mentioned in (c) is symmetrized in
section 6.4. Note also that because of the cold ions hypothesis, resonances between
acoustic modes are higher-order phenomena, and the interaction coefficients in the
bottom right block of (4.1) do not play any role in the analysis.

5. Symbols and operators

We consider symbols depending on (ε, v, ξ) ∈ (0, 1) × R14 × R3, such that for all
compact K ⊂ R14, there exists 0 < εK < 1, such that for all α, β, there exists a
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non-decreasing function Cα,β,K such that

sup
ε∈(0,εK)

sup
v∈K

sup
ξ
〈ξ〉|β|−m|∂αε,v∂

β
ξ p(ε, v, ξ)| ≤ Cα,β,K .

This class of symbols is denoted C∞Mm. We consider semi-classical pseudo- and
para-differential operators defined by

opε(q)z :=
∫
eix·ξq(ε, t, x, εξ)ẑ(t, ξ)dξ, opψε (q) := opε(q

ψ), (5.1)

where qψ is the standard para-differential smooting defined by q̂ψ(η, ξ) := ψ(η, ξ)q̂(η, ξ),
where ψ is an admissible cut-off, defined by ψ(η, ξ) = 1 if |η| ≤ δ1(1 + ξ|2)1/2, and
ψ(η, ξ) = 0 if |η| ≥ δ2(1 + |ξ|2)1/2, for some 0 < δ1 < δ2 < 1. In (5.1), one will take
for instance q = p(vε), where p ∈ C∞Mm and vε is a bounded family of profiles in
L∞([0, t∗(ε)]× R3). Then the following bounds hold [8, 6]:

‖(opε(p(vε))− opψε (p(vε)))u‖ε,s ≤ εC(|vε|W 1,∞)(1 + ‖vε‖ε,s+1)‖u‖ε,m+d0 ,

‖opψε (p(vε))u‖ε,s ≤ C(|vε|L∞)‖u‖ε,s+m,
‖opε(p(v

ε))u‖ε,s ≤ C(|vε|L∞)(‖vε‖ε,s‖u‖ε,m+d0 + ‖u‖ε,s+m),

and

‖(opψε (q1)opψε (q2)− opψε (q1q2)− εopψε (q1]q2))u‖ε,s ≤ ε2C(|vε|W 2,∞)|u‖ε,s′ .

Above, C represent non-decreasing functions, d0 is greater than 3/2, and in the
last inequality qj = pj(v

ε), pj ∈ C∞Mmj , s′ = s + 2 − m1 − m2, and q1]q2 :=∑
|α|=1

(−i)α

α!
∂αξ q1∂

α
x q2.

We use all the above bounds in the proof below, without explicitly referring to
them.

6. Sketch of proof

We sketch the proof of Theorem 2 in this section. We often drop the epsilons, as
we write ua for uεa, u for uε, etc. Standard hyperbolic theory provides the existence
of a unique solution u to (2.2) with the initial datum u(0) = a, over a small time
interval [0, t∗(ε)], such that t∗(ε) = O(ε) (see the discussion following the statement
of Theorem 2), with the uniform estimate

sup
0<ε<ε0

sup
0≤t≤t∗(ε)

‖u(t)‖ε,s ≤ δ. (6.1)

We work in the following in [0, t∗(ε)]. Our strategy is to transform the equations
to allow uniform energy estimates over [0, t∗(ε)], then use a standard continuation
argument.
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6.1. The perturbation equations

The exact solution u is sought in the form u = ua + εl0u̇ (where l0 is to be chosen),
that is, as a perturbation of the approximate solution. The initial value problem for
the variable u̇ is ∂tu̇+

1

ε2
opψε (A(ε, ε(ua + εl0u̇)))u̇ =

1

ε
opε(B)u̇+ opε(D)u̇+ εRε,

u̇(0, x) = εk−l0φε(x).
(6.2)

where

B := B(ua, ·) + B(·, ua)−A(1)(ε, ·, ξ))ua,
D := (Gε)′(ua)− (A(1)(ε, ua + εlu̇, ε∂x)− opψε (A(1)(ua + εlu̇)),

R̃ε := ε−(l0+1)(Gε(ua + εl0u̇)− Gε(ua)− (Gε)′(ua)u̇) + εl0−2B(u̇, u̇),

and Rε := R̃ε − εl−l0−1Rε
a. With (6.1) and the estimates for ua following from the

construction of section 3: for α ≤ 1 and |β| ≤ 2,

|(ε2∂t)
α∂βxu|L∞ ≤ ca + εl0−2−3/2δ,

where ca does not depend on ε, and where the ε−2−3/2 factor comes from the em-
bedding Hs

ε ↪→ W 2,∞. We choose now l0 > 2 + 3/2 and let C0 := ca + δ. We
generically denote by R(0) any pseudo- or para-differential operator such that, for
all z ∈ Hs

ε (Rd), for all t ∈ [0, t∗(ε)] :

‖R(0)z‖ε,s ≤ C0(‖u‖ε,s‖z‖ε,1+d0 + ‖z‖ε,s).

6.2. Projection and rescaling

Let

v0 := opψε (Π0)u̇, vs :=
1

ε
opψε (Πs)u̇. (6.3)

Then u̇ = v0 + εvs. Note that in (6.3), the spectral projectors Π0 and Πs depend
on u̇. We multiply (6.2) by opψε (Π0) and opψε (Πs) to the left to find the equation
satisfied by v := (v0, vs) :

∂tv +
1

ε2
opψε (iA)v =

1

ε2
(opψε (B) + εopε(D))v +

1

ε
opψε (B′)v +R(0)v, (6.4)

where

• iA :=

(
AΠ0 0

0 AΠs

)
∈ C∞M1;

• B :=

(
0 0
Bs0 0

)
∈ C∞M0, D :=

(
0 0
Ds0 0

)
∈ C∞M0, with

Bs0 := ΠsBΠ0 + (ε∂tΠs)Π0;

Ds0 := ΠsDΠ0 − (Πs]A)Π0 − (ΠsA)]Π0 + (Πs]B)Π0;
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• B′ :=

(
B0 0
0 Bs

)
∈ C∞M0, with

B0 := Π0BΠ0 + (ε∂tΠ0)Π0, Bs := ΠsBΠs + (ε∂tΠs)Πs

In (6.4), the variables v0 and vs are coupled only by order-zero terms, and the leading
singular term has a nilpotent structure. The system is prepared.

6.3. Reductions

Figure 1 shows that resonances between Klein-Gordon modes happen. Because of
the cold ions hypothesis, resonances between acoustic modes are higher-order phe-
nomena. We split the source term B′ according to resonant and non-resonant terms
as follows: B′ = Br +Bnr where

Br :=

(
Br

0 0
0 0

)
, Bnr :=

(
Bnr

0 0
0 Bnr

s

)
.

Thus the matrix Br
0 corresponds to the components ΠjB

′Πj′ of Π0B
′Π0 such that for

some p ∈ {−1, 1}, Φj,j′,p(ξ) = 0 for some ξ; whereas for all j, k such that ΠjB
nrΠk

does not vanish, the phase Φj,k,p is bounded away from zero, for all p.

Lemma 3 (reduction of the non-resonant terms). There exists M ∈ C∞M−1 such
that

[ε2∂t + opψε (iA), opψε (M)] = opψε (Bnr) + εR(0).

Sketch of proof. Up to symbols of the form εR(0), the homological equation reduces
to ε2∂tM + [iA(0),M ] = B̃nr, where B̃nr is the leading term in Bnr, which in par-
ticular is linear in ua, and where A(0), the leading term in A, depends only on ξ. A
solution is given by

M =
∑

p∈{−1,1}
eipt/ε

2

(
∑

1≤j,j′≤6

Φ−1
j,j′,pΠjB

nr
p Πj′ +

∑
7≤k,k′≤14

Φ−1
k,k′,pΠkB

nr
p Πk′).

The above actually defines a symbol in C∞M−1 because Bnr is non-resonant (see
above). �

With the above lemma, the change of variables

v̌ := (Id+ εopψε (M))−1v,

leads to the reduced system

∂tv̌ +
1

ε2
opψε (iA)v̌ =

1

ε2
(opψε (B̌) + εopε(D))v̌ +

1

ε
opε(B

r)v̌ +R(0)v̌,

where B̌ := B + ε[B,M ].

Lemma 4 (reduction of resonant terms). There exists N0, N1 ∈ C∞M−1, such that,
up to a term of the form ε2R(0),[

ε2∂t + opψε (iA)− εopψε (Br), opψε (N0) + εopε(N1)
]

= opψε (B̌) + εopε(D).
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Sketch of proof. The homological equation reduces to the system

ε2∂tN0 + [iA− εBr, N0] + iεA]N0 = B̌, (6.5)
ε2∂tN1 + [iA,N1] = D, (6.6)

where (6.5) is modulo ε2R(0) and (6.6) is modulo εR(0). Equation (6.6) is solved by

N1 =
∑

p∈{−1,1}
eipt/ε

2 ∑
k≤6<j

Φ−1
j,k,pΠjDΠk.

The above actually defines a symbol in C∞M−1, as direct computations show that
the interactions coefficients ΠjDΠk are small at the resonances Φj,k,p = 0 pictured
on Figure 2 (transparency). In equation (6.5), up to symbols of the form ε2R(0),

the source term has the form B̌ by B̌0 + εB̌1, where B̌0 =
∑
p e

ipt/ε2B̌0,p, and B̌1 =∑
p e

ipt/ε2B̌1,p +
∑
p,p′ e

i(p+p′)t/ε2B̌p+p′ . Similarly, up to symbols of the form ε2R(0), A

has the form A(0) + εA(1), where A(0) depends only on ξ and A(1) is linear in ua.
Then, to solve (6.5), it suffices to solve the system

ipωN
(0)
0,p + [iA(0), N

(0)
0,p ] = B̌0,p,

ipωN
(1)
0,p + [iA(0), N

(1)
0,p ] = B̌1,p − A(0)]N

(0)
0,p ,

i(p+ p′)ωNp+p′ + [iA(0), Np+p′ ] = B̌p+p′ − [iA(1) −Bnr, N (0)]p+p′ ,

then to let

N0 =
∑
p

eipt/ε
2

(N
(0)
0,p + εN

(1)
0,p ) + ε

∑
p,p′

ei(p+p
′)t/ε2N0,p,p′ .

The last equation in the above system is solved as in Lemma 3, as it corresponds
to an homological equation with no resonances: the phases λj(0, 0, ξ)− λk(0, 0, ξ) +
(p+p′)ω are indeed all uniformly bounded away from 0. Finally, direct computations
show that the interactions coefficients (that is, the source terms in the homological
equations) in the last two equations are small at the resonances (that is, when a
small divisor appears in the left-hand side of the equation). Thus these equations
can be solved in C∞M−1. �

With the above lemma, the change of variables

w := (Id− (opψε (N0) + εopε(N1)))v̌,

leads to the reduced system

∂tw +
1

ε2
opψε (iA)w =

1

ε
opψε (Br)w +R(0)w.

6.4. Uniform Sobolev estimates

The system still contains a singular source term in the right-hand side, namely
Br. This term cannot be removed using normal form reductions as above, as it
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corresponds to resonances between Klein-Gordon modes and is not transparent (see
section 4). However, A and Br can be simultaneously symmetrizable: an explicit
computation of Br

0 shows that there exists a Fourier multiplier S such that
1

ε2
<(S(Dx)opψε (iA)w,w)ε,s ≤ C0‖w‖2

ε,s,

and
1

ε
<(S(Dx)opψε (Br)w, , w)ε,s ≤ C0‖w‖2

ε,s.

The initial datum for w is O(εk−l0−1). Because l0 was chosen to be greater than
2 + 3/2, a sufficient condition to have a uniform Hs

ε estimate for w is k > 3 + 3/2.
Under this condition, the uniform estimate for w yields a uniform estimate for u̇.
A classical continuation argument finishes the proof of the existence of a solution
over [0, t∗). The error estimate (2.4) then follows from the definition of u̇, with the
choice l0 = k − 1.
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