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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

Almost global solutions for non hamiltonian
semi-linear Klein-Gordon equations on compact

revolution hypersurfaces

Jean-Marc Delort Jérémie Szeftel

Abstract

This paper is devoted to the proof of almost global existence results
for Klein-Gordon equations on compact revolution hypersurfaces with non-
Hamiltonian nonlinearities, when the data are smooth, small and radial. The
method combines normal forms with the fact that the eigenvalues associated
to radial eigenfunctions of the Laplacian on such manifolds are simple and
satisfy convenient asymptotic expansions.

1. Introduction

Let (M, g) be a compact Riemannian manifold without boundary, V a nonnegative
potential on M , m ∈]0, +∞[, and consider a nonlinear Klein-Gordon equation on
M

(∂2
t −∆g + V + m2)u = f(x, u, ∂tu)

u|t=0 = εu0

∂tu|t=0 = εu1

(1)

where f is a polynomial in (u, ∂tu) with smooth dependence in x. We are interested
in questions of almost global existence for (1) when the Cauchy data are smooth and
small. This problem has been studied in the case of Hamiltonian nonlinearities (i.e.
nonlinearities f(x, u) independent of ∂tu) by Bourgain [3], Bambusi [1], Bambusi
and Grébert [2] on a bounded interval with boundary conditions, or on the circle.
In this case, conservation of H1 norm implies immediately global existence in H1,
and these authors show for almost all values of m boundedness of Hs norms of the
solution (for any s) over intervals of time of length cNε−N (for any N), where ε is
the size of the Cauchy data. Their method relies on construction of approximate
action-angle variables for the Hamiltonian formulation of the equation.

MSC 2000: 35L70, 34L20.
Keywords: almost global existence, nonlinear Klein-Gordon equation, revolution hypersurfaces, normal forms.
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On the other hand, a considerable amount of work has been done since the 80’s on
the problem of long time existence for solutions to wave or Klein-Gordon nonlinear
equations on Rd with data which are smooth, small, and rapidly decaying at infinity.
We refer to the introduction of [4] for bibliographical references on that problem. Let
us just recall that in this framework, global existence has been proved independently
by Klainerman [8] and Shatah [10] when d ≥ 3. The proof relies on the use of
dispersive properties of the linear Klein-Gordon equation. In these dimensions, the
nonlinearity of the equation can be considered as a short range perturbation of the
linear problem, since linear solutions decay when t → ±∞ at an integrable rate.
On the other hand, in d = 2 space dimensions, and for quadratic nonlinearities,
the nonlinear equation is a long range perturbation of the linear one. Nevertheless,
global existence has been proved by Ozawa, Tsutaya and Tsutsumi [9] combining
the use of dispersive properties of the equation together with a method of normal
forms. The latter consists in modifying the solution by a quadratic perturbation
chosen in such a way that it cancels out the quadratic part of the nonlinearity.
One reduces thus the problem to an equation with a cubic nonlinearity, which is
a short range perturbation of the linear problem. These results do not depend on
a possible Hamiltonian structure of the equation. This brings the natural question
whether problems of type (1) have almost global Hs-bounded solutions for more
general nonlinearities than the Hamiltonian ones considered by Bourgain, Bambusi,
Bambusi-Grébert, and for more general manifolds than the circle or the interval.
We prove in this paper that such a result holds true for essentially one dimensional
problems – i.e. cases when M = S1 or M is a revolution hypersurface with radial
potential and data. As the linear Klein-Gordon equation no longer displays any
dispersive effect on a compact manifold, the proof relies only on the use of a normal
form method.
Remark. In this paper, we outline the main steps leading to the result of almost
global existence. The reader is referred to [7] for the details.

2. Main results

2.1. Statement of the main theorem

Consider (M, g) a compact Riemannian manifold without boundary, of dimension
d ≥ 1. Denote by ∆g its Laplace-Beltrami. Let W be a closed subspace of L2(M)
such that ∆g restricted to W is a self-adjoint operator. Let V : M → R be a smooth
nonnegative potential such that x → V (x)w(x) belongs to W whenever w ∈ W and
set

P =
√
−∆g + V . (2)

We shall assume that

the spectrum of P |W consists of simple eigenvalues (λn)n≥1 (3)

having the following asymptotic expansion as n → +∞

λn = αn + β +O
(

1

n

)
(4)
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where α > 0, β ∈ R.
Remark. Examples of M , V , W satisfying the spectral assumptions (3) and (4) are
given in section 2.2.

Let f a polynomial in (u, ∂tu, Pu) vanishing at least at order 2 at 0 with C∞

coefficients in x such that:

f(x, u, ∂tu, Pu) is even in ∂tu. (5)

We assume furthermore that

f(x, u, v, w) ∈ W for all (x, u, v, w) ∈ M × (W ∩ C∞(M))3. (6)

We shall look for a solution u defined on ]− T, T [×M of the following problem

(∂2
t −∆g + V + m2)u = f(x, u, ∂tu, Pu)

u|t=0 = εu0

∂tu|t=0 = εu1

(7)

where m > 0, ε > 0 is a small parameter, u0 ∈ Hs+1(M) ∩W, u1 ∈ Hs(M) ∩W are
given real valued functions. Our main result is the following:

Theorem 1. Assume that conditions (3) and (4) hold true. There is a zero measure
subset N of ]0, +∞[ satisfying the following: for any function f satisfying (5) and
(6), for any m ∈]0, +∞[−N , for any p̄ ∈ N, there are ε0 > 0, c > 0, s0 ∈ N such
that for any s ≥ s0, any pair (u0, u1) of real valued functions belonging to the unit
ball of Hs+1(M)×Hs(M) and to W ×W , any ε ∈]0, ε0[, problem (7) has a unique
solution u continuous and bounded on ]− Tε, Tε[ with values in Hs+1(M) such that
∂tu is continuous and bounded on ] − Tε, Tε[ with values in Hs(M), and such that
Tε ≥ cp̄ε

−p̄.

Remark. For a nonlinearity f vanishing at order 2 at 0, the local existence theory
gives the lower bound Tε ≥ cε−1. Under the assumptions of Theorem 1, we obtain a
much sharper result, namely almost global existence (i.e. Tε ≥ cp̄ε

−p̄ for any integer
p̄).
Remark. We will outline the main steps of the proof of Theorem 1 in section 3. In
particular, we will emphasize the role of the spectral assumptions (3) and (4) and
of the assumption (5) on the nonlinearity f . Furthermore, we will explain why the
result is obtained for almost every mass m.

2.2. Application to almost global existence on revolution hy-
persurfaces

In order to apply Theorem 1 to concrete situations, we look for M , V and W such
that P |W satisfies the spectral assumptions (3) and (4). In practice, we consider a
manifold M having symmetries and we choose W as the subspace of L2(M) invariant
under these symmetries. Roughly speaking, the assumption on the simplicity of the
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eigenvalues of P |W amounts to choose M with enough symmetries such that the
problem becomes essentially one dimensional.

We are able to apply Theorem 1 in four situations which are stated in Corollaries
1 to 4.

Corollary 1. Let M = S1, let V be a smooth nonnegative odd function, let g be
the canonical metric on S1 and let W be the set of all the odd functions in L2(S1).
Assume f satisfies f(−x,−u,−v,−w) = −f(x, u, v, w) for all (x, u, v, w) ∈ S1×R3.
Then Theorem 1 holds true.

Assume now that M and V satisfy the following assumptions (see figure 1):

M is a hypersurface of Rd, d ≥ 3, which is invariant under the action of the
rotations with axis xd. Furthermore, M does not intersect the xd axis and
is symmetric with respect to xd = 0.

(8)
V is a smooth nonnegative function which is invariant under the action of
the rotations with axis xd, and even with respect to xd.

(9)

0

|x′|

xd

Figure 1: example of a hypersurface of revolution M satisfying (8)

Corollary 2. Let M and V be chosen as in (8) and (9). Let W consist of all
functions in L2(M) which are invariant under the action of the rotations with axis
xd and even with respect to xd. Let f be such that f(Rx, u, v, w) = f(x, u, v, w) for
all (x, u, v, w) ∈ M×R3 and all rotations R with axis xd, and f((x′,−xd), u, v, w) =
f((x′, xd), u, v, w) for all (x, u, v, w) ∈ M × R3 where x = (x′, xd). Then Theorem 1
holds true.

Corollary 3. Let M and V be chosen as in (8) and (9). Let W consist of all
functions in L2(M) which are invariant under the action of the rotations with axis
xd and odd with respect to xd. Let f be such that f(Rx, u, v, w) = f(x, u, v, w) for
all (x, u, v, w) ∈ M × R3 and all rotations R with axis xd, and

f((x′,−xd),−u,−v,−w) = −f((x′, xd), u, v, w) for all (x, u, v, w) ∈ M × R3

where x = (x′, xd). Then Theorem 1 holds true.
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Finally, assume that M and V satisfy the following assumptions (see figure 2):

M is a hypersurface of Rd, d ≥ 3, which is invariant under the action of
the rotations with axis xd. Furthermore, M intersects the xd axis at
two points.

(10)

V is a smooth nonnegative function which is invariant under the action of
the rotations with axis xd.

(11)

0

|x′|

xd

Figure 2: example of a hypersurface of revolution M satisfying (10)

Corollary 4. Let M and V be chosen as in (10) and (11). Let W consist of all
functions in L2(M) which are invariant under the action of the rotations with axis
xd. Let f such that f(Rx, u, v, w) = f(x, u, v, w) for all (x, u, v, w) ∈ M × R3 and
all rotations R. Then Theorem 1 holds true.

In order to prove Corollaries 1 to 4, we have to show that M , V and W satisfy
the spectral assumptions (3) and (4). For Corollaries 1 to 3, these properties follow
readily from the well known spectral theory of the Hill operator. In the case of
Corollary 4, the spectral problem may be reduced to the study of the eigenvalues
for an elliptic second order operator on [0, 1], degenerated at the boundary. Since
we have been unable to find in the literature references to the spectral results we
need, we provide a proof of them in [7]. This proof relies on the combining of WKB
expansions for solutions of the corresponding singular ODE with a quantization
condition.

3. Main ideas of the proof of Theorem 1

This section consists of four parts:
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• In the first part, we explain how to reduce the nonlinear Klein-Gordon equa-
tion (7) to the study of a first order equation.

• In the second part, we iterate a first time the normal form method and we
obtain an improvement with respect to the estimate given by the local exis-
tence theory. The results in this part do not require the spectral assumption
(3).

• In the third part, we consider the reiteration of the normal form method.
In fact, the improvement given by the second part is not enough for our
purposes and we would like to reiterate the procedure as much as needed to
gain arbitrary powers of ε−1. At this stage, we explain why we need the extra
assumption (3).

• In the forth part, we rely on the first three parts to prove Theorem 1.

3.1. Reduction to a first order equation

Let u± = (Dt ± Λm)u where Λm =
√

m2 −∆g + V and Dt = −i∂t. Instead of
looking for a solution u of the nonlinear Klein-Gordon equation (7), we will look for
a solution (u+, u−) of the corresponding system.

Using the equalities

u =
1

2
Λ−1

m (u+ − u−) and ∂tu =
i

2
(u+ + u−) (12)

we may rewrite (7) in the following form:

(Dt ∓ Λm)u± = −f
(
x,

1

2
Λ−1

m (u+ − u−),
i

2
(u+ + u−),

1

2
PΛ−1

m (u+ − u−)
)

. (13)

As (u, ∂tu) → (u+, u−) is bounded from L∞(Hs+1)×L∞(Hs) to L∞(Hs)×L∞(Hs),
we will look for (u+, u−) in L∞(Hs)×L∞(Hs) which are solutions of (13). Finally, as
u− = −u+, we further reduce the problem to a scalar first order partial differential
equation:

(Dt − Λm)u+ = g(x, u+, u+, Λ−1
m u+, Λ−1

m u+, PΛ−1
m u+, PΛ−1

m ū+). (14)

In the sequel, we will first consider the following model problem

(Dt − Λm)u+ = u`
+u+

p−`, p ≥ 2, 0 ≤ ` ≤ p. (15)

3.2. First improvements using the normal form method

Dropping the index + in (15), we consider the model problem

(Dt − Λm)u = u`ūp−`, p ≥ 2, 0 ≤ ` ≤ p. (16)

The local existence theory applied to (16) yields the lower bound Tε ≥ cε1−p. In this
section, we use the normal form method to improve this estimate.
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For simplicity, we take M = T1 and V = 0 so that we may use Fourier series. We
introduce multilinear forms. Let a : Zp → R be a convenient symbol (see [7] for a
definition of the algebra of symbols). We define the p-linear form associated to a by:

L(a)(u1, . . . , up) =
∑

ξ1,...,ξp∈Z
a(ξ1, . . . , ξp)û1(ξ1) · · · ûp(ξp).

We introduce the energy Es(u) defined by

Es(u)(t) =
1

2
‖u(t, ·)‖2

Hs + ReL(b`
p+1)(u, . . . , ū) (17)

where L(b`
p+1)(u, . . . , ū) is ` linear in u and p+1− ` linear in ū. b`

p+1 is a convenient
symbol so that L(b`

p+1)(u, . . . , ū) is bounded on Hs which yields

Es(u)(t) ≥ 1

2
‖u(t, ·)‖2

Hs − C‖u(t, ·)‖p+1
Hs . (18)

As we consider the small data case and as p ≥ 2, (18) implies that ‖u‖2
Hs is bounded

by Es(u) so that it is sufficient to obtain bounds on Es(u).
We will try to find a good choice of b`

p+1 such that for sufficiently large s

d

dt
Es(u)(t) = O(‖u(t, ·)‖2p

Hs). (19)

This implies by integration for sufficiently small ε that Es(u) (and thus ‖u‖2
Hs) is

bounded by Cε2 over a time interval of length at least cε2−2p. This yields immediately
Tε ≥ cε2−2p which represents a gain of ε1−p with respect to the local existence theory.
Remark. We will see that there is a unique choice of b`

p+1 leading to (19). Other
choices would lead to the weaker equality

d

dt
Es(u)(t) = O(‖u(t, ·)‖p+1

Hs )

which gives no improvement with respect to the local existence theory.

3.2.1. Computation of d
dt

Es(u)(t)

In order to choose conveniently b`
p+1, we compute d

dt
Es(u)(t). According to (17), we

must compute the time derivative of 1
2
‖u(t, ·)‖2

Hs and L(b`
p+1)(u, . . . , ū). We start

with 1
2
‖u(t, ·)‖2

Hs and using (16), we obtain

d

dt

1

2
‖u(t, ·)‖2

Hs = Im 〈(Dt − Λm)u, u〉Hs

= Im 〈u`ūp−`, u〉Hs

= L(c`
p+1)(u, . . . , ū)

(20)

where c`
p+1 = (1 + ξ2

p+1)
s1{ξp+1=ξ1+···+ξp}.
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Using again (16), we obtain

Dt[L(b`
p+1)(u, . . . , ū)] =∑̀

j=1

L(b`
p+1)(u, . . . , (Dt − Λm)u︸ ︷︷ ︸

u`ūp−`

, . . . , ū)

+
p+1∑

j=`+1

L(b`
p+1)(u, . . . , (Dt + Λm)ū︸ ︷︷ ︸

−ū`up−`

, . . . , ū)

+
∑̀
j=1

L(b`
p+1)(u, . . . , Λmu, . . . , ū)

−
p+1∑

j=`+1

L(b`
p+1)(u, . . . , Λmū, . . . , ū).

(21)

The first two terms are 2p linear so that

∑̀
j=1

L(b`
p+1)(u, . . . , u`ūp−`, . . . , ū) +

p+1∑
j=`+1

L(b`
p+1)(u, . . . ,−ū`up−`, . . . , ū)

= O(‖u(t, ·)‖2p
Hs).

(22)

Using the fact that Λm is diagonal on the Fourier basis with eigenvalues
√

m2 + ξ2,
we may rewrite the other terms of (21) as

∑̀
j=1

L(b`
p+1)(u, . . . , Λmu, . . . , ū)−

p+1∑
j=`+1

L(b`
p+1)(u, . . . , Λmū, . . . , ū)

= L(F p+1,`
m b`

p+1)(u, . . . , ū)

(23)

where

F p+1,`
m =

√
m2 + ξ2

1 + · · ·+
√

m2 + ξ2
` −

√
m2 + ξ2

`+1 − · · · −
√

m2 + ξ2
p+1. (24)

Finally, (17), (20), (21), (22) and (23) yield

d

dt
Es(u)(t) = Im

[
−L(F p+1,`

m b`
p+1)(u, . . . , ū) + L(c`

p+1)(u, . . . , ū)

]
+O(‖u(t, ·)‖2p

Hs).

(25)
In order to obtain (19), we would like to choose b`

p+1 = c`
p+1(F

p+1,`
m )−1. This requires

to obtain a lower bound on F p+1,`
m .

3.2.2. A lower bound on F p+1,`
m

We would like to choose b`
p+1 such that L(b`

p+1)(u, . . . , ū) is bounded on Hs. As
c`
p+1 = (1 + ξ2

p+1)
s1{ξp+1=ξ1+···+ξp}, the choice b`

p+1 = c`
p+1(F

p+1,`
m )−1 leads to

b`
p+1 = (1 + ξ2

p+1)
s1{ξp+1=ξ1+···+ξp}(F

p+1,`
m )−1. (26)

XV–8



Thus, we must prove that there is C > 0 and N ∈ N such that

|F p+1,`
m (ξ1, . . . , ξp+1)| ≥ Cµ(|ξ1|, . . . , |ξp+1|)−N (27)

where µ(|ξ1|, . . . , |ξp+1|) is the third largest frequency. In fact, (26) allows us to put s
derivatives on the term corresponding to the largest frequency and s derivatives on
the term corresponding to the second largest frequency. To avoid a loss of derivatives,
the additional derivatives coming from F p+1,`

m must fall on the term corresponding
to the third largest frequency, whence (27). Taking the terms corresponding to the
two largest frequencies in L2 and the other ones in L∞, and using (27) and the
Sobolev embedding implies

|L(b`
p+1)(u, . . . , ū)| ≤ C‖u‖2

Hs‖u‖HN+1/2+δ‖u‖p−2

H1/2+δ (28)

which yields the continuity of L(b`
p+1)(u, . . . , ū) on Hs for s > N + 1/2.

We are left with proving (27). Unfortunately, such a bound does not hold in
general as F p+1,`

m may vanish. If p + 1 is even and ` = (p + 1)/2, then there are as
many square roots with a plus sign as square roots with a minus sign in (24). Thus,
F p+1,`

m vanishes on the set Σ(p+1) such that there is a bĳection between the squares
of the frequencies corresponding to a plus sign, and the squares of the frequencies
corresponding to a minus sign:

Σ(p + 1) =
{
(ξ1, . . . , ξp+1) ∈ Zp+1; {ξ2

1 , . . . , ξ
2
(p+1)/2} = {ξ2

(p+3)/2, . . . , ξ
2
p+1}

}
.

If we restrict ourselves to frequencies outside the set Σ(p + 1), we are able to
obtain the lower bound (27):

Proposition 1. There is a zero measure subset N of ]0, +∞[ such that for m ∈
]0, +∞[−N :

|F p+1,`
m (ξ1, . . . , ξp+1)| ≥ Cµ(|ξ1|, . . . , |ξp+1|)−N

where (ξ1, . . . , ξp+1) ∈ Zp+1 if ` 6= p+1
2

(resp. (ξ1, . . . , ξp+1) ∈ Zp+1 − Σ(p + 1) if p is
odd and ` = p+1

2
).

Remark. The proof of Proposition 1 requires the spectral assumption (4) and relies
in particular on the Łojaciewiecz inequalities.
Remark. Proposition 1 does not hold for all mass m. This explains why Theorem 1
is obtained for almost every mass m.

3.2.3. First improvements using the normal form method

As F p+1,`
m vanishes on Σ(p + 1), we may not choose b`

p+1 = c`
p+1(F

p+1,`
m )−1. We first

decompose c`
p+1 in (c`

p+1)
′ + (c`

p+1)
′′ where (c`

p+1)
′′ = 0 if ` 6= (p + 1)/2, and for

` = (p + 1)/2:

(c`
p+1)

′′(ξ1, . . . , ξp+1) = c`
p+1(ξ1, . . . , ξp+1)1{(ξ1,...,ξp+1)∈Σ(p+1)}.

By Proposition 1, we may now choose b`
p+1 = (c`

p+1)
′(F p+1,`

m )−1 as (c`
p+1)

′ vanishes
on Σ(p + 1). Together with (25), this yields

d

dt
Es(u)(t) = Im

[
L((c`

p+1)
′′)(u, . . . , ū)

]
+O(‖u(t, ·)‖2p

Hs).
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In order to obtain (19), we are left with proving the ’miraculous’ cancellation

Im

[
L((c`

p+1)
′′)(u, . . . , ū)

]
= 0. (29)

A straightforward computation yields

L((c`
p+1)

′′)(u, . . . , ū) =
∑

(ξ1,...,ξ p+1
2

,η1...,η p+1
2

)∈Σ(p+1)

K(ξ, η)

p+1
2∏

j=1

û(ξj)

p+1
2∏

j=1

û(ηj)

where

K(ξ, η) = (1 + η2
p+1
2

)s1{ξ1+···+ξ p+1
2

=η1+···+η p+1
2
}. (30)

Since

2i Im

[
L((c`

p+1)
′′)(u, . . . , ū)

]
=

∑
(ξ1,...,ξ p+1

2
,η1...,η p+1

2
)∈Σ(p+1)

(K(ξ, η)−K(η, ξ))

p+1
2∏

j=1

û(ξj)

p+1
2∏

j=1

û(ηj),

checking (29) amounts to prove that

K(η, ξ) = K(ξ, η) on Σ(p + 1) up to permutations among the ξj
′s and ηj

′s. (31)

We see from (30) that K(ξ, η) is real so that we only have to check that we can
exchange ξ and η without changing K(ξ, η) on Σ(p + 1) up to permutations. It is
clearly true for 1{ξ1+···+ξ p+1

2
=η1+···+η p+1

2
}. As ξ2

p+1
2

= η2
p+1
2

on Σ(p + 1) up to permuta-

tions, it is also true for (1+ η2
p+1
2

)s. This yields (31) which in turn yields (29). Thus,

our choice for b`
p+1 implies (19), whence the lower bound Tε ≥ cε2−2p.

Remark. In the case of our model problem (16), we have used the fact that K(ξ, η)
is real. In order to maintain this property in the general case (14), we must assume
that the nonlinearity f(x, u, ∂tu, Pu) is even in ∂tu. In fact, each power of ∂tu brings
a power of i as shown by (12).
Remark. This first improvement with respect to the local existence theory has been
obtained without making the spectral assumption (3). In fact, we have explained
the proof in the case of M = T1 and V = 0 for which the eigenvalues are double. We
have also obtained this improvement in the case of spheres [5] and Zoll manifolds
[6]. In this framework, one must replace the Fourier coefficients by the spectral
projectors associated to the eigenvalues (resp. to the clusters of eigenvalues in the
case of Zoll manifolds). One of the difficulties comes from the generalization to the
spheres and Zoll manifolds of inequality (28). Here, we have used formula (26) and
in particular the fact that ξp+1 = ξ1 + · · · + ξp on the support of b`

p+1. This comes
from the fact that the product of eigenvectors on T1 is an eigenvector. This does not
hold on spheres and Zoll manifolds, but we are able to prove a property of almost
orthogonality of products of eigenfunctions which is sufficient for our purpose (see
[6]).
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3.3. Reiteration of the procedure

In the previous section, we have obtained the lower bound Tε ≥ cε2−2p. This is not
sufficient to prove a result of almost global existence. Therefore, we would like to
reiterate the normal form method as much as needed to gain any power of ε−1. In
this section, we explain the additional difficulties coming from the reiteration of this
procedure.

We would like to improve the estimate (19). This requires to replace O(‖u‖2p
Hs)

by a higher nonlinearity using the normal form method. O(‖u‖2p
Hs) comes from (21)

and is given by

∑̀
j=1

L(b`
p+1)(u, . . . , u`ūp−`, . . . , ū) +

p+1∑
j=`+1

L(b`
p+1)(u, . . . ,−ū`up−`, . . . , ū).

We focus on the second term which may be rewritten as

p+1∑
j=`+1

L(b`
p+1)(u, . . . ,−ū`up−`, . . . , ū) = L(cp

2p)(u, . . . , ū)

for a convenient symbol cp
2p. As F 2p,p

m vanishes on Σ(2p), we proceed as in the previous
section, namely we decompose cp

2p in (cp
2p)

′+(cp
2p)

′′. The normal form method allows
us to get rid of the contributions of (cp

2p)
′ and we are left with proving

Im

[
L((cp

2p)
′′)(u, . . . , ū)

]
= 0.

This amounts to check that K(η, ξ) = K(ξ, η) on Σ(2p) up to permutations, where
K(ξ, η) is given this time by:

K(ξ, η) = c`
p+1(ξ1, . . . , ξ`, ξ`+1 + . . . + ξp − η1 − . . .− η`, ηl+1, . . . , ηp)

×
(√

m2 + ξ2
1 + · · ·+

√
m2 + ξ2

`

−
√

m2 + (ξ`+1 + . . . + ξp − η1 − . . .− η`)2

−
√

m2 + η2
`+1 − · · · −

√
m2 + η2

p

)−1

+ · · · .

(32)

For K(ξ, η) given by (30), we concluded using the fact that the expressions were
symmetric in (ξ, η) or involved only squares of frequencies. For K(ξ, η) given by (32),
we do not know how to deal with expressions of the form ξ`+1 + . . .+ξp−η1− . . .−η`

which do not satisfy these properties.
However, there is one particular case which is easy to deal with. Remember that

ξj = ±ηj, j = 1, . . . , p, up to permutations on Σ(2p). If we make the further re-
striction that ξj = ηj, j = 1, . . . , p, up to permutations on Σ(2p), then ξ = η up
to permutations, and as K is real, we have clearly K(η, ξ) = K(ξ, ξ) = K(ξ, η)
up to permutations. In other words, the difficulty comes from the choice of sign
ξj = ±ηj which is a consequence of the fact that the eigenvalues on T1 are dou-
ble and are associated to the eigenvectors e±iξ. Therefore, we expect to overcome
this difficulty by assuming that the eigenvalues are simple which corresponds to the
spectral assumption (3).
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3.4. Proof of Theorem 1

For simplicity, we still take M = T1 and V = 0. Furthermore, we choose W as
the subspace of all odd functions in L2(M). Thus, these M , V , and W satisfy the
spectral assumptions (3) and (4), and we may use the sinusoidal Fourier series.
Instead of dealing with the model problem (16), we now consider the general case
(14).

To a convenient symbol a : Np → R, we associate a p-linear form

L(a)(u1, . . . , up) =
∑

n1,...,np∈N
a(n1, . . . , np)û1(n1) · · · ûp(np)

where û(n) are now the sinusoidal Fourier coefficients of u. We fix an integer p̄. In
order to get rid of all terms of order less than p̄, we introduce the energy

Es(u)(t) =
1

2
‖u(t, ·)‖2

Hs + Re
∑

3≤p≤p̄

p∑
`=0

L(b`
p)(u, . . . , ū).

A computation similar to the one carried on in section 3.2.1 yields

d

dt
Es(u)(t) = Im

[ ∑
3≤p≤p̄

p∑
`=0

(
− L(F p,`

m b`
p)(u, . . . , ū)

+L(c`
p)(u, . . . , ū)

)]
+O(‖u(t, ·)‖p̄+1

Hs )

(33)

where c`
p depends on bk

q for 3 ≤ q < p, 0 ≤ k ≤ q. For 3 ≤ p ≤ p̄, 0 ≤ ` ≤ p, we
decompose c`

p in (c`
p)
′ + (c`

p)
′′ and we choose

b`
p(n1, . . . , np) =

(c`
p)
′(n1, . . . , np)

F p,`
m (n1, . . . , np)

, 3 ≤ p ≤ p̄, 0 ≤ ` ≤ p. (34)

Remark. In order to define b`
p, we need to know c`

p. This is indeed the case as c`
p

depends on bk
q for 3 ≤ q < p, 0 ≤ k ≤ q which have already been constructed.

Finally, the spectral assumption (3) implies immediately

Im

[
L((c`

p)
′′)(u, . . . , ū)

]
= 0, 3 ≤ p ≤ p̄, 0 ≤ ` ≤ p, (35)

as noticed at the end of the previous section. (33), (34) and (35) yield

d

dt
Es(u)(t) = O(‖u(t, ·)‖p̄+1

Hs ).

Thus, Tε ≥ cε−p̄ which finishes the proof of Theorem 1.
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