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Modelling geophysical flows in the equatorial zone

Laure Saint-Raymond

Résumé

On présente ici une série de travaux dont le but est de décrire les flots
géophysiques dans la zone équatoriale, en tenant compte de l'influence pré-
dominante de la rotation de la terre. Pour cela, on procede par approximations
successives, en calculant pour chaque modele la réponse du fluide & la pénali-
sation par la force de Coriolis. La principale difficulté provient des variations
spatiales de 'accélération de Coriolis : en particulier, comme elle s’annule a
I’équateur, les oscillations rapides sont piégées dans une fine bande de lati-
tudes.

Abstract

We present here a series of works which aims at describing geophysical flows
in the equatorial zone, taking into account the dominating influence of the
earth rotation. We actually proceed by successive approximations computing
for each model the response of the fluid to the strong Coriolis penalisation.
The main difficulty is due to the spatial variations of the Coriolis acceleration :
in particular, as it vanishes at the equator, fast oscillations are trapped in a
thin strip of latitudes.

The present paper is devoted to some recent results about the modelling of geophys-
ical flows. These results have been obtained in a series of joint works with Isabelle
Gallagher [3, 4, 5, 6], which aims at describing the motions of the ocean and of the
atmosphere in the equatorial zone, taking into account the dominating influence of
the earth rotation.

In order to get an overview of the various physical phenomena occuring in such com-
plex dynamics, we proceed by successive approximations computing for each model
the response of the fluid to the strong Coriolis penalisation. Actually we will focus
here on a very simplified model of oceanography, which we will describe precisely in
the next section pointing out for instance the underlying physical and geometrical
approximations. We will just discuss in the last part the different corrections to the
dynamics we expect to find when these assumptions are relaxed.
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The main difficulty in this whole study is due to the spatial variations of the Coriolis
acceleration. Indeed it is well-known that a rotating fluid does not adjust to a state of
a rest, but rather to a geostrophic equilibrium which is a balance between the Coriolis
acceleration and the pressure gradient divided by density [2]. But this adjustment
process is somewhat special when the Coriolis acceleration (or more precisely its
horizontal component) vanishes. Because of this singularity, equatorial waves are
expected to show a decay with respect to latitude [7, 9], which corresponds to the
physical observation that the equatorial zone behaves as a waveguide.
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The sea surface temperature in the Pacific ocean in december 1972 relative to december 1971.
Contours are in degrees Farenheit.
From Fishing Information, December 1972, No. 12, U.S. Dept. of Commerce,
National Marine Fisheries Service, La Jolla, California.

Equatorial waves are trapped in a thin strip
of some hundreds of kilometers around the equator

1. The p-plane approximation

In order to get a suitable description of the oceanic motion, it is crucial to have a
precise idea of the general features of the ocean. In view of the typical length scales
occuring in oceanography, it is relevant to consider the ocean as an incompressible
viscous fluid with free surface, submitted to gravitation. From a mathematical point
of view this means that the motion is governed by a system of partial differential
equations of Navier-Stokes type, set on a variable domain, and supplemented with
some condition on the interface taking into account the capillarity effects. The struc-
ture of such a system is thus very complex and requires a sharp analysis. Then, as
our goal here is to understand the influence of the Coriolis force in the equatorial
zone, we will restrict our attention to a simplified model.
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The main simplification is an invariance assumption, leading to the so-called shallow
water approximation. We indeed suppose that the flow is essentially bidimensionnal
and that it depends only on the horizontal coordinates. The fluid is then completely
characterized by its local depth and bulk velocity. Its density is assumed to be
homogeneous, and its pressure is given by the hydrostatic law.

The other simplification comes from geometrical approximations, leading to the so-
called (-plane approximation. On the one hand, we consider the latitude and longi-
tude (or more precisely the distance northward from the equator and the eastward
distance) as cartesian coordinates (z1, x2), neglecting the curvature of the earth. On
the other hand, we use a linearization of the sinus of the latitude occuring in the
Coriolis force.

1.1. A viscous Saint-Venant model

Under these various assumptions, we come down to the study of the following viscous
Saint-Venant model :

1 N (1.1)

&Umy+v-mu®uy+f3th+@mmm — vV - (hVu) + hVK(h) =0,

r
where h and u denote as usual the depth and bulk velocity of the fluid, F'r stands
for the Froude number, and the coefficient 3 in the Coriolis term is defined as twice
the ratio between the earth angular velocity 2 and the earth radius R.

The first equation expresses the local conservation of mass, whereas the second one
gives the local conservation of momentum. The pressure is ruled as agreed by the
hydrostatic law, and thus after integration with respect to the vertical coordinate it
is given by

h2

P=pg

The viscous effects are supposed to increase with the depth, and in particular to
cancel when h vanishes. The last term occuring in the conservation of momentum
generates also some dissipation, it comes from the capillarity, modelled by a differ-
ential operator K to be specified later.

For such a model, weak solutions are defined globally provided that cavitation is
controlled [1].

Theorem 1 (Bresch-Desjardins). Let H > 0 be the reference depth. Consider
(h°,u®) € H** x L*(R x T) with a > § such that

0 17\2
50:/<(}L2F,T[2{)+;|Aah0|2+;h0|u0|2> (:L‘)d:L‘

< CoH?,

(1.2)
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where Cy = 5C5, and Chq is the embedding constant from H** in L. This ensures
in particular that h° is bounded from below.

Then there exists (h,u) € L=(RT, H** x L*(R x T)) satisfying

e the wviscous Saint-Venant system (1.1) with initial condition (h°,u°), and with
capillarity
K(h) = kA**h

(preventing the formation of singularities due to cavitation);

e the energy estimate
t
E(t)+ I// /h|Vu|2(s,x)dxds <&
0

where the enerqy is defined by

_ (h— H)? Kixap2 , L 2
€(t)—/< e+ SIAH + Shlul? ) (¢ x)da

This existence result is actually a little different from that in [1] since z; describes
the whole real axis. In particular, getting a uniform bound from below on h requires
a better control on its derivatives, which is the reason why we take o > % instead
of the more physical a = 3.

1.2. Orders of magnitude in the equatorial zone

In the previous paragraph, we have fixed the mathematical framework for our study.
Before starting with the asymptotic analysis when the Coriolis force has a dominat-
ing influence, let us now consider the physical framework, giving for instance the
orders of magnitude of the parameters occuring in System (1.1).

The range of validity of the [-plane approximation is determined by geometrical
considerations. We have

sin ¢ 3

<014 if |4 < %,

meaning that it is relevant to approximate the Coriolis force by a linear function of
x1 provided that z; take its values in the strip

71| = R|¢| < 3000 km.

In this approximation, the coefficient § measuring the strength of the Coriolis force
is given by

2Q)
B = = 2 x 107t m s,
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so that the Coriolis radius of deformation at the equator is typically

1/2

VgH

a. = (g) ~ 100 km.
20

In other words, the range of decay of the equatorial waves is of the order of some

hundred of kilometers, which is very small compared with the range of validity of

the [-plane approximation. We thus expect the northern and southern boundary

conditions not to play an important role, and for the sake of simplicity we consider,
as said in the previous paragraph, that x; describes the whole real axis.

It remains then to give an estimate of the Froude number. Of course the depth
variation is expected to be very small compared with the reference depth. More
precisely we will consider depth variations

h=H(1+en)

where ¢ stands for the order of magnitude of the Froude number.

In order for gravity waves to be notably modified by rotation effects, the Rossby
radius of deformation has to be comparable to the typical horizontal length scales.
In order to derive the quasi-geostrophic equations with free-surface term used in
oceanography, we will therefore assume that ¢ is also the order of magnitude of the
Rossby number.

In non-dimensional variables, the viscous Saint-Venant system (1.1) can then be
rewritten

1
om+-V-u+V-(nu) =0,
c (1.3)

v

. A2a —
1+8n(V7} V)u+eVA“n =0,

1
ou+ (u-V)u+ gVn + fmluL —vAu —

where 3 denotes from now on the ratio between the Froude and Rossby numbers.

In order to investigate the influence of the Coriolis force, we are then interested in
describing the asymptotic behaviour of this system as ¢ tends to zero. Of course it
is not clear that the use of the shallow water approximation is relevant in this con-
text since the Coriolis force is known to generate vertical oscillations. Nevertheless
this very simplified model is commonly used by physicists [7, 10] since it allows to
obtain the qualitative features of the horizontal motion, in particular the trapping
of equatorial waves.

1.3. Description of the equatorial waves

Before determining properly the asymptotic motion using a multi-scale analysis, let
us just exhibit this trapping property on the linear system.
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The wave equations have the following structure :

1
3t(777u) + EL(%U) =0,
with
L(n,u) = (V - u, fru™ + Vn). (1.4)

Note for instance that L is a skew-symmetric operator and that its resolvent would
be compact if the coefficient of the rotation did not vanish. We thus expect L to
have only purely imaginary discrete spectrum, but its eigenmodes should have a
particular behaviour because of the singularity at z; = 0.

In order to characterize the eigenmode corresponding to some eigenvalue 7, we use
a rather standard method. Assume that u; # 0. Then, by Fourier transform with
respect to xo, if k? # 72, we get the following ordinary differential equation

. k .
— anul -+ (]{72 — 7'2 — 5; + ﬁ%ﬁ%) Uy = 0, (15)
where @1 denotes the coefficient of exp(ikzs) in the decomposition of u;.

Such an equation has a solution in L?(R x T) if and only if the following dispersion
relation

k
k* — 1% — = = —(2n + 1)3 holds for some n € N*,
T A= )8 (1.6)
or 72 + k7 = 1 (corresponding to n = 0).
Furthermore the solution is proportionnal to

2

Un(21) = exp <—ﬁ§1> Pn(:cl\/ﬁ)

where P, is the Hermite polynomial of degree n.
For n # 0 we get in this way three possible values of 7 :
™ — (K> 4+ p@2n+ 1)1+ k= (1 — 7(k,n, 1)) (7 — 7(k,n,2))(r — 7(k,n, 3)), (1.7)
with
\7(k,n, )|, |T(k,n,2)] — 0o as |k| — oo,
corresponding to the so-called Poincaré waves, and
|7(k,n,3)] — 0 as |k| — oo,

corresponding to the so-called Rossby wave.
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For n = 0 we get in this way two possible values of 7
7>+ kr — B = (1 —7(k,0,1)) (7 — 7(k,0,2)) (1.8)
corresponding to the mixed Poincaré-Rossby waves, to be supplemented by
7(k,0,3) = -k (1.9)
which is associated to the Kelvin wave, i.e. to the wave satisfying

up =0, uy=n. (1.10)

By decomposition on Hermite functions with respect to z1, we then get a Hilbertian
basis of L*(R x T, R?) consisting of eigenvectors of L indexed by

neN, keZ and i€{l,2,3}.

The rigorous proof of such a result is however technical because of the particularity
of the case n = 0. Note that the eigenvectors of L show the expected exponential
decay with respect to x;.

2. The fast rotation limit

Consider for all € > 0 a solution (7., u.) of the scaled viscous Saint-Venant system
(1.3). Because of the uniform bounds coming from the energy estimate

1 1+ en, :
[ (5 + 5etaen 4 =S ) (tadao [ [ (o) Fu (s, 2)dads < Co
0
(2.1)
there exists (n,u) € L (R, L* x H'(R x T)) such that, up to extraction of a
subsequence,

(e, uz) — (n,u) in w-Li (RY, L? x H'(R x T)). (2.2)

loc
More precisely, considering the structure of the penalized system (1.3)

1
Or(Me, ue) + EL(% ) + Qe (ne, us) =0

where (). is some bounded non linear term, we expect (7., u.) to behave asymptot-
ically as

(e 02) (0,2) = (1, 0)(82) + (s ) (£ 1,7) + O, 23

where (n,u)(t,.) € KerL describes the mean motion, and (7ysc, Uosc) Oscillates es-
sentially according to the eigenmodes of L.
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2.1. Description of the mean motion

In order to characterize the mean motion, the weak compactness stated previously is
sufficient : a compensated compactness argument allows indeed to take limits in the
non linear terms (and actually to prove that they do not contribute to the limiting
equation), using only the structure of the wave equations [5].

Theorem 2. Let (n2,u?) be a family of H** x L*(R x T) such that
1 1 0
0= [ (o0 + feanatp 4 IR <G 2a)
Consider any family of weak solutions to the scaled (3-plane model :

1
ome: + gV cue + V- (neue) = 0,
vVen.

+ ENe
(nsa us)\tzO = (7727 u(e))

1
Oue + (ue - V)ue + =Vn. + éxluj — vAu, — cus + VA%, =0, (2.5)
5 €

Then the following results hold for the asymptotics € — 0 :
o The family (n.,u.) is weakly compact in L} (R, L?* x H' (R x T)).

loc
o Any limit point (n,u) satisfies the constraints
Uy = O, 82U2 = 827] = 0, 5371“2 + 8177 = O, (26)
in the sense of distributions.

e The mean motion (n,u) is governed by the heat type equation given in weak for-
mulation :

for all (n*,u*) € L* x HY(R) such that v} = 0 and v uj + Oyn* = 0,

/(7777*+u-u*)(t,x)dx+u/0t/Vu2-VuZ(s,x)dxds = /(77077*+u0u*)(x)dx, (2.7)

where (n°,u®) is the weak limit of (n2,u?) in L? x L*(R x T).

Note that (n°, u") does not necessarily satisfy the constraints (2.6), thus in general

(777 u)\t:O 7é (770, UO).

In order to get a strong formulation of the limiting system, we would then have
to introduce the L? projection Iy on the kernel of L (considered as a subspace of
L? x L*(R x T)), which is a pseudo-differential operator with singularity at x; = 0,
and then to extend it to some space of distributions containing for instance (0, Au).
The mean motion would then satisfy

O¢(n,u) — vlly(0, Au) = 0 with the constraint (n,u) = y(n, u),
(777 u)|t=0 = H0(7707 UO)'
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loc(R+7 LQ X H1<R X T))
and the upper and lower bounds on 1+ en. in L*(R* x R x T), we get the weak
compactness as detailed in the introduction of this section, as well as the convergence

L(n8>ua) = _Eat(naaua) - 5@5(7757'&5) —0 (28)

in the sense of distributions.

Sketch of the proof. By the uniform bounds on (1., u.) in L?

Thus any limit point (1, u) of (7., u.) belongs to KerL, meaning that
V-u=0, Bru+Vn=0,

which is equivalent to the constraints (2.6) given in the Theorem.

As L is a skew-symmetric operator, for all (p*,u*) € (L* x H'(R x T)) N KerL,
t
/(77577* + u, - u)(t, x)dr +/ / — 1)U - Vn* + (ue - V)u, - u*)(s, x)dzds
+V/ /Vu6 Vu*(s,xz)dxds — u/ / 1+€T]e (V(en.) - Vu.(s,x)dzds (2.9)

/77577 + ulu*)(z)dx

The weak compactness allows to take limits in the first and third terms of the
left-hand side. The last term converges to 0 since, by interpolation,

en. — 0in L2 (RT, H*(R x T)) for s < 2a.

It remains therefore to take limits in the coupling terms, using both the structure
of the nonlinearity and the structure of the wave equations.

Using the identity
Jul? 1
(u~V)u:V7+u w,
where w = V= - u denotes the vorticity, and the characterization of KerL

Vn* = —Bx(u*)*, ul =0 and dyul =0,

we rewrite the coupling terms

t t
/ /(—muE -V + (ue - V)ue - u*) (s, x)deds = / /(6m1n€u€1 — Uerwe U5 (8, x)dxds.
0 0

The fast oscillations are governed by
eome + V- u. = O(e),
0w, + V- (Brut + V) = O(e),
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from which we deduce that

Eat<w€ — 61’1775) + ﬁuel = 0(8) (210)

Formally the coupling terms are then equal to

/0lt /(_775“5 V' + (ue - V)ue - u”)(s, x)dxds
= /t /(51‘1775 - we)(iat(ﬁfﬂk —we) + O(£)>U§(s,x)dxds
0 B
— ;ﬁ/(ﬁl’lﬁe — w5)2u§(t x)dr — 6/ ﬁxﬂ]s —w ) uy(z)dr + O(e),

and thus converge to 0 as ¢ — 0. Taking limits in (2.9) leads then to the expected
heat equation (in weak formulation).

In order to make the previous compensated compactness argument rigorous (espe-
cially to deal with the remainders), we have actually to introduce some regularization
(n?,u?) of (n.,u.) such that

u —u. —0in L2 (RY, H'(R x T))

) ) (2.11)
W —w.—0andn’ —n. — 0in L7 (R, L*(R x T))
uniformly in € > 0.
The regularized version of (2.10) states then
Ou(w! — Bou) + Bul = O 5 + 00, e pemy (212
L (R+,L2(RxT)) °°

Thus approximating the coupling terms by

/ / 596‘1776 el — uslw )u2(8 x)dxds,

and taking limits first as € — 0, then as 6 — 0 leads to the expected convergence. [

2.2. Description of the fast oscillations

Describing the corrections to the mean motion requires more sophisticated tools
since these corrections involve many time scales. As the system oscillates according
to the eigenmodes of L, a filtering method allows actually to get rid of the fast time
scale and to get the following strong convergence result [5] :

XIII-10



Theorem 3. Let (n°,u?) be a family of H** x L*(R x T) satisfying the uniform
energy estimate (3.22) as well as the strong convergence

(02, ul) — (n°,u°) strongly in L* x L*(R x T). (2.13)

Consider any family of solutions to the scaled B-plane model :

1
atns + gv “Ue + V- (nsua) = 07

———(Ven. - Vu. +eVA?** . =0,

1 B
Oue + (ue - V)ue + gVng + ;’L’luj —vAu, — Ten

(7757 Us)\t:O = (7727 u(])‘
(2.14)

Assume that the condition of non resonance (2.15) is satisfied for all k,k* € Z,
n,n*,m € N and i,i*,j € {1,2,3} (which is expected to occur except for a countable
number of 3) :
if and only if either T(k,n,i) =0 or 7(k*,n*,i*) =0 (2.15)
orn=n"=m=0andi=1" =j=3,

where the eigenvalues (T(k,n, 1))k, are defined by (1.7)(1.8)(1.9), which means that
fast oscillations other than Kelvin waves should not interfer at leading order.

Then the following results hold :
e The asymptotic behaviour of (ne,u.) as e — 0 is given by

H(na, Ug) — exp <tL) v

3

— 0 for all T >0,
L2[0,T],L2x L2(RXT))

where U does not depend on €, meaning that the system oscillates really according
to the eigenmodes of L.

o The filtered motion ¥ € L} (RT, H' (R xT)) is governed by the heat type equation

loc
(which makes sense in weak formulation as in Theorem 2)

oV — z/z ILATL W + Z ILQUIL U, IgW) + g QI W, 1 V) =0,
T T (2.16)

v = (7707 u0)7
where 11, denotes the projection on the eigenspace associated with the eigenvalue T,
I is the projection on the Kelvin modes, A" and Q) are respectively the linear and

symmetric bilinear operators defined by

AWy, W) = (0,AT) and Q(¥, W) = (V- (¥, W), (W' - V)¥').
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Note that the strong convergence result is expected to hold independently from [
when the spatial domain under consideration is R?. Indeed, the discrete Fourier
transform with respect to x5 is replaced by a continuous Fourier transform, and for
|€| in a strip bounded from up and below, waves generate dispersion and should
vanish in the limit by a Strichartz argument.

Sketch of proof. The method of proof is rather standard once the condition of non
resonance is established [8, 11].

The basic idea is to introduce the semi-group exp (%) generated by the linear penal-

ization L, and to establish the strong convergence of the field ¥, = exp (%) (Me, ue).

Conjugating formally equation (2.14) by the semi-group leads to

tL tL tL —tL
OV .4exp () <Q (exp <—> V., exp <—> \IIE> — vA’exp () 1113) = 0O(e),
€ € € €
(2.17)
(which makes sense provided to be tested against a finite combination of eigenmodes
of L). We therefore get a bound on the time derivative of ¥, in some space of

distributions, and, because of the bounds on the spatial derivatives of u. coming from
the energy estimate, we expect (¥.) to be strongly compact in L2 (R, L* (R xR)).

loc

Furthermore a formal passage to the limit in (2.17) (in weak formulation) leads
to (2.16) (in weak formulation). Indeed, I1g W is expected to satisfy an autonomous
equation because of the compensated compactness argument detailed in the previous
paragraph

8,51_[0\11 - VH()A/HO\IJ = O7
the Kelvin modes ae expected to interact together, as well as with IIoW because of
the condition of resonance (2.15)

Ol — vy TgA T + ) Qg U, W) + M QI W, I W) = 0,

and the other components I, U of U are expected to be only transported by I1oW
and diffused.

The rigorous proof of convergence is actually based on a stability property of the
limiting equation (2.16). We introduce an approximation W) having a finite number
N of eigenmodes of the limiting field U (which also satisfies (2.16)). Considering
(2.16) as a linear equation with coefficients depending on IIy¥ = ITaU™Y) | we get

||\IJ(N) — \IIHLQ([O,T]XRXT) — 0 as N — Q.

On the other hand, by integration by parts with respect to time, using the condition
of non-resonance for fixed N, we prove that ¥V satisfies (2.14) modulo a small
remainder, and therefore by the energy estimate

[ w™) — Ve 2o, 11xmxT) — 0 as € — 0, then N — oo.

Combining both convergences leads then to the expected result. 0
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Remark. The difficulty here is therefore to study the condition of non resonance,
and more precisely to establish that (2.15) holds except for a countable number of 3.
Let us first recall that the eigenvalues of L are obtained as the roots of the following
algebraic equation :

™ — (K> + (2n + 1)B)7 + Bk = 0 for n € N*,
7% 4+ 2k7* + (K* — B)7 — Bk =0 for n = 0.

In particular, the quantity
Pn,n*,m,k,k* (ﬁ) = Hi,i*,j€{1,2,3} (T(l{}, n, Z) + T(]f*7 n*, Z*) — ’7'(/{? + l{?*, m,j))

depends only on the symmetric functions respectively of (7(k,n,1))icf12,3},
(T(k*,n*,7*))ici2s and (7(k 4+ k*,m,j))jeq1,2,3y, and is therefore a polynomial
with respect to 3. Thus it is identically zero or it admits a finite number of roots.

*

Cases involving n = k = 0, or n* = k* = 0 orn = n* = m = 0 ask for a
special care since Kelvin waves are known to provide resonant triads, meaning that
Prnsmpr = 0. We should then introduce polynomials involving less factors to
conclude.

In other cases we expect Py m i+ Dot to be identically zero, which should be
proved by considering the asymptotics [ — oo. The main technical point is actually
to get an equivalent of the factors involving three Rossby waves.

3. The vertical motion

In view of the orders of magnitude given in paragraph 1.2, the geometrical approx-
imations used in the [-plane model seems relevant. On the contrary, the invariance
assumption leading to the shallow water approximation seems not to be realistic
since experimental observations show the existence of vertical currents in the ocean,
and of course in the atmosphere. The Coriolis force is indeed expected to generate
vertical oscillations which are completely neglected in the previous study.

To get a more realistic description of the equatorial flows, we should study the fast
rotation limit for the 3-dimensional incompressible Navier-Stokes equations with
free-surface.

The difficulty is therefore to understand the coupling between the following phe-
nomena

(i) vertical oscillations due to the incompressibility constraint,
(ii) wave trapping due to the singularity at x; = 0,

(iii) structural changes on the asymptotic system due to the free-surface.
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3.1. A preliminary study

In order to separate the problems, we first study the role of vertical oscillations for
the 3-dimensional rotating Navier-Stokes system, set in a fixed domain :

1
Ou+ (u-V)u+ —zqu A ez + Vp = 0 with the constraint V - u = 0. (3.18)
£

As previously, let us start with the description of the corresponding equatorial waves.
In this framework wave equations state

1
oyu+ —Lu =0,
€
with
Lu = P(xiuAes) (3.19)

where P denotes as usual the Leray projection on divergence-free vector fields. The
penalisation L is therefore a skew-symmetric operator with a singularity at z; = 0.

Oscillations are actually of two types, namely purely 2D oscillations corresponding
to k3 = 0, and vertical Fourier oscillations (k3 # 0). In order to get a suitable
formulation of the fast oscillating waves which allows for instance to study their
coupling in the nonlinear term, we split systematically the velocity field u as follows :
@+ u where u = [udxs.

The 2D oscillations are characterized by means of the horizontal vorticity © = Vi :

1
(9,@ + gl_tl = (0 with Vh . ﬂh = 0,
atﬂg = O

(3.20)

from which we deduce that
1 -
0w + —hA, 'w=0.
€

In particular the penalisation is skew-symmetric and compact. We therefore get

w(t,z)= Y /exp (ikawo + i 21) exp < ik, t) .

2 2 -
ko€Z* 51 + k2 €

In order to describe vertical oscillations, we have to consider all the components of
the rotational 2 =V A« :

~ 1 1
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By Fourier transform with respect to ¢/e, x5 and x3, we then get the following
ordinary differential equation for v = 1, :

k k2 )
—8111);%;63,7 + (k’g + ]Cg — 72 — 7_3%%) VUko ks, r = 0if 7 75 0.

In order to describe completely the asymptotic behaviour of the Navier-Stokes sys-
tem penalized by the singular Coriolis force, it should be necessary to first un-
derstand the structure of the vertical oscillations, for instance the nature of the
spectrum of the operator —d;; — (k2/72)x?, and the behaviour of the eigenmodes
(or generalized eigenmodes) as |z1| — oo.

Nevertheless the particular structure of the wave equations, coupled with the struc-
ture of the coupling term, allows to already get a very simple description of the
mean motion [3] :

Theorem 4. Let u? be a family of L*(R x T) such that
1
&= / 0|2 (z)dz < Co (3.22)

for some nonnegative constant Cy.

Consider any family of weak solutions to the scaled Navier-Stokes model :

1
e + (ue - Vug + +-z1ur — vAu, + Vp. = 0 with V - u. = 0,
e + (ue - V)u i — vAu D wi u (3.23)

_,,0
Ue|t=0 = Uy-

Then the following results hold for the asymptotics ¢ — 0 :

e Because of the uniform bounds coming from the energy estimate

1 t
§/|u5|2(t,x)dx+y/ /|Vu€|2(s,x)dxds < G, (3.24)
0
the family (u.) is weakly compact in L} (R*, HY(R x T)).
e Any limit point u satisfies the constraints
Uy = O, 82U2 = 83UQ = 0, 83U3 = O, (325)

in the sense of distributions.

e The mean motion u is governed by the heat type equation given in weak formula-
tion :

for all (u},u3) € L*(R) x L*(R x T),
t t
T — * . * — 0, *
/u u*(t, z)dx /0 /u3u282u3(s,x)da:ds+y/o /Vu : Vu* (s, x)dzds /u u(é:;)gi)x,

where u° is the weak limit of u? in L*(R x T?).
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As previously most of the nonlinear terms disappear in the limiting process. This can
be understood as some sort of turbulent behaviour, where all scales are mixed due
to the variation of the Coriolis coefficient. Technically the result is due to the fact
that the kernel of £ (and also of L) is very small as soon as the Coriolis coefficient
is not a constant, which induces a lot of rigidity in the limit equation.

Sketch of proof. The method of proof is very similar to that used for Theorem 1.
From the energy estimate we deduce the weak compactness statement as well as
the convergence Lu. — 0 in the sense of distributions. The constraints come then
just from the characterization of KerL. In order to derive the evolution equation
for the mean velocity, we proceed by duality, multiplying (3.23) by some element of
HY(R x T?) N KerL and integrating with respect to z and ¢. The only point is to
check that the (nonlinear) convection term vanishes in the limit.

Using the characterization of the kernel of £ and the identity (u - V)u = $V|ul* —
u A €, we rewrite the coupling terms
/ / (T u* (s, x)dzxds

//ué./\Q ~u® sxdxds—//ug/\ﬁ *(s,x)dzds

—/ Ueslep - Vuz(s, x dxds+/ /w8 (s, dxds—l—/ /83u5 ANO.-u (s, x)dxds,

) ) ) ) (3.27)
where O, is defined by 030. = 2. and [ O.dz3 = 0.

From the energy bound and the control on 0;u.3, we get some strong compactness
on .3 and obtain the convergence of the first term in (3.27). The second one is
proved to converge to 0 using the wave equation

0. + uz = O(e),

and making rigorous the following formal computation :

/ /ws (s,z)dxds —/ /wa (0. + O(e))us(s, x)dxds

€

-2 /@5 (t, x)da — %/(@5) (2)dz + O(e).

The proof of convergence for the last term in (3.27) is based on the following for-
mulation of the wave equations

5@(@@6 + (7)5163) + l’%ag'llg = O(E)
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We have indeed
t 3 t s _ .

/ /(93115 ANO. - u*(s,x)dxds = / /(—5@8305 - %@(’)5163 +0(e)) N O: - u*(s,x)dxds
0

:_,/ ~040. N O, - (t, w)dr + = / 29,0 A OV - (2)da

g *
+ / Pt @)de — / x—%(Oal)QuQ(x)dijO(a).
The only limiting coupling term corresponds therefore to the convection of the
vertical velocity by the horizontal velocity. ([l

3.2. Some perspectives

Boundary conditions are known to possibly modify the mean motion in the fast rota-
tion limi. This phenomenon is referred to as the Ekman pumping [2]. Free boundaries
modify furthermore the wave equations and the global structure of the asymptotic
system. In particular the mean motion satisfies different constraints.

A natural question is to understand the role of the free surface in the 3-dimensional
fast rotation limit, first in the case of a constant Coriolis coefficient which arises
at mid-latitudes considering a small geographical zone. This will have then to be
extended to the case of a non singular inhomogeneous Coriolis coefficient, in order
to modell portions of the sea located at mid-latitudes but expanding on a large
range of latitudes. Our ultimate goal in this direction is to deal with the case of a
singular Coriolis coefficient which is relevant for equatorial geophysical flows, and in
particular to see if the trapping property observed in two dimensions is still satisfied
when vertical oscillations are taken into account.
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