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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

Exponential of a hamiltonian in large subsets of a
lattice and applications

J. Nourrigat

after works with L. AMOUR, C. CANCELIER, Ph. KERDELHUE,

P. LEVY-BRUHL and Ch. ROYER.

1. Some models.

We are interested to quantum Hamiltonians for large systems of particles moving
near the points of a large, but finite subset Λ of the lattice ZZd. Near each point λ of
Λ a particle, or a system of particles, moves in IRp. The interaction between these
particles is described by two functions:

• The interaction between particles moving near the same point λ of the lat-
tice is described by a C∞ real-valued, lower bounded function Aλ(x) on IRp.
We assume that all derivatives of order ≥ 1 of this function are bounded,
independently of λ.

• The interaction between particles moving near different points λ and µ of the
lattice is described by a C∞ real-valued function Bλ,µ(x, x

′) on IR2p, which is
bounded, like all its derivatives. A more precise hypothesis will be made in
section 2.

Then, for each finite subset Λ of ZZd, the potential VΛ (function in (IRp)Λ) is
defined by

VΛ(x) =
∑
λ∈Λ

Aλ(xλ) +
∑

(λ,µ)∈Λ2,λ6=µ
Bλ,µ(xλ, xµ) (1.1)

where, for each point λ of Λ, xλ denotes the corresponding set of variables. The
hamiltonian is given by

HΛ = −h
2

2

∑
λ∈Λ

∆xλ
+ VΛ(x). (1.2)
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In quantum statistical mechanics, the exponential exp(−βHΛ), (β > 0), plays
an important role. A first description of the heat kernel of HΛ, with estimations
independent of the finite set Λ, was given in Sjöstrand [23]. More precisely, this
article described an approximation, up to O(h∞), of this heat kernel, and introduced
the notion of 0-standard function with exponential weight. Later, the preprint [3] with
L. Amour, C. Cancelier and P. Lévy-Bruhl described the heat kernel itself, using
implicitely the concept of 0-standard function in a simple particular case (see also
[4]). We prove, under suitable hypotheses, that the operator exp(−βHΛ) has an
integral kernel

UΛ(x, y, β, h) = U
(0)
Λ (x, y, β, h)e−ψΛ(x,y,β,h) (1.3)

where U (0)
Λ is the heat kernel for the free Hamiltonian (without potential), and for

ψλ we give estimates, (stated more precisely in section 2), meaning that this family
of functions is in a particular case of 0−standard functions.

There is a large literature of classical statistical mechanics for spin systems, with
potentials VΛ of the form (1.1). More generally, (see for example B. Simon [22]), it
is common to associate, to each finite subset Q of ZZd, (not only to sets of one or
two points), a term AQ which is a function on (IRp)Q, and then the potential VΛ can
be defined, instead of (1.1), (with obvious notations), by

VΛ(x) =
∑
Q⊆Λ

AQ(xQ). (1.4)

Of course, an estimation of ‖AQ‖∞ as the diameter of Q increases is needed. It is
possible, also, to take the sum on all finite subsets with a non void intersection with
Λ, considering the variables xλ, for points λ which are not in Λ, as given parameters.
We shall see that, even when the potential VΛ is of the particular form (1.1), the
function ψΛ appearing in (1.3), at least when it is restricted in the diagonal, has a
decomposition of the form (1.4), where the sum is taken on all the boxes Q contained
in Λ, if Λ itself is a box. Moreover, the term corresponding to any box Q satisfies
estimations involving the diameter of Q (See Proposition 2.2).

Then, once the decomposition of ψΛ, analogous to (1.4) is obtained, we can apply
(or modify) the usual techniques of classical statistical mechanics for spin systems
to prove, for the Schrödinger operator, results which are well known in classical
statistical mechanics for spin systems. The first one is the decay of “quantum cor-
relations”. See Theorem 3.1 for a precise statement, at least in a particular case.
Similar rate results in classical statistical mechanics are well known: see section 3.
Then, we can give other applications by a combination of the previous results and of
usual techniques: rate of convergence of the mean value of observables for finite sets
to their thermodynamic limit, mixing property of this thermodynamic limit, proof
that this thermodynamic limit depends continuously of β in the domain of validity
of our estimations (in other words, absence of phase transitions). See section 3, and
the preprint [3].

In order to study other Hamiltonians than the Schrödinger operator, an attempt
was made, with L. Amour and Ph. Kerdelhué [5], and with Ch. Royer [18], to study,
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not the heat kernel, but the pseudo-differential symbol of the operator exp(−βHΛ),
also with estimations independent of Λ. Unfortunately, we could apply our tech-
niques only to operators of order 1, for example to the relativistic Hamiltonian

HΛ =
∑
λ∈Λ

√
1− h2∆xλ

+ VΛ(x). (1.5)

Our initial aim was to study the quantum Heisenberg model, with both large di-
mension and large spin. This would lead to Hamiltonians of second order on the
manifold (SU(2))Λ of a similar form, but our techniques cannot be applied for this
problem (brought to our attention by B. Helffer). See section 4.

2. Heat kernel of the Schrödinger equation.

We assume that, for each finite set Λ of ZZd, VΛ has the form (1.1), that the functions
Aλ have all their derivatives of order ≥ 1 bounded independently of λ. We assume
that there exists ε ∈]0, 1[ such that Bλ,µ satisfies the following condition (Hε).
(Hε)

For each m ≥ 1, there exists Cm(ε) > 0 such that sup
λ∈ZZd

∑
µ∈ZZd

‖Bλ,µ‖Cm(IR2p)

ε|λ−µ|
≤ Cm(ε)

If (Hε) is satisfied, there exists M1(ε) and M2(ε), independent of Λ, such that:

‖∇xλ
VΛ‖ ≤M1(ε) (2.1)

sup
λ∈Λ

∑
µ∈Λ

‖∇xλ
∇xµVΛ‖
ε|λ−µ|

≤M2(ε) (2.2)

Theorem 2.1. Under the previous hypotheses, the integral kernel UΛ(x, y, β, h) of
e−βHΛ can be written in the form

UΛ(x, y, β, h) = (2πβh2)−p|Λ|/2 e
− |x−y|2

2βh2 e−ψΛ(x,y,β,h), (2.3)

where ψΛ is a C∞ function in (IRp)Λ× (IRp)Λ× [0,+∞[, depending on the parameter
h > 0. Moreover, if (Hε) is satisfied, for each finite subset Λ of ZZd, we have, for all
β > 0

sup
λ∈Λ

‖∇λψΛ(., ., β, h)‖ ≤ βM1(ε) (2.4)

and if m ≥ 2, we have, for all points λ(1), ..., λ(m−1) in Λ,∑
µ∈Λ

‖∇λ(1) ...∇λ(m−1)∇µψΛ(., ., β, h)‖L∞
εdiam({λ1,...λm−1,µ})

≤ βKm(ε) if hβ ≤M2(ε)
−1/2. (2.5)

where Km(ε) is independent of Λ.

The function ψΛ of Theorem 1.1 is obtained as the solution of the Cauchy problem
(we wrote t instead of β)

∂ψΛ

∂t
+

x− y

t
. ∇xψΛ −

h2

2
∆xψΛ = VΛ,ε(x) −

h2

2
|∇xψΛ|2 (2.6)
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ψΛ(x, y, 0, h, ε) = 0 (2.7)

First, a theorem of global existence, for a fixed Λ, is obtained, using a fixed point
theorem, and a variant of the principle of maximum (see L. Amour and M. Ben-
Artzi [2] for similar techniques, without the singular coefficient x−y

t
). The variant

of the principle of maximum is used again in the proof of (2.4) and (2.5). There
is a relation between the inequality (2.5) and the notion of 0−standard function of
exponential type of [23].

The next step is a decomposition of ψΛ, similar to (1.4), in order to adapt the
techniques of classical statistical mechanics. This will be obtained when Λ is a box of
ZZd, i.e. a set of the following form, where aj and bj are in ZZ and aj ≤ bj (1 ≤ j ≤ d):

Λ = {λ ∈ ZZd, aj ≤ λj ≤ bj 1 ≤ j ≤ d} (2.8)

Proposition 2.2. If Λ is a box of ZZd, the function ψΛ(x, y, β, h) of Theorem 2.1
satisfies, if (Hε) is satisfied and hβ ≤M2(ε)

−1/2,

ψΛ(x, y, β, h)− ψΛ(0, y − x, β, h) =
∑
Q⊆Λ

(TQψΛ)(x, y, β, h) (2.9)

where the sum is taken over all boxes contained in Λ, and TQψΛ is a function de-
pending only on x − y, β, h and on the variables xλ and yλ such that λ ∈ Q. For
each integer m ≥ 1, there exists Km(ε) such that, for each points λ(1), ..., λ(m) of
Λ,

‖∇λ(1) ...∇λ(m)(TQψΛ)(., ., β)‖ ≤ Km(ε)βεdiam(Q) if hβ ≤M2(ε)
−1/2. (2.10)

If m = 0, this result is also valid for boxes Q non reduced to single points.

In particular, when it is restricted to the diagonal, TQψΛ depends only on the
variables xλ and yλ such that λ ∈ Q, and we have a decomposition of ψΛ which is
very similar to the form (1.4) usually supposed for the potential VΛ in the literature
of classical statistical mechanics. Theorem 1.1 and, again, the principle of maximum,
are used in the proof of (2.10).

3. Applications: decay of quantum correlations, mixing prop-
erty of states, etc.

In classical statistical mechanics, for each finite set Λ and for each β > 0, the mean
value of a bounded function f on (IRp)Λ) by

EΛ,β(f) =

∫
(IRp)Λ e

−βVΛ(x)f(x)dx∫
(IRp)Λ e

−βVΛ(x)dx
. (3.1)

Then, the correlation between two such functions f1 and f2 is defined by covΛ,β(f1, f2) =
EΛ,β(f1f2) − EΛ,β(f1) EΛ,β(f2). If fj is a bounded function in (IRp)Ej) (j = 1, 2),
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where E1 and E2 are disjoint finite sets, we can define covΛ, β(f1, f2) for each Λ
containing E1 and E2. A classical problem is the estimation of the decay of this
correlation with bounds which are independent of Λ, but depend on the distance
between E1 and E2. For β small enough, see L. Gross [10], where a decomposition
of the form (1.4) for the potential VΛ is supposed. For β large enough, stronger
hypotheses are needed: see Helffer-Sjöstrand [15], Sjöstrand [24], where the correla-
tion is related with an eigenvalue of the Witten Laplacian of VΛ acting on 1−forms,
Sjöstrand [25], and Bach-Möller [7].

A first application of the results of section 2 is the study, when β is small enough,
of a quantum analogue of the correlation. Instead of functions, we consider, for each
finite set Λ, bounded operators on the Hilbert space HΛ = L2((IRp)Λ). First, if A is
such an operator, (a local observable), we can define the ’mean value’ of A as

EΛ,β(A) =
tr
(
e−βHΛA

)
tr (e−βHΛ)

. (3.2)

If E1 and E2 are disjoints subsets of Λ, and if Aj is an operator in HEj
(j =

1, 2)), we can define their quantum correlation by covΛ,β(A1, A2) = EΛ,β(A1A2) −
EΛ,β(A1) EΛ,β(A2), where the mean value is now (3.2).

We denote by dist(E,F ) the distance, for the `∞ norm, of two subsets E and F
of ZZd. In the definitions of the mean value and of the correlation, we shall write
EΛ,β(f) and covΛ,β(f, g) instead of EΛ,β(A) and covΛ,β(A,B) when A and B are
multiplications by bounded functions f and g.

Theorem 3.1. We assume that, for |xλ| large enough, Aλ(xλ) ≥ c|xλ|, and that (Hε)
is satisfied ( 0 < ε < 1). Then, for each δ such that ε < δ < 1, there exist K(ε, δ) > 0
and β0(ε, δ) > 0 with the following properties. If E1 and E2 are disjoint sets of ZZd,
if fj is a continuous, bounded functions on (IRp)Ej , (j = 1, 2), then we have, for
each set Λ containing E1 and E2, for all h and β satisfying hβ ≤ M2(ε)

−1/2, and
β ≤ β0(ε, δ), for each box Λ containing E1 and E2,

|covΛ,β(f1, f2)| ≤ inf
(
](E1), ](E2)

)
β K(ε, δ) δdist(E1,E2) ‖f1‖∞‖f2‖∞. (3.3)

When the operators A1 and A2 are no more multiplications, see the preprint [3]
for a more precise statement. The preprint [3] gives more complicated statements,
with stronger hypotheses, for Theorems 2.1, 2.2 and 3.1. The improvement of these
results is a work in progress.

This estimation for the correlation of two local observables may be applied, to
prove that, if A ∈ L(HQ) (Q fixed finite subset of ZZd) is a local observable, and if
β > 0, the following thermodynamic limit exists

ωβ(A) = lim
n→+∞

EΛn,β(A) Λn = {−n, . . . , n}d,
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and to estimate the rate of convergence. Thus, this limit define a state on the
C?−algebra associated to the lattice, and the decay of correlations is again applied
to prove the mixing property, or the absence of phase transitions. See [3]. This kind
of results is also obtained, with other hypotheses, by probabilistic methods: see [1],
[8], [16], [17].

4. Pseudo-differential techniques: relativistic Hamiltonians.

It may be interesting to present earlier results where, instead of the integral kernel,
the pseudo-differential symbol is studied. For each finite subset Λ of ZZd, we consider
an holomorphic function fΛ(x, ξ) on the following domain

ΩΛ(a) = {(x, ξ) ∈ ((Cp)Λ × (Cp)Λ, |Im(x, ξ)|∞ < a} (4.1)

where a is a positive constant, independent of Λ. We suppose also that, for some
M > 0, also independent of Λ, such that

|∇xλ
fΛ(x, ξ)|+ |∇ξλfΛ(x, ξ)| ≤ M ∀λ ∈ Λ, ∀(x, ξ) ∈ ΩΛ(a). (4.2)

We assume also that fΛ(x, ξ is real when (x, ξ) is real, and lower bounded, with a
lower bound which may depend on Λ. We shall say that a family (fΛ) is in S(a)
if these conditions are satisfied. Then we associate to the symbol f the h−pseudo-
differential operator Oph(fΛ) defined formally by

(Oph(fΛ)u)(x) = (2πh)−n
∫
(IRp)Λ×(IRp)Λ

e
i
h
(x−y).ξfΛ(

x+ y

2
, ξ)u(y) dydξ .

where n = p|Λ|. With these hypotheses, e−tOph(fΛ) is well defined, and we know,
by the functional calculus of Helffer-Robert, that it is also a pseudo-differential
operator, for each fixed Λ. The next theorem gives bounds which are uniform with
respect to Λ (see [5] and [18] for the proof).

Theorem 4.1. With the previous hypotheses, for each b ∈]0, a[ and for each integer
m ≥ 1, there exists a constant εm > 0 and a family (gΛ,h) in S(b) such that

e−tOph(fΛ) = Oph(e
−gΛ,h) if hm|Λ| ≤ εm 0 < t ≤ 1. (4.3)

The bounds of the derivatives of gΛ,h, like in (4.2), are independent of h and Λ
satisfying the condition of (4.3) (for m fixed). Moreover, gΛ,h has an asymptotic
expansion in powers of h:

gΛ,h =
m−1∑
j=0

E
(j)
Λ (x, ξ, t)hj + hmR

(m)
Λ (x, ξ, t, h) (4.4)

where the families E(j)
Λ are in S(b), E(0)

Λ (x, ξ, t) = tfΛ(x, ξ) and, if (x, ξ) is in ΩΛ(b)

and is the previous conditions are satisfied, |R(m)
Λ (x, ξ, t, h)| ≤ Cm|Λ|, for some

Cm > 0 independent of Λ.
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The applications of Theorem 4.1 are limited due to the two restrictions: the order
of the operator cannot be greater than 1, and the inequality between the Plank’s
constant and the number of elements of Λ makes impossible to apply it to the
existence of a thermodynamic limit. With Ch. Royer, we considered for example the
Hamiltonian (1.5) where d = 1, Λ = Λn = {−n, n}, where n → +∞, where the
functions Aλ and Bλ,µ are holomorphic if |Imx|∞ < 1, real when x is real. Moreover
Bλ,µ is uniformly bounded, and Bλ,µ = 0 if |λ−µ| 6= 1 (nearest neighbor interaction),
while Aλ has it derivative of first order uniformly bounded, and, in the real domain,
increases at infinity enough to give a sense to the following trace:

ZΛn(t, h) =
1

|Λn|
ln
[
(2πh)p|Λn|Tr

(
e−tHΛn

)]
(4.5)

where HΛn is now the relativistic Hamiltonian (1.5). Then the existence of the
pressure Z(t, h), limit of ZΛn(t, h) when n → +∞, is classical. See for example,
Ruelle [21], where the rate of convergence O(n−1) is proved. Theorem 4.1 can be
applied to prove that the pressure Z(t, h) has an asymptotic expansion in powers
of h. For this application, the relation between |Λ| and h is not a difficulty. In
particular, the inversion of the two limits (n → +∞ and h → 0) is justified. This
problem was brought to our attention (for another model) by B. Helffer.

The proof of Theorem 4.1, given with Ch. Royer in [18] relies on a still earlier
result, with L. Amour and Ph. Kerdelhué [5], on the pseudo-differential calculus
with large dimension. In particular, in [5] we give an estimation for the composed
f ?h g of two symbols which are holomorphic and bounded in ΩΛ(a) (i.e. the symbol
such that Oph(f ?h g) = Oph(f) ◦ Oph(g). By Lemma 5.1 of [5] (see also Theorem
3.2 of [18]), this function is holomorphic and bounded in ΩΛ(b) for b ∈]0, a[ and, if
we set ‖f‖a = sup(x,ξ)∈ΩΛ(a) |f(x, ξ)|, we have:

‖f ?h g‖b ≤ ‖f‖a ‖g‖a
(

1 +

√
2h

(a− b)
√
π
e−

(a−b)2

h

)4n

n = p|Λ|.
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