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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

Monge-Ampère Equations, Geodesics and
Geometric Invariant Theory

D.H. Phong Jacob Sturm

Abstract

Existence and uniqueness theorems for weak solutions of a complex Monge-
Ampère equation are established, extending the Bedford-Taylor pluripotential
theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown
that geodesics in the space of Kähler potentials can be approximated by
geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s
program on constant scalar curvature metrics and Yau’s strategy of approxi-
mating Kähler metrics by Bergman metrics is also discussed.

1. A complex Monge-Ampère equation

The equation of primary interest in this lecture is the following Dirichlet problem
for a completely degenerate complex Monge-Ampère equation: Let M̄ be a complex
manifold of dimension m with smooth boundary ∂M̄ , Ω0 a smooth (1, 1)-form with
Ωm

0 = 0. Then for any φ ∈ C0(∂M̄), find Φ ∈ PSH(M̄,Ω0) so that

(Ω0 +

√
−1

2
∂∂̄Φ)m = 0, Φ|∂M̄

= φ. (1)

Here the space PSH(M̄,Ω0) is the space of Ω0-plurisubharmonic functions on M̄
defined in section §7, and the equation is to hold in the generalized sense also defined
there. We shall be especially interested in general existence and uniqueness theorems
for (1), as well as in the construction of explicit solutions when M̄ is of the form
M̄ = X × A, where X is a closed Kähler manifold equipped with a positive line
bundle L, A = {w ∈ C; 1 ≤ |w| ≤ e} is an annulus in C, and φ is a boundary value
function which is invariant with respect to the rotations of A. Our main results [25]
are the general existence and uniqueness theorems for the Monge-Ampère equation
(1) stated in Theorems 2-5, and, when M̄ = X × A, the explicit construction in
Theorem 1, which says in particular that the solutions of (1) can be approximated
by geodesic paths of Bergman metrics.
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The solutions of (1) are central to Donaldson’s program [12], relating the geometry of
the space of Kähler potentials on X to the existence of metrics of constant scalar cur-
vature. The approximations by Bergman metrics have long been advocated by Yau
[31, 32] as a means of reducing differential geometric questions to finite-dimensional
algebraic-geometric ones. Some motivation from geometric invariant theory and re-
lated topics is provided in sections §3 and §4.

2. Geodesics in the space K of Kähler potentials

Our set-up is a compact complex manifold X of dimension n without boundary,
together with a positive holomorphic line bundle L over X. Recall that a metric h
on L is a smooth positive section of L−1⊗L̄−1. The corresponding metric connection
is given by ∇j̄ψ = ∂j̄ψ and ∇jψ = h−1∂j(hψ) for ψ a local section of L. The
curvature is given by [∇j,∇k̄]ψ = Fk̄jψ, Fk̄j = −∂j∂k̄ log h. The line bundle L is
said to be positive if there exists a metric h0 on L whose curvature form ω0 =√
−1
2
Fk̄jdz

j ∧ dz̄k = −
√
−1
2
∂∂̄ log h0 is a strictly positive (1, 1)-form.

Given (X,L), the space K of Kähler potentials is defined by

K = {metrics h on L of positive curvature}

= {φ ∈ C∞(X);ωφ = ω0 +

√
−1

2
∂∂̄φ > 0}, (1)

where in the second line, the metric h has been written as h = e−φh0 and identified
with the scalar function φ. The tangent space Tφ(K) can then be identified with
C∞(X) and carries a natural metric ||ψ||2 =

∫
X |ψ|2ωn

φ , which, by the work of
Donaldson [12], Mabuchi [20], and Semmes [27], makesK into an infinite-dimensional
symmetric space of negative curvature. The geodesics in K are the paths t → φ(t)
satisfying the following equation

φ̈− gjk̄∂k̄φ̇∂jφ̇ = 0, (2)

where gjk̄ is the metric corresponding to the Kähler form ωφ, ωφ =
√
−1
2
gk̄jdz

j ∧ dz̄k.
A key observation of [12],[20],[27] is that this geodesic equation can be re-written
as a Monge-Ampère equation (1) on M̄ = X × A, through the correspondence

C∞(X × [0, 1]) 3 φ↔ Φ(z, w) = φ(z, log |w|) ∈ C∞(X × A). (3)

Indeed, if we view ω0 = Ω0 as a (1, 1)-form on M̄ independent of w, and set

ΩΦ = Ω0 +

√
−1

2
∂∂̄Φ, (4)

then in local coordinates v = logw for A, zj for X with ω0 =
√
−1
2

(g0)k̄jdz
j ∧ dz̄k,

we have

ΩΦ =

(
(g0)k̄j + ∂j∂k̄φ

1
2
∂k̄φ̇

1
2
∂jφ̇

1
4
φ̈

)
. (5)
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Diagonalizing the matrix gk̄j = (g0)k̄j + ∂j∂k̄φ, we find at once Ωn+1
Φ = 1

4
(φ̈ −

gjk̄∂k̄φ̇∂jφ̇)ωn
φ∧(

√
−1
2
dv∧dv̄), whence the equivalence between the geodesic equation

in K and the degenerate complex Monge-Ampère equation Ωn+1
Φ = 0 in M̄ . Bar-

rier methods for Monge-Ampère boundary value prolem have been developed by a
number of authors, including Caffarelli, Kohn, Nirenberg, Spruck [5], [6], [7], and
Guan [17]. Using such a barrier method, together with Yau’s estimates in [30], X.X.
Chen [9] was able to establish the existence of unique C1,1 geodesics joining any two
points h0, h1 ∈ K.

Our first main theorem is the following explicit construction of geodesics in K:

Theorem 1 Let h0, h1 ∈ K, and let {sα
j (z)}Nk

j=0 be orthonormal bases for H0(X,Lk)

with respect to the L2 metrics on Γ(X,Lk) induced respectively by hα, α = 0, 1,
Nk + 1 = dim H0(X,Lk). Without loss of generality, we may assume that s(1)

j =

eλjs
(0)
j , 0 ≤ j ≤ Nk. Then the C1,1 geodesic φ(t) joining h0 to h1 is given by

φ(t) = lim
`→∞

(
sup
k≥`

φ(t; k)
)∗

uniformly as `→∞, (6)

where the φ(t; k)’s are defined by

φ(t; k) =
1

k
log

( Nk∑
j=0

eλjt|s(0)
j (z)|2hk

0
)− n

log k

k
, 0 ≤ t ≤ 1. (7)

and u∗ denotes the smallest lower semi-continuous function which is greater or equal
to u. In particular, φ(t) = lim`→∞ supk≥` φ(t; k) pointwise almost everywhere.

3. The Kodaira imbedding and the spaces Kk

Theorem 1 has an important geometric interpretation, which says that geodesic seg-
ments in the infinite-dimensional symmetric space K can be uniformly approximated
by geodesics in the finite-dimensional symmetric spaces Kk = GL(Nk+1)/U(Nk+1).

3.1. The Kodaira imbedding

First, recall that CPN = {Z ∈ CN+1 \ 0}/C×, so that CPN is equipped with
a natural line bundle, whose fiber above an equivalence class [Z] ∈ CPN con-
sists of all vectors Z in [Z] together with 0. Its dual is the hyperplane bundle
O(1) → CPN . The global sections of O(1) are then the space of linear func-
tions p(Z) =

∑N
j=0 pjZj, and a natural metric on O(1) is the Fubini-Study metric

|p(Z)|2hFS
= |∑N

j=0 pjZj|2/
∑N

j=0 |Zj|2. If we denote |p(Z)|2hFS
by hFSpp̄, then hFS

and its curvature ωFS = −
√
−1
2
∂∂̄ log hFS are given by

hFS =
1∑N

j=0 |Zj|2
, ωFS = −

√
−1

2
∂∂̄ log

1∑N
j=0 |Zj|2

. (1)

Thus the curvature of hFS is the Fubini-Study metric on CPN , and O(1) is positive.
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Next, consider the pair (X,L), with L a positive line over X. Then, for each fixed
basis s = {sj(z)}N

j=0 of H0(X,Lk) 1, X can be mapped into CPN by

ιs : X 3 z → ιs(z) = [s0(z), · · · , sN(z)] ∈ CPN (2)

The Kodaira imbedding theorem guarantees that this is well-defined and an imbed-
ding for k >> 1. Under this imbedding, O(1) pulls back to Lk, since its sections
p(Z) =

∑N
j=0 pjZj pull back to

∑N
j=0 pjsj(z), which are sections of Lk. Thus we have

the diagram

Lk −→ O(1)
↓ ↓
X −→ CPN

(3)

The metrics hFS and ωFS over O(1) and CPN pull back to the metrics ι∗s(hFS) and
ι∗s(ωFS) on Lk and X given by

ι∗s(hFS) =
1∑N

j=0 |sj(z)|2
, ι∗s(ωFS) = −

√
−1

2
∂∂̄ log

1∑N
j=0 |sj(z)|2

. (4)

3.2. The Tian-Yau-Zelditch theorem

Let h0 be a positive metric on L, ω0 the corresponding Kähler form, and let s =

{s(0)
j (z)}N

j=0 be a basis of H0(X,Lk) which is orthonormal with respect to the L2

inner product on Γ(X,Lk) induced by h0. Define the “density of states” ρ(0)(z) by

ρ(0)(z) =
N∑

j=0

|s(0)
j (z)|2hk

0 ≡
N∑

j=0

|s(0)
j (z)|2hk

0
. (5)

Clearly,
∫
X ρ

(0)ωn
0 = N +1, whence the terminology for ρ(0)(z). The formulas (4) for

ι∗s(hFS) and ι∗s(ωFS) can be rewritten as

log

(
ι∗s(hFS)

)1/k

h0

= −1

k
log ρ(0)(z)

ω0 −
1

k
ι∗s(ωFS) = −1

k

√
−1

2
∂∂̄ log ρ(0)(z). (6)

The Tian-Yau-Zelditch theorem [31, 28, 33] (see also Catlin [8]) asserts the following
asymptotic expansion for the density of states

ρ(0)(z) = kn + A1(z)k
n−1 + A2(z)k

n−2 + · · · . (7)

This asymptotic expansion implies in turn the following approximations

|| log

(
ι∗s(hFS)

)1/k

h0

+ n
log k

k
||C∞ ≤ O(

1

k2
), ||ω0 −

1

k
ι∗s(ωFS)||C∞ ≤ O(

1

k2
). (8)

1To lighten the notation, we denote the dimension Nk of H0(X, Lk) just by N .
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The possibility that metrics on L and X can be approximated in this canonical
way by pull backs from the Kodaira imbedding was originally formulated by Yau
[31]. The C2 convergence was established by Tian [28]. The precise C∞ convergence
stated here as well as the expansion of ρ(0)(z) were established by Zelditch [33],
using the asymptotic expansion for the Bergman and Szegö kernels on strongly
pseudoconvex domains obtained earlier by Fefferman [16] and Boutet de Monvel-
Sjöstrand [4]. Several of the leading coefficients in the asymptotic expansion for
ρ(0)(z) have been determined by Lu [19]. The underlying structure is the Grauert
correspondence between a line bundle L on X equipped with a metric h0(z) and
the unit ball B = {(z, ζ); ζ ∈ L−1

z , h0(z)
−1ζζ̄ < 1} in the dual bundle L−1. The

ball B is strongly pseudoconvex if the metric h0 has positive curvature. The space
L2(∂B) can be identified with ⊕∞k=1L

2(X,Lk), and the Fefferman-Boutet de Monvel-
Sjöstrand asymptotic expansion for the Szegö kernel corresponds to the expansion
for the density of states ρ(0)(z) (cf. [33]).

3.3. The symmetric spaces Kk = GL(Nk + 1)/U(Nk + 1)

The spaces Kk of all metrics on L arising from Kodaira imbeddings by arbitrary
bases of H0(X,Lk) can thus be expressed as

Kk =

{
1

(
∑Nk

j=0 |sj(z)|2)1/k
; {sj(z)}Nk

j=0 basis of H0(X,Lk)

}
⊂ K. (9)

The spaces Kk can be identified with GL(Nk +1)/U(Nk +1), since a change of bases
is given by an element of GL(Nk +1), and unitary elements leave the corresponding
metric on L unchanged. As such, Kk are finite-dimensional symmetric spaces. Their
geodesics are given explicitly by expressions of the form

t→ 1

(
∑Nk

j=0 e
λjt|sj(z)|2)1/k

. (10)

In this framework, the Tian-Yau-Zelditch theorem just says that K = limk→∞Kk.
Theorem 1 states then that the C1,1 geodesics in K can be approximated by the
geodesics in Kk, in other words, that as Kk fill up K, they also become geodesically
flat.

4. Constant scalar curvature metrics and geometric invariant
theory

The approximation of geodesics in K by geodesics in Kk is an attractive geometric
phenomenon, but it takes on a special significance in the context of a criterion for the
existence of constant scalar curvature Kähler metrics in geometric invariant theory.

4.1. The conjecture of Yau

A central problem in complex differential geometry is to determine, for given (X,L),
when there exists a metric h in K whose curvature ω is a metric on X of constant
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scalar curvature R. In the particular case where L = ∧maxT 1,0(X) = K(X)−1, where
K(X) is the canonical bundle of X, the condition of constant scalar curvature is
equivalent to the condition that ω be Kähler-Einstein, that is, Rk̄j = µgk̄j with
µ = constant 2. A classic conjecture of Yau asserts that the existence of a constant
scalar curvature metric in K should be equivalent to the “stability of (X,L) in the
sense of geometric invariant theory”.

4.2. Stability in geometric invariant theory
As was seen earlier, the Kodaira imbedding associates to the pair (X,L) a subman-
ifold ιs(X) of CPN . However, ιs(X) depends on the choice of basis s = {sj(z)} for
H0(X,Lk) and only the orbit of ιs(X) under GL(Nk + 1) is intrinsically associated
to (X,L).

Broadly speaking, geometric invariant theory associates to a geometric structure
such as (X,L), an orbit under a non-compact group G such as GL(Nk + 1). The
space, or “moduli”, of such geometric structures is identified with the space of
orbits. Stability conditions are conditions which ensure that the space of orbits be a
well-behaved space, and particularly that it be Hausdorff. Since the group G is not
compact, the major difficulties arise from the behavior of the orbits near infinity.
The Hilbert-Mumford numerical criterion roughly states that one does not need
to check the Hausdorff property of the orbits under the full group G, but only of
the orbits of one-parameter subgroups of G (see [21] and references therein). Thus
one-parameter subgroups, which define geodesics on G = GL(Nk +1), are of special
interest.

There are two equivalent ways of formulating stability conditions. The first is in
terms of energy functionals: Let I(ω0, φ) be a functional on the space of all potentials
φ in K (typically, the functionals of interest also depend on a reference metric ω0,
which is what is indicated in the notation for I). Let s = {sj(z)} be a fixed basis of
H0(X,Lk), and let ω0 be the pull-back of the Fubini-Study metric on CPNk by the
Kodaira imbedding defined by the basis {sj(z)}. For each one-parameter subgroup
σ : C× 3 t→ σ(t) ∈ SL(Nk + 1), we can then construct a function I(t) by

I(t) = I(ω0, φσ(t)) (1)

where we have set

φσ(z) = log
|σ · Z|2

|Z|2
= log

|σ · s(z)|2

|s(z)|2
. (2)

Note that ω0 +
√
−1
2
∂∂̄φσ = ισ·s(ωFS) is just the pull-back of the Fubini-Study metric

by the Kodaira imbedding defined by the basis σ · s. The pair (X,L) is then said to
be I-stable if for any reference basis {s(0)

j (z)} and any one-parameter subgroup σ,
we have

I(t) = µσ log
1

|t|
+O(1) as t→ 0, with µσ > 0. (3)

2Since Rk̄j is always in c1(X), and since µgk̄j is assumed to be in c1(L) = c1(X) in this case, it
follows that Rk̄j = µgk̄j + ∂j∂k̄F for some smooth scalar function F . In particular R = µn + ∆F ,
and F must be constant if R is constant.
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In practice, the choice of reference basis is immaterial.

The notions of Chow-Mumford stability [21] and K-stability [29, 15] arise respec-
tively from the following two choices for the functional I(ω0, φ),

F 0(ω0, φ) = − 1

c1(L)n

∫
X
φ

n∑
i=0

ωn−i
φ ωi

0,

ν(ω0, φ) =
1

V

∫
X

log (
ωn

φ

ωn
0

)ωn
φ − φ(Ric(ω0)

n−1∑
i=0

ωi
0ω

n−1−i
φ − µ

n+ 1

n∑
i=0

ωi
0ω

n−i
φ ).(4)

Both functionals are motivated by the variational approach to the problem of con-
stant scalar curvature metrics. The Euler-Lagrange equation for F 0(ω0, φ) subjected
to the constraint 1

V

∫
X e

f−φωn
0 = 1, where f is defined by

√
−1
2
∂∂̄f = Ric(ω0) − ω0,

gives the Monge-Ampère equation ωn
φ = ef−φωn which implies that the metric ωφ

is Kähler-Einstein. The Euler-Lagrange equation for ν(ω0, φ) is precisely the equa-
tion R = µn of constant scalar curvature. The functional ν(ω0, φ) is the Mabuchi
energy functional (originally denoted by K, hence the name K-stability), and we
shall return to it below.

Another way of introducing stability is via a choice of line bundle L over the Hilbert
scheme and a choice of norm || · || on L.

The Chow line bundle LCh is defined over the Hilbert scheme of all projective
subvarieties V with fixed Hilbert polynomial as follows: For each V of dimension n
and degree d, let

Z = {` ∈ Gr(N − n− 1,CPN); ` ∩ V 6= ∅}, (5)

where Gr denotes the Grassmannian of N−n−1 planes in CPN . The variety Z is of
codimension 1 inGr(N−n−1,CPN), and so defines a line inH0(Gr(N−n−1), O(d))
(called the Chow point of V ) consisting of sections f of minimal degree with the
property: Z = {`; f(`) = 0}. These lines fit together to form LCh.

Next a norm || · || for LCh is defined as follows [34],

log ||f ||2 =
∫

Gr
log

|f(`)|2

|`|2d
ωm

Gr (6)

where |`| is the norm of the Plücker coordinate of ` ∈ Gr and ωGr is the pull back
of Fubini-Study with respect to the Plücker imbedding, and m = dimGr. We can
now define a numerical invariant µσ by the asymptotics

log
||fσ||2

||f ||2
= µσ log

1

|t|
+O(1), (7)

where f is a representative of the Chow point of X ⊆ CPN , and fσ the result of σ
acting on f . We also define a corresponding algebraic-geometric notion of stability
by the requirement that µσ > 0 for all one-parameter subgroups σ. It is a basic
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result of Zhang [34] that the two definitions (3) and (7) of µσ and hence of Chow-
Mumford stability agree (see also [22] for a more recent and different proof). Thus
we have, schematically,

Chow −Mumford stability ↔ {Line bundle LCh + Norm || · ||}. (8)

The notion of K-stability was originally defined by Tian using energy functionals
[29] (see also Donaldson [15]). But the formulas obtained in [24] show that, as in the
case for Chow-Mumford stability, it can be recast in the formalism of norms and
line bundles over the Hilbert scheme as well: Schematically, we have in this case

K− stability ↔ {Line bundle LCh ⊗ LCh
s + Norm || · || × || · ||#}. (9)

for a suitable line bundle LCh
s and norm || · ||#. To construct LCh

s , we set for each
variety V in the Hilbert scheme

Zs = singular locus of the Chow variety Z ⊂ Gr ⊂ CPN ′
, (10)

where we imbed the Grassmannian into projective space by using Plücker coordi-
nates. Introduce also the norm

log ||f ||2# = a
∫

Z
log (

ωm
Gr ∧ ∂∂̄

|f(`)|2
|`|2d

ωm+1
Gr

)ωm
Gr + b

∫
Gr

log
|f(`)|2

|`|2d
ωm

Gr. (11)

where a, b are given by: a = (m+1)
D(m+2)(d−1)

and b = d−m−2
(m+1)(d−1)

with m + 1 = dimGr,
D =

∫
Gr ω

m+1
Gr and d is the degree of X in CPN . The line bundle LCh ⊗ LCh

s can
now be equipped with the norm ||| · ||| = || · || × || · ||#, and a numerical invariant
µσ can be defined as in (7), with f now a section of LCh ⊗LCh

s , and the norm || · ||
replaced by ||| · |||. Then [24] shows that this algebraic-geometric notion of stability
coincides with the notion of K-stability.

In [23], it has also been shown that K-stability coincides with CM -stability, which
is yet another algebraic-geometric notion of stability introduced in [29].

4.3. Donaldson’s program

In [12], Donaldson has laid out a long-range program, partly motivated from sym-
plectic geometry, which would relate directly the problems of existence and unique-
ness of constant scalar curvature metrics to the differential geometry of the infinite-
dimensional symmetric space K. For example, the uniqueness of constant scalar
curvature metrics can be related to the existence of C2 geodesics in K by the fol-
lowing formula for the second variation of the Mabuchi energy functional,

ν̈ =
∫

X
|∇k̄∇j̄φ̇|2ωn

φ −
∫

X
(φ̈− gjk̄∂k̄φ̇∂jφ̇)(R− µn)ωn

φ , (12)

which holds along any C2 path in K. In particular, along geodesics in K, the second
integral vanishes, and the Mabuchi energy functional is convex. Since ∇k̄∇j̄φ̇ = 0
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if and only if gpk̄∇k̄φ̇ is a holomorphic vector field on X, the functional ν is strictly
convex along geodesics of K if the automorphism group of X is assumed to be
discrete. This would rule out the existence of any two critical points of ν which can
be joined by a C2 geodesic, and hence establish the uniqueness of constant scalar
curvature metrics if C2 geodesics always exist. (Recently, the uniqueness of constant
scalar curvature metrics was established in [14] and [10] by other methods.) On the
sufficiency side, Donaldson has conjectured that there is no constant scalar curvature
metrics in K if and only if there exists an infinitely extended geodesic t→ φ(t) ∈ K
satisfying ∫

X
φ̇(R− µn)ωn

φ < 0, for all t. (13)

Since R − µn = 0 is precisely the Euler-Lagrange equation for ν and the above
left hand side its variational derivative, this condition is clearly an analogue of
the condition for K-stability, with the geodesics of K replacing the one-parameter
subgroups of GL(Nk + 1).

4.4. Finite-dimensional and infinite-dimensional geometric in-
variant theory

If classical geometric invariant theory is viewed as a finite-dimensional theory, suit-
able for the methods and objectives of algebraic geometry, then the Donaldson
program can be viewed as an infinite-dimensional analogue. We have now seen
some elements of the correspondence between these finite-dimensional and infinite-
dimensional versions

Finite-dimensional GIT Infinite-dimensional GIT
Geometry of Kk Geometry of K

Conjecture of Yau Conjecture of Donaldson
Geodesics in Kk Geodesics of K

Table 1: Geometric Invariant Theory.

Theorem 1 can be viewed as a first step in establishing a precise correspondence
between the two theories in the last row. But clearly, much remains to be discovered
or fleshed out, and a major problem is still to establish the sufficiency of either finite-
dimensional or infinite-dimensional stability conditions for the existence of constant
scalar curvature metrics. A relation between stability and the convergence of the
Kähler-Ricci flow can be found in [26].

5. Estimates for Φ(k) and Ωn+1
Φ(k)

We sketch now the proof of Theorem 1. It consists of two parts. In the first part,
we obtain estimates on the functions φ(t; k) and their Monge-Ampère determinants
which suggest that they should converge to a weak solution of the desired Dirichlet
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problem. In the second part, we formulate and establish convergence and uniqueness
theorems for the Dirichlet problem that show that we indeed have convergence, and
that the resulting weak solution coincides with the C1,1 geodesic in K.

Recall the notation φ(t; k) = Φ(k) and ΩΦ(k) = Ω0 +
√
−1
2
∂∂̄Φ(k), where Φ(k) is

viewed as a function on M̄ = X × A. Then ΩΦ(k) satisfies

ΩΦ(k) ≥ 0,∫
M̄

Ωn+1
Φ(k) ≤ C

1

k
, (1)

while the Φ(k)’s themselves satisfy

|Φ(k)|+ |Φ̇(k)| ≤ C. (2)

To establish these estimates, we need to establish first the following important esti-
mate for the eigenvalues λj

|λj| ≤ C k. (3)

This can be done using the Tian-Yau-Zelditch theorem. The bounds for |λj| imply
readily the desired bounds for |Φ(k)| and |Φ̇(k)|. The estimates for Ωn+1

Φ(k) follow next
from the following basic identity∫

M̄
Ωn+1

Φ(k) =
∫

X
φ̇(1)ωn

φ(1) −
∫

X
φ̇(0)ωn

φ(0). (4)

Explicitly, denoting by ωα(k) the metric on X corresponding to the potentials
φ(α; k), α = 0, 1, and recalling that we pass from the orthonormal basis {s(0)

j (z)}
with respect to h0 to the orthonormal basis {s(1)

j (z)} with respect to h1 by the
diagonal matrix with entries eλj , we can re-write the right hand side as

1

k

∫
X

∑
λj|s(1)

j (z)|2∑ |s(1)
j (z)|2

ω1(k)
n − 1

k

∫
X

∑
λj|s(0)

j (z)|2∑ |s(0)
j (z)|2

ω0(k)
n (5)

In terms of the densities of states ρ(α), this is

1

k

∑
λj

∫
X

|s(1)(z)|2h1

ρ(1)(z)
ωn

1

ω1(k)
n

ωn
1

− 1

k

∑
λj

∫
X

|s(0)(z)|2h0

ρ(0)(z)
ωn

0

ω0(k)
n

ωn
0

. (6)

Applying again the Tian-Yau-Zelditch theorem, we see that the leading terms cancel
between the two expressions, resulting in the desired bound for Ωn+1

Φ(k).

6. Weak solutions of the complex Monge-Ampère equation

The estimates for Φ(k) and Ωn+1
Φ(k) obtained in the previous section suggest that

the functions Φ(k) should converge weakly to a generalized solution of the Monge-
Ampère equation. We begin with a review of the theory of generalized solutions of
the complex Monge-Ampère equation.
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6.1. The Monge-Ampère operator

Let D be a bounded open domain in Cm. A (p, p)-current T =
∑

J̄I TJ̄Idz
I ∧ dz̄J is

said to be positive if
∫
T ∧ φ ≥ 0, for all C∞0 (D) (m− p,m− p) forms φ of the form

φ =
∏m−p

j=1 (iαj ∧ ᾱj). A key consequence of the positivity of a current T is that all
its coefficients TJ̄I must be given by complex measures.

Next, a function u : D → [−∞,∞) is said to be plurisubharmonic (PSH) if it
is upper semi-continuous, and u|D∩L

is subharmonic for any complex line L. The
plurisubharmonicity of u implies that either u ≡ −∞, or u ∈ L1

loc(D) and i∂∂̄u is a
positive (1, 1)-current.

The positivity property allows to define the product i∂∂̄u∧T for any locally bounded,
PSH function u and closed positive (p, p)-current T , even though we cannot in
general take the product of two measures. It suffices to set

(i∂∂̄u) ∧ T = i∂∂̄(uT ) (1)

Taking successively T = (i∂∂̄u)p, p = 1, 2, · · · , we obtain (i∂∂̄u)m for any locally
bounded, PSH function u, which is the definition of the Monge-Ampère operator.

6.2. The Bedford-Taylor pluripotential theory

A classic inequality in the theory of the Monge-Ampère operator is the Chern-
Levine-Nirenberg inequality which says that for any compact K ⊆ D,

|
∫

K
φ(i∂∂̄u)m| ≤ CK ||φ||C0(supD|u|)m, φ ∈ C∞0 (K), u PSH. (2)

This inequality leads a uniqueness and weak convergence theory for the Monge-
Ampère operator in the class of continuous and uniformly convergent plurisubhar-
monic functions. However, these conditions are not satisfied in our case, and we shall
require the much stronger theory developed by Bedford and Taylor [1, 2] (see also
the exposition in [3]). Two of the key theorems which they obtained are as follows:

Bedford-Taylor convergence theorem: Let uk, u be PSH functions on D ⊂ Cm. If
(a) either uk → u uniformly on compact subsets,
(b) or uk → u pointwise and {uk} is a decreasing sequence,
then (i∂∂̄uk)

m → (i∂∂̄u)m weakly, that is,

∫
D
φ(i∂∂̄uk)

m →
∫

D
φ(i∂∂̄u)m, φ ∈ C∞0 (D). (3)

Bedford-Taylor uniqueness theorem: Let u, v be bounded PSH functions such that
(a) limsupζ→∂D|u(ζ)− v(ζ)| = 0;
(b)

∫
u≤v(i∂∂̄u)

m = 0.
Then u ≥ v in D. In particular, if u = v on ∂D and (i∂∂̄u)m = (i∂∂̄v)m = 0, then
u = v in D.
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7. New convergence and uniqueness theorems for weak solu-
tions

The Bedford-Taylor theory does not apply directly to our situation, since the func-
tions Φ(k) neither converge uniformly nor are decreasing. Furthermore, our setting
of a complex manifold with boundary instead of domains in Cm leads to some subtle
difficulties due to the absence of smooth regularizations of PSH functions. Some of
the difficulties in extending the theory from domains in Cm to complex manifolds
are discussed in [18] and [11]. However, in our situation, we have the key uniform
bound |Φ̇(k)| ≤ C, and it turns out that the following convergence and uniqueness
theorems hold. They suffice to prove Theorem 1 from the estimates for Φ(k) and
ΩΦ(k) obtained in §5, and may also be interesting in their own right.

Let M̄ = ∪N
α=1Uα be a compact smooth manifold with boundary, with coordinate

charts Uα, and let Ω0 be a fixed C∞ closed (1, 1)-form, Ω0 = 1
2
i∂∂̄Ψα on Uα. Set

PSH(M,Ω0) = {Φ; Ψα + Φ is PSH on Uα} (1)

Let φ be a continuous function on ∂D. A function Φ : M̄ → R is said to be a
solution of the Dirichlet problem with boundary value φ if Φ ∈ PSH(M,Ω0), Φ is
continuous at all p ∈ ∂M̄ , Φ|∂M̄

= φ, and (Ω0 + i
2
∂∂̄Φ)m = 0 in M in the sense of

(1).

Theorem 2 Assume that Ωm
0 = 0, and that Φ(k) ∈ PSH(M,Ω0)∩C∞(M̄) satisfies

(a) ||Φ(k)||C0(M̄) ≤ C;
(b) ||Φ(k)− φ||C0(∂M̄) decreases to 0 and

∑
k ||Φ(k)− φ||C0(∂M̄) <∞;

(c) limk→∞
∫
M(Ω0 + i

2
∂∂̄Φ(k))m → 0.

Assume further that there exists a vector field Y transversal to ∂M̄ and a neighbor-
hood U of ∂M̄ so that
(d) ||Y (Φ(k))||C0(U) ≤ C.
Then Φ = limk→∞[sup`≥kΦ(`)]∗ is a solution of the Dirichlet problem with boundary
value φ.

To formulate the uniqueness theorems, we require the Bedford-Taylor notion of
capacity defined as follows for domains E ⊂ U ⊂ Cm

c(E,U) = sup{
∫

E
(i∂∂̄v)m; v ∈ PSH(U), 0 ≤ v ≤ 1}. (2)

We can now introduce the notion of “nearly continuous” function on the complex
manifold M̄ = ∪N

α=1Uα. First, if E ⊂ M , we say that c(E,M) = 0 if for any ε > 0,
we can write E = ∪N

α=1Eα, with Eα ⊂ Uα, and
∑

α c(Eα, Uα) < ε. Then a function
v : M̄ → R is said to be “nearly continuous” if
(a) There exists v0 lower semi-continuous on M̄ with v = v∗0;
(b) {v0 < v} has capacity c({v0 < v},M) = 0;
(c) v = v0 on ∂M .
With this notion, we have the following uniqueness theorems:

Theorem 3 Assume that Ωm
0 = 0. Let u, v ∈ PSH(M,Ω0) ∩ L∞ satisfy

(a) (u− v)∗ ≥ 0 on ∂M̄ ;
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(b) u is continuous;
(c) There exists a decreasing sequence of functions vk ∈ PSH(M,Ω0) which are
nearly continuous and converges to v;
(d) For any δ > 0, there exists a compact set K ⊂M with vk < v+ δ on M \K for
k >> 1.
Then ∫

u<v
(Ω0 +

i

2
∂∂̄v)m ≤

∫
u<v

(Ω0 +
i

2
∂∂̄u)m. (3)

Theorem 4 Assume that Ωm
0 = 0. Let u, v ∈ PSH(M,Ω0) ∩ L∞ satisfy

(a) (u− v)∗ ≥ 0 on ∂M̄ ;
(b) v is continuous;
(c) There exists a decreasing sequence of functions uk ∈ PSH(M,Ω0) which are
nearly continuous and converges to u;
Then ∫

u<v
(Ω0 +

i

2
∂∂̄v)m ≤

∫
u<v

(Ω0 +
i

2
∂∂̄u)m. (4)

Theorems 3 and 4 imply the following theorem, which applies readily to our situa-
tion:

Theorem 5 Assume that Ωm
0 = 0. Let u, v ∈ PSH(M,Ω0) ∩ L∞ satisfy

(a) u is continuous;
(b) There exists a decreasing sequence of functions vk ∈ PSH(M,Ω0) which are
nearly continuous and converges to v;
(c) For any δ > 0, there exists a compact set K ⊂M with vk < v+ δ on M \K for
k >> 1.
Assume that (u−v)∗ = (u−v)∗ = 0 on ∂M and (Ω0 + i

2
∂∂̄u)m = (Ω0 + i

2
∂∂̄v)m = 0.

Then u = v.

This uniqueness theorem allows us to conclude that, in the case of M̄ = X ×A, the
solution Φ constructed as Φ = limk→∞[sup`≥kΦ(`)]∗ must coincide with the solution
obtained from the C1,1 geodesic in the space K of Kähler potentials.
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