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Notes on symplectic non-squeezing of the KdV flow

J. Colliander M. Keel G. Staffilani H. Takaoka T. Tao

Résumé

Nous montrons deux résultats d’approximation de dimension finie et une
propriété "nonsqueezing" symplectique pour le flot Korteweg-de Vries (KdV)
sur le cercle T. Le résultat nonsqueezing dépend des résultats d’approxi-
mation mentionnés et du théorème nonsqueezing de Gromov en dimension
finie. Contrairement aux travaux de Kuksin [22] qui a lancé l’étude de ré-
sultats nonsqueezing pour des systèmes hamiltoniens de dimension infinie,
l’argument nonsqueezing ici ne construit pas de capacité de façon directe. De
cette manière, nos résultats sont semblables à ceux obtenus pour le flot NLS
par Bourgain [3]. Cependant, une difficulté majeure ici est le manque d’esti-
mations de lissage qui nous permettraient d’approximer facilement le flot KdV
de dimension infinie par un flot hamiltonien de dimension finie. Pour contour-
ner ce problème, nous inversons la transformation de Miura et travaillons au
niveau de l’équation KdV modifiée (mKdV), pour laquelle une estimation de
lissage peut être obtenue.

Abstract

We prove two finite dimensional approximation results and a symplectic
non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle
T. The nonsqueezing result relies on the aforementioned approximations and
the finite-dimensional nonsqueezing theorem of Gromov [14]. Unlike the work
of Kuksin [22] which initiated the investigation of non-squeezing results for
infinite dimensional Hamiltonian systems, the nonsqueezing argument here
does not construct a capacity directly. In this way our results are similar
to those obtained for the NLS flow by Bourgain [3]. A major difficulty here
though is the lack of any sort of smoothing estimate which would allow us to
easily approximate the infinite dimensional KdV flow by a finite-dimensional
Hamiltonian flow. To resolve this problem we invert the Miura transform and
work on the level of the modified KdV (mKdV) equation, for which smoothing
estimates can be established.
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1. Introduction

The material contained in this note is taken from a paper [10] by the same authors
that is concerned with the symplectic behavior of the Korteweg-de Vries (KdV) flow

ut + uxxx = 6uux; u(0, x) = u0(x) (1.1)

on the circle x ∈ T := R/2πZ, where u(t, x) is real-valued. In particular we in-
vestigate how the flows may (or may not) be accurately approximated by certain
finite-dimensional models, and then use such an approximation to conclude a sym-
plectic non-squeezing property. All the results presented here are proved in In order
to describe the symplectic space involved, and state the result precisely, we need to
set notation and recall some previous results describing the well-posedness of the
initial value problem (1.1).

On the circle we have the spatial Fourier transform

û(k) :=
1

2π

∫ 2π

0
u(x) exp(−ikx) dx (1.2)

for all k ∈ Z, and the spatial Sobolev spaces

‖u‖Hs
x

:= (2π)1/2‖〈k〉sû‖l2
k

for s ∈ R, where 〈k〉 := (1 + |k|2)1/2. These are natural spaces for analyzing the
KdV flow.

Let P0 denote the mean operator

P0u :=
1

2π

∫ 2π

0
u

or equivalently

P̂0u(k) = χk=0û(k).

The KdV flow is mean-preserving, and it will be convenient to work in the case when
u has mean zero1. Accordingly we define the mean-zero periodic Sobolev spaces Hs

0

by

Hs
0 := {u ∈ Hs

x : P0u = 0}

endowed with the same norm as Hs
x.

Recent work on the local and global well-posedness theory in Hs
0 for (1.1) is basic

to our results here. For example, the geometric conclusions from finite-dimensional
Hamiltonian dynamics which we ultimately need for our nonsqueezing result can
only be applied in the setting of rather rough solutions to the initial value problem
(1.1). We now pause to summarize some of the analytical techniques that have been
developed for the study of such rough solutions, and the resulting regularity theory
(see e.g. [1], [19], [6], and [8], [9]).

1One can easily pass from the mean zero case to the general mean case by a Galilean transfor-
mation u(t, x) → u(t, x− P0(u)t)− P0(u).

XIV–2



1.1. Summary of local and global well-posedness theory

If the initial datum u0 for (1.1) is smooth, then there is a global smooth solution2

u(t) (see e.g. [27]). We can thus define the non-linear flow map SKdV (t) on C∞(T)
by SKdV (t)u0 := u(t). In particular this map is densely defined on every Sobolev
space Hs

0 .
If s ≥ −1/2, then the equation (1.1) is globally well-posed in Hs

0 . In other words,
the flow map SKdV (t) is uniformly continuous (indeed, it is analytic) on Hs

0 for times
t restricted to a compact interval [−T, T ], and for such s we have bounds of the form

sup
|t|≤T

‖SKdV (t)u0‖Hs
0
≤ C(s, T, ‖u0‖Hs

0
), (1.3)

(see [19], [8], [9]). For s < −1/2 the flow map SKdV (t) is no longer uniformly
continuous [6] (see also [20]) or analytic [4], so from the point of view which requires
a uniformly continous flow in time, the Sobolev space H

−1/2
0 is the endpoint space

for the KdV flow. Coincidentally, this space is also a natural phase space for which
KdV becomes a Hamiltonian flow; we will have more to say about this at the end
of the introduction. Note however that if one asks only that the flow be continuous
in time, then global well-posedness for (1.1) has been established for all s ≥ −1 in
[17] using inverse scattering methods. Combining mapping properties of the Miura
Transform and the result in [28], local well-posedness of (1.1) in Hs

0 with a (not
uniformly) continuous flow map holds for −5/8 < s < −1/2.

1.2. Low frequency approximation of KdV

The KdV flow (1.1) is, formally at least, a Hamiltonian flow on an infinite-dimensional
space. In order to rigorously prove in this context results from symplectic geometry,
in principle one could proceed in two very different ways. The first is by introduc-
ing in the infinite-dimensional setting the geometric tools developed in the finite
one, like holomorphic curves for example. The second is by approximating the given
infinite-dimensional flow by a finite-dimensional one. So far this second procedure
has been the preferred approach (see [22], [3] and [10]), although there are no results
at this point indicating that the first one could not be successful.

When we started thinking about proving for the KdV flow the analogue of the
finite dimensional non-squeezing theorem of Gromov [14] recalled in Theorem 1.6,
we had in mind the proof that Bourgain gives in [3] in order to prove a non-squeezing
theorem for the 1D cubic nonlinear Schrödinger flow. But we immediately faced a
serious obstruction: the finite dimensional approximation for the KdV flow analogue
to the one used by Bourgain was not a good approximation in this case. Let’s now
make this statement precise. To approximate the KdV flow by a finite-dimensional
model we proceed in the most obvious way: we restrict the infinitely many Fourier

2This result can also be obtained by inverse scattering methods, since the KdV equation is
completely integrable. However, our methods here do not use inverse scattering techniques, al-
though the special algebraic structure of KdV (in particular, the Miura transform [25]) is certainly
exploited.
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modes to the ones supported on [−N, N ], for some large fixed N and we study the
KdV flow

ut + uxxx = P≤N(6uux); u(0) = u0, (1.4)
where P≤N is the Fourier projection to frequencies ≤ N :

P̂≤Nu(k) = χ|k|≤N û(k).

Denote the flow map associated to (1.4) by SP≤NKdV (t). This flow has several
advantageous properties; for instance, SP≤NKdV (t) is a symplectomorphism on the
space P≤NH

−1/2
0 , associated with a natural symplectic structure (see next subsec-

tion). Since P≤NH
−1/2
0 is a finite dimensional space, it is easy to see (e.g. using L2

norm conservation and Picard iteration) that this flow SP≤NKdV is globally smooth
and well-defined. As mentioned above in [3], the NLS flow iut + uxx = |u|2u was
similarly truncated, and it was shown that the truncated flow was a good approx-
imation to the original (infinite dimensional) flow. Unfortunately, the same result
does not apply for KdV:

Theorem 1.1. Let k0 ∈ Z∗, T > 0, A > 0. Then for any N � C(A, T, k0) there
exists initial data u0 with ‖u0‖H

−1/2
0

≤ A and supp (û0) ⊂ {|k| ≤ N} such that

| ̂(SKdV (T )u0)(k0)− ̂(SP≤NKdV (T )u0)(k0)| ≥ c(T, A, k0) (1.5)

for some c(T, A, k0) > 0.

In other words, SP≤NKdV does not converge to SKdV even in a weak topology.
Basically, the problem is that the multiplier χ[−N,N ] corresponding to P≤N is

very rough, and this creates significant deviations between SKdV and SP≤NKdV near
the Fourier modes k = ±N . In cubic equations such as mKdV (see (1.8) below)
or the cubic nonlinear Schrödinger equation, these deviations would stay near the
high frequencies ±N , but in the quadratic KdV equation these deviations create
significant fluctuations near the frequency origin, eventually leading to failure of
weak convergence in (1.5).

Since the obstruction above was generated by a sharp truncation of the frequen-
cies, the next obvious step was to look at a smooth truncation. Let b(k) be the
restriction to the integers of a real even bump function adapted to [−N, N ] which
equals 1 on [−N/2, N/2], and consider the evolution

ut + uxxx = B(6uux); u(0) = u0 (1.6)

where
B̂u(k) = b(k)û(k).

Let SBKdV denote the flow map associated to (1.6). Observe that this is a finite-
dimensional flow on the space P≤NHs

0 . Unfortunately, SBKdV is not a symplectomor-
phism, but we will explain in (1.26) below how by conjugating a flow of the form
(1.6) with a simple multiplier operator we will arrive at our desired finite dimen-
sional symplectomorphism on P≤NH− 1

2 (T) that well-approximates the full KdV flow
at low frequencies. This desired symplectomorphism is labelled S

(N)
KdV (t) in (1.26)

below3, and once the aforementioned approximation properties are established, the

3The equation which defines this flow can be find in [10].
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nonsqueezing result will follow almost immediately after quoting the finite dimen-
sional nonsqueezing result of Gromov [14].

The first step in the argument is to show we can approximate SKdV by SBKdV in
the strong Hs

0 topology:

Theorem 1.2. Fix s ≥ −1/2, T > 0, and N � 1. Let u0 ∈ Hs
0 have Fourier

transform supported in the range |k| ≤ N . Then

sup
|t|≤T

‖P≤N1/2(SBKdV u0(t)− SKdV (t)u0)‖Hs
0
≤ N−σC(s, T, ‖u0‖Hs

0
)

for some σ = σ(s) > 0.

In particular, we can accurately model the KdV evolution for band-limited initial
data by a finite-dimensional flow, at least for frequencies |k| ≤ N1/2.

Theorem 1.2 can be viewed as a statement that one can (smoothly) truncate the
KdV evolution at the high frequencies without causing serious disruption to the
low frequencies, in spite of the obstruction posed by Theorem 1.1. Our second main
result is in a similar vein:

Theorem 1.3. Fix s ≥ −1/2, T > 0, N ≥ 1. Let u0, ũ0 ∈ Hs
0 be such that P≤2Nu0 =

P≤2N ũ0 (i.e. u0 and ũ0 agree at low frequencies). Then we have,

sup
|t|≤T

‖P≤N(SKdV (t)ũ0 − SKdV (t)u0)‖Hs
0
≤ N−σC(s, T, ‖u0‖Hs

0
, ‖ũ0‖Hs

0
)

for some σ = σ(s) > 0.

The point of Theorem 1.3 is that changes to the initial data at frequencies ≥ 2N
do not significantly affect the solution at frequencies ≤ N , as measured in the strong
Hs

0 topology. This is in stark contrast to the negative result in Theorem 1.1. The
point is that there is some delicate cancellative structure in the KdV equation which
permits the decoupling of high and low frequencies, and this structure is destroyed
by projecting the KdV equation crudely using (1.4).

To prove Theorem 1.2 and Theorem 1.3, we shall need to exploit the subtle
cancellation mentioned in the previous paragraph in order to avoid the obstructions
arising from Theorem 1.1. We do not know how to do this working directly with the
KdV flow. Rather, we are able to prove estimates which explicitly account for this
subtle structure in KdV by using the Miura transform u = Mv, defined by

u = Mv := vx + v2 − P0(v
2). (1.7)

As discovered in [25], this transform allows us to conjugate the KdV flow to the
modified Korteweg-de Vries (mKdV) flow

vt + vxxx = F (v); v(x, 0) = v0(x) (1.8)

where the non-linearity F (v) is given by

F (v) := 6(v2 − P0(v
2))vx. (1.9)
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The modified KdV equation has slightly better smoothing properties than the or-
dinary KdV equation, and in addition the process of inverting the Miura transform
adds one degree of regularity (from H

−1/2
0 to H

1/2
0 ). In particular, the types of coun-

terexamples arising in Theorem 1.1 do not appear in the mKdV setting, and by
proving a slightly more refined trillinear estimate than those found in e.g. [9] we are
able to prove the above two theorems by passing to the mKdV setting using the
Miura transform. Of course, in order to close the argument we will need some effi-
cient estimates on the invertibility of the Miura transform; we set up these estimates
(which may be of independent interest) in [10].

1.3. Application to symplectic non-squeezing

We can apply the above approximation results to study the symplectic behavior of
KdV in a natural phase space H

−1/2
0 (T). Before doing so, we recall some context and

results from previous works. We are following here especially the exposition from
[16, 23].

Definition 1.4. Consider a pair (H, ω) where ω is a symplectic form4 on the Hilbert
space H. We say (H, ω) is the symplectic phase space of a PDE with Hamiltonian
H[u(t)] if the PDE can be written in the form,

u̇(t) = J∇H[u(t)]. (1.10)

Here J is an almost complex structure5 on H, which is compatible with the Hilbert
space inner product 〈·, ·〉. That is, for all u, v ∈ H,

ω(u, v) = 〈Ju, v〉. (1.11)

The notation ∇ in (1.10) denotes the usual gradient with respect to the Hilbert
space inner product,

〈v,∇H[u]〉 ≡ dH[u](v) (1.12)

≡ d

dε

∣∣∣
ε=0

H[u + εv]. (1.13)

One easily checks that an equivalent way to write the PDE corresponding to the
Hamiltonian H[u(t)] in (H, ω) is

u̇(t) = ∇ωH[u(t)] (1.14)

where the symplectic gradient ∇ωH[u] is defined in analogy with (1.12),

ω(v,∇ωH[u]) = dH[u](v). (1.15)

For example, on the Hilbert space H
− 1

2
0 (T), we can define the symplectic form

ω− 1
2
(u, v) :=

∫
T
u(x)∂−1

x v(x) dx (1.16)

4That is, a nondegenerate, antisymmetric form ω : H×H → C. We identify in the usual way H
and it’s tangent space TxH for each x ∈ H.

5That is, a bounded, anti-selfadjoint operator with J2 = −(identity).
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where ∂−1
x : H

−1/2
0 (T) → H

1/2
0 (T) is the inverse to the differential operator ∂x defined

via the Fourier transform by

∂̂−1
x f(k) :=

1

ik
f̂(k).

The KdV flow (1.1) is then formally the Hamiltonian equation in (H
−1/2
0 (T), ω− 1

2
)

corresponding to the (densely defined) Hamiltonian

H[u] :=
∫

T

1

2
u2

x + u3dx. (1.17)

Indeed, working formally6 we have for any v ∈ H
− 1

2
0 (T),

d

dε

∣∣∣
ε=0

H[u + εv] =
∫

T
uxvx + 3u2vdx

=
∫

T
(−uxx + 3u2)vdx

=
∫

T
∂−1

x (−uxxx + 6uux)vdx

= −
∫

T
(−uxxx + 6uux)∂

−1
x vdx

= ω− 1
2
(uxxx − 6uux, v)

= ω− 1
2
(v,−uxxx + 6uux).

Comparing (1.14)-(1.15) with (1.1), we see KdV is indeed the Hamiltonian PDE
corresponding to H[u] on the infinite dimensional symplectic space (H

− 1
2

0 , ω− 1
2
). In

particular, the flow maps SKdV (t) are, formally, symplectomorphisms on H
−1/2
0 (T).

That the KdV flow arises as a Hamiltonian flow from a symplectic structure as
described above was discovered by Gardner and Zakharov-Faddeev (see [13, 32]). A
second structure was given by Magri [24] using

∫
u2dx as Hamiltonian, but it is not

as convenient as the first structure for our strategy to prove nonsqueezing. Roughly
speaking, it seems the symplectic form in this second structure could possibly be used
to establish a nonsqueezing property - in the H− 3

2 topology - of a finite dimensional
analog of (1.1). However, since the well-posedness theory, and the accompanying
estimates, for the full KdV flow do not presently exist at such rough norms, we do
not see how we could approximate the full KdV flow in a space as rough as H− 3

2

with a finite dimensional flow. The first structure described above allows us to adopt
this strategy in the space H

− 1
2

0 , within which we do have well-posedness. (See below
for references for this approach to proving nonsqueezing for PDE. See e.g [26, 12]
for more details and history of the various symplectic structures for KdV.)

6By the word ‘formally’, we mean here that no attempt is made to justify various differentiations
or integration by parts. Later, when we localize the space H

− 1
2

0 and Hamiltonian in frequency and
write down the corresponding equations, the reader can carry out the analogous computation
where the justification of the necessary calculus will be evident.
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For any u∗ ∈ H
−1/2
0 (T), r > 0, k0 ∈ Z∗, and z ∈ C, we consider the infinite-

dimensional ball

B∞(u∗; r) := {u ∈ H
−1/2
0 (T) : ‖u− u∗‖H

−1/2
0

≤ r}

and the infinite-dimensional cylinder

C∞
k0

(z; r) := {u ∈ H
−1/2
0 (T) : |k0|−1/2|û(k0)− z| ≤ r}.

The final result of this paper is the following symplectic non-squeezing theorem,

Theorem 1.5. Let 0 < r < R, u∗ ∈ H
−1/2
0 (T), k0 ∈ Z∗, z ∈ C, and T > 0. Then

SKdV (T )(B∞(u∗; R)) 6⊆ C∞
k0

(z; r).

In other words, there exists a global H
−1/2
0 (T) solution u to (1.1) such that

‖u(0)− u∗‖H
−1/2
0

≤ R

and

|k0|−1/2|û(T )(k0)− z| > r.

Note that no smallness conditions are imposed on u∗, R, z, or T .
Roughly speaking, this Theorem asserts that the KdV flow cannot squash a large

ball into a thin cylinder. Notice that the balls and cylinders can be arbitrarily far
away from the origin, and the time T can also be arbitrary. Note though that this
result is interesting even for u∗ = 0, z = 0 and smooth initial data u0, as it tells
us that the flow cannot at any time uniformly squeeze the ball B∞(0, R) even at a
fixed frequency k0. By Theorem (1.5), the well-posedness theory for KdV reviewed
above, and density considerations, we know that for any T, r < R, there will be
some initial data u0 ∈ B∞(0; R) for which7 |û(k0, T )| > |k0|

1
2 r. (See [5], page 96 for

the same discussion in the context of a nonlinear Klein-Gordon equation.) A second
immediate application of Theorem 1.5 to smooth solutions was highlighted in a
different context already in [22], namely that such smooth solutions of (1.1) cannot
uniformly approach some asymptotic state: for any neighborhood B∞(u0; R) of the
initial data in H− 1

2 (T) and for any time t, the diameter of the set SKdV (t)(B∞(u0; R))
cannot be less than R.

The motivation for Theorem 1.5, and an important component of its proof, is
the finite-dimensional nonsqueezing theorem of Gromov [14] (see also subsequent
extensions in [15], [16]). The extension to the infinite-dimensional setting provided
by a nonlinear PDE seems nontrivial. The program was initiated by Kuksin [22],
[23] for certain equations where the nonlinear flow is a compact perturbation of the
linear flow. That the KdV equation doesn’t meet this requirement can be seen by

7We are using here the statement of the Theorem only in the case u∗ = 0, z = 0. Of course
one gets a similar conclusion to the one we draw here, but with different weights and a different
initial data set, by simply using the L2 conservation and time reversability properties of the flow.
That is, for any R > r, there is data ũ0 ∈ {‖f‖L2(T) ≤ R} such that the evolution ũ of this data
satisfies |̂̃u(k0, T )| > r.
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an argument involving simple computations similar to those supporting Theorem
1.1: fix σ � 1 and for each integer N ≥ 1 consider initial data,

u0,N(x) := σN
1
2 cos(Nx).

Clearly the set {u0,N : N = 1, 2, . . .} is bounded in H
− 1

2
0 . However, when one com-

putes the second iterate8 u
[2]
N one sees that it differs from the linear evolution of û

[0]
N

at frequency k = N in that,

û
[2]
N (N, t)− û

[0]
N (N, t) ∼ N

1
2 σ3eiN3t. (1.18)

By the local well-posedness theory we know, assuming σ is sufficiently small com-
pared to t, that the difference between the second iterate and the actual nonlinear
evolution uN(t) of the data u0,N satisfies,

‖uN(t)− u
[2]
N (t)‖

H
− 1

2
0 (T)

. σ4. (1.19)

Together, (1.18) and (1.19) show that if {Nk} is a sequence of integers relatively
prime to one-another9, then

ûNk
(Nl, t)− û

[0]
Nk

(Nl, t) ∼ δk,l · σ3 ·N
1
2
k eiN3

k t.

Hence the set {uNk
(t)− u

[0]
Nk

(t)} has no limit point in H
− 1

2
0 (T).

In [22] Kuksin first defines the concept of capacity then he proves that the capacity
is preserved by the infinite dimensional flow maps that he considers. A corollary of
this result is then non-sqeezing theorems. It is important to mention that also in
this work a finite dimensional approximation is considered. The nonsqueezing results
of Kuksin were extended to certain stronger nonlinearities by Bourgain [3, 5] - for
instance [3] treats the the cubic non-linear Schrödinger flow on L2(T). In these works,
the full solution map is shown to be well-approximated by a finite dimensional flow
constructed by cutting the solution off to frequencies |k| ≤ N for some large N .
The nonsqueezing results in [3, 5] follow then from a direct application of Gromov’s
finite dimensional nonsqueezing result to this approximate flow.

As mentioned above, the argument we follow here for the KdV flow is similar10 to
the work in [3, 5], but seems to require a bit more care. The complication seems to us
to be somehow rooted in the counterexample of Theorem 1.1, which clearly exhibits
that a sharp cut-off is not appropriate in constructing the approximating flow, but
which seems also to be subtly related to the fact that the estimates necessary to
approximate the full KdV flow by a more gradually truncated flow are unavailable
to us when we work directly with the KdV equation. We have already sketched how

8See [10] for the notation used here, and if necessary for what we hope is a sufficiently detailed
discussion to allow the reader to reproduce the elementary computations we quote here.

9Note (for example by examining the iterates and using well-posedness) that ûN (t) is supported
only at frequencies which are integer multiples of N .

10We do not know wether one could define also for the KdV and 1D cubic Schrödinger equations
the concept of capacity and prove that the respective flows preserve it.
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we will deal with this difficulty (that is, by passing to the modified KdV equation)
in the discussion which followed Theorem 1.3 above.

We now provide some details of the previous paragraph’s sketch, in particular we
indicate the difficulties that arise when one tries to repeat the argument in [3, 5].

Let N ≥ 1 be an integer. By simply restricting the form ω− 1
2
, the space (P≤NH

−1/2
0 (T), ω− 1

2
)

is a 2N -dimensional real symplectic space and hence by general arguments (see e.g.
Proposition 1 in [16]) is symplectomorphic to the standard space (R2N , ω0). We will
make explicit use of such an equivalence below: any u ∈ P≤NH

−1/2
0 (T) is determined

completely by

(Re(û(1)), . . . , Re(û(N)), Im(û(1)), . . . , Im(û(N)))

≡ (e1(u), . . . , en(u), f1(u), . . . , fN(u)) ∈ R2N .
(1.20)

In terms of the coordinates (1.20) the form ω− 1
2

defined in (1.16) can be written
using the Plancherel theorem as,

ω− 1
2
(u, v) =

N∑
k = −N
k 6= 0

û(−k)
1

ik
v̂(k)

=
N∑

k=1

1

ik
(û(−k)v̂(k)− û(k)v̂(−k))

=
N∑

k=1

2

k
(Im(v̂(k)û(k)))

=
N∑

k=1

2

k
(ek(u) · fk(v)− ek(v) · fk(u)).

Write Γ for the N × N matrix Γ ≡ diag(1, 1√
2
, 1√

3
, . . . 1√

N
), Λ ≡ diag(Γ, Γ), and

u = (~e(u), ~f(u)) ∈ R2N for the coordinates in P≤NH
−1/2
0 (T), we summarize the

discussion above by saying,

ω− 1
2
(u, v) = ω0(Λ(~e(u), ~f(u)), Λ(~e(v), ~f(v))), (1.21)

where as before we’ve written ω0 for the standard symplectic form on R2N . In other
words,

Λ : (P≤NH
−1/2
0 (T), ω− 1

2
) → (R2N , ω0)

is a symplectomorphism.
Following [3], our goal is to find a flow which satisfies three conditions: it should

be finite dimensional - that is, map P≤NH− 1
2 (T) into itself; it should be a symplectic

map for each t; and it should well-approximate the full flow SKdV (t) in a sense that
we will make rigorous momentarily. For now, we write S

(N)
Good!(t) for this yet to be
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determined flow.

(P≤NH
− 1

2
0 , ω− 1

2
)

Λ−−−→ (R2N , ω0)

S
(N)
Good!(t)

y
(P≤NH

− 1
2

0 , ω− 1
2
) −−−→

Λ
(R2N , ω0)

(1.22)

Note then that the map,

Λ ◦ S
(N)
Good!(t) ◦ Λ−1 : (R2N , ω0) −→ (R2N , ω0) (1.23)

is likewise a symplectomorphism to which we can apply the finite dimensional theory
of symplectic capacity (see [14], and e.g. [16]). One defines, for any ~x∗ ∈ R2N , u

(N)
∗ ∈

P≤NH
−1/2
0 (T), r > 0, 0 < |k0| ≤ N , and z ∈ C, the finite-dimensional balls in

P≤NH
−1/2
0 (T), R2N , respectively, by the notation,

BN(u(N)
∗ ; r) := {u(N) ∈ P≤NH

−1/2
0 (T) : ‖u(N) − u(N)

∗ ‖
H
−1/2
0

≤ r} (1.24)

B(~x∗, r) := {~x ∈ R2N : |~x− ~x∗| ≤ r}. (1.25)

and the finite-dimensional cylinders in the same spaces by,

CN
k0

(z; r) := {u(N) ∈ P≤NH
−1/2
0 (T) : |k0|−1/2|û(N)(k0)− z| ≤ r}

Ck0(z; r) := {(~e, ~f) ∈ R2N : |(ek0 +
√
−1fk0)− z| ≤ r)}.

>From [14], (see also e.g. Theorem 1, Page 55 in the exposition [16]) we have the
finite-dimensional analogue of Theorem 1.5:

Theorem 1.6 ([14]). Assume that for some R, r ≥ 0, z ∈ C, 0 ≤ k0 ≤ N,~x∗ ∈ R2N

there is a symplectomorphism φ defined on B(~x∗, R) ⊂ (R2N , ω0) so that

φ(B(~x∗, R)) ⊂ Ck0(z; r).

Then necessarily r ≥ R.

We apply this theorem to the symplectomorphism Λ◦S(N)
Good!◦Λ−1 defined in (1.23)

above to conclude,

Theorem 1.7. Let N ≥ 1, 0 < r < R, u
(N)
∗ ∈ P≤NH

−1/2
0 (T), 0 < |k0| ≤ N , z ∈ C,

and T > 0. Let S
(N)
Good!(T ) : P≤NH

−1/2
0 (T) → P≤NH

−1/2
0 (T) be any symplectomor-

phism. Then

S
(N)
Good!(T )(BN(u(N)

∗ ; R)) 6⊆ CN
k0

(z; r).

To deduce Theorem 1.5 from Theorem 1.7, one would like to let N →∞ and show
that the flow S

(N)
Good!(T ) converged to SKdV (T ) in some weak sense. More precisely,

one would need,

XIV–11



Condition 1.8. Let k0 ∈ Z∗, T > 0, A > 0, 0 < ε � 1. Then there exists an
N0 = N0(k0, T, ε, A) > |k0| such that

|k0|−1/2| ̂SKdV (T )u0(k0)−
̂

S
(N)
Good!(T )u0(k0)| � ε

for all N ≥ N0 and all u0 ∈ BN(0, A).

Once we find a finite dimensional symplectic flow S
(N)
Good!(t) for which Condition 1.8

holds, it is an easy matter to conclude Theorem 1.5. Indeed, let r, R, u∗, k0, z, T be
as in that Theorem, and choose 0 < ε < (R− r)/2. The ball B∞(u∗; R) is contained
in some ball B∞(0; A) centered at the origin. We choose N ≥ N0(k0, T, ε, A) so
large that ‖u∗ − P≤Nu∗‖H

−1/2
0

≤ ε. From Theorem 1.7 we can find initial data

u
(N)
0 ∈ P≤NH− 1

2 (T) satisfying ‖u(N)
0 − P≤Nu∗‖H

−1/2
0

≤ R − ε, and hence by the
triangle inequality,

‖u(N)
0 − u∗‖H

−1/2
0

≤ R,

and so that at time T we have,

|k0|−1/2| ̂
S

(N)
Good!(T )u

(N)
0 (k0)− z| > r + ε.

If we then apply Condition 1.8 and the triangle inequality we obtain Theorem 1.5
with u0 := u

(N)
0 ,

|k0|−1/2|z − ̂
SKdV (T )u

(N)
0 (k0)| ≥

|k0|−1/2

∣∣∣∣∣|z − ̂
S

(N)
Good!(T )u

(N)
0 (k0)| − |

̂
SKdV (T )u

(N)
0 (k0)−

̂
S

(N)
Good!(T )u

(N)
0 (k0)|

∣∣∣∣∣
> r + ε− ε = r.

It remains to define the flow S
(N)
Good!(t). One might first try to follow Bourgain’s

treatment of several different Hamiltonion PDE, notably the cubic NLS flow on
L2(T) (see [3], [5]). Note that the Hamiltonian H[u] (1.17) is well-defined on (P≤NH

−1/2
0 (T), ω− 1

2
),

and the equation giving the corresponding Hamiltonian flow on this space can be
computed as before to be (1.4), which can be viewed either as a PDE or as a system
of 2N ODE. The maps SP≤NKdV (t) are therefore symplectomorphisms, but from
Theorem 1.1 we know that Condition 1.8 fails.

We proceed instead by using a flow of the form (1.6) as follows: Theorem 1.2 tells
us that for any multiplier B̃ of the form described in (1.6), the finite dimensional
flow SB̃KdV provides a good approximation to the low frequency behavior of SKdV .
However, the flows SB̃KdV are not symplectomorphisms, and hence cannot be can-
didates for our flow S

(N)
Good!(t) in the discussion above. Fortunately, there is a quick

cure for this hiccup using the approximation given by Theorem 1.3 as follows: we
will define a symplectic, finite dimensional flow S

(N)
KdV (t) on P≤NH

− 1
2

0 so that the
following diagram commutes.

u0 ∈ P≤NH
− 1

2
0

B−−−→ Bu0

S
(N)
KdV

(t)

y ySB2KdV (t)

S
(N)
KdV (t)u0 −−−→

B
w(t)

(1.26)
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We write explicitly the PDE defining this flow in [10]. To finish the argument we
have now to show that S

(N)
KdV (t) well approximates SKdV (t) at frequency k0, and

hence qualifies as our choice of S
(N)
Good!(t), we will simply spell out the following:

Theorem 1.3 allows us to replace SB2KdV (t) on the right side of (1.26) with SKdV (t);
and our choice N � |k0| allows us to ignore both the mappings on the top of (1.26)
(again, by Theorem 1.3) and the bottom of (1.26) (by the definition of B, this is
the identity at frequency k0). All the details are given in [10].
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