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Schrödinger operator with magnetic field in
domain with corners

Virginie Bonnaillie Noël

Abstract

We present here a simplified version of results obtained with F. Alouges,
M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger
operator with magnetic field in an infinite sector. This study allows to deter-
mine accurate approximation of the low-lying eigenpairs of the Schrödinger
operator in domains with corners. We complete this analysis with numerical
experiments.
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1. Introduction

Let Ω ⊂ R2 be an open, simply connected domain with Lipschitz boundary and let ν
be the unit outer normal on the boundary Γ = ∂Ω. We assume that ν is well defined
on Γ with the possible exception of a finite number of points (the corners of Ω).
We consider a cylindrical superconducting sample of cross section Ω and we apply a
constant magnetic field of intensity σ along the cylindrical axis. We denote by κ the
characteristic of the sample, called the “Ginzburg-Landau parameter” and consider
κ large (corresponding to a type II superconductor). Then, up to normalization
factors, the free energy writes

G(ψ,A) =
1

2

∫
Ω

(
|(∇− iκA)ψ|2 +

κ2

2
(|ψ|2 − 1)2 + κ2|curl A− σ|2

)
dx. (1)

The superconducting properties are described by the minimizers (ψ,A) of this
Ginzburg-Landau functional G. The complex-valued function ψ is the order parame-
ter (cf [13]) ; the magnitude |ψ|2 represents the density of superconducting electrons
and the phase determines the current flow. The vector field A defined on R2 is the
magnetic potential and B = curl A is the induced magnetic field. To determine the
onset of the superconductivity, we linearize the Euler equation associated with (1)
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near the normal state (ψ,A) = (0, σA0) , where

A0 : =
1

2
(x2,−x1). (2)

From now, we put A = A0 and assume Ω bounded. Defining the change of parameter
h = 1

κσ
, we are interested in the asymptotic behavior, when h→ 0, of the Neumann

realization Ph of the Schrödinger operator with a magnetic field and semi-classical
parameter h > 0. We define the associated quadratic form ph on H1(Ω) by :

ph(u) =
∫
Ω
|(h∇− iA)u(x)|2 dx.

This leads to define the operator Ph = −(h∇− iA)2 on D(Ph) with :

D(Ph) =
{
u ∈ H2(Ω), ν · (h∇− iA)u

∣∣∣
Γ

= 0
}
.

It is well known that the spectrum of the operator Ph,A is invariant by gauge trans-
formation. So, when Ω is simply connected, the spectrum of Ph depends only on the
magnetic field and not on the choice of the corresponding magnetic potential. Then,
we denote by µh,n the n-th eigenvalue of Ph for any A′ such that curl A′ = curl A.
Many papers have been devoted to this problem among which we quote the works by
Bernoff-Sternberg [3], Lu-Pan [19, 20], Helffer-Mohamed [15, 16] and more recently
Fournais-Helffer [12]. These papers deal with the case of regular domains and propose
an asymptotics of the bottom of the spectrum. Although the interest for a non
smooth domain is often mentioned in the physical literature, there are very few
mathematical papers : We only know the contributions by Pan [22] and Jadallah
[18] which deal with very particular domains like a square or a quarter plane. Our
goal is to give asymptotics for the low-lying eigenvalues and localization of the
corresponding eigenvectors in a domain with corners.
In the analysis of smooth domains, the model operator −(∇ − iA)2 on R2 and
R× R+ was playing an important role. Our new model for domains with corners is
the operator −(∇ − iA)2 in angular sectors. We analyze this model in Section 2.
We recall results proved in [7]. We use these results, in Section 3, to construct
quasi-modes for the operator Ph in polygonal domain. This gives the asymptotics
of µh,n when the domain in a polygon in Section 4. We propose also some numerical
experiments which show the decay of the eigenfunctions, the convergence of the
eigenvalues and a numerical illustration of a tunnelling effect.
The bottom of the spectrum of the Schrödinger operator with magnetic field on an
infinite sector is an eigenvalue when the opening is less than π/2 whereas it equals
the bottom of the essential spectrum for the half-plane. This generates very different
results for a polygonal domain and for a smooth domain.

2. The model case of an infinite sector

This section is devoted to the analysis of the Neumann realization of the Schrödin-
ger operator with magnetic field −(∇− iA)2 on an infinite sector. We recall results
developed in [5, 7] and we just propose some sketches of proofs here.
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2.1. Notations

Let Gα be the sector in R2 with opening α and X = (X1,X2) the coordinates on
the sector. The Neumann realization Qα of the Schrödinger operator with magnetic
field −(∇ − iA)2 on Gα is associated with the quadratic form qα defined on the
variational space V(qα) as follows :

V(qα) =
{
Ψ ∈ L2(Gα), (∇− iA)Ψ ∈ L2(Gα)

}
, (3)

qα(Ψ) =
∫

Gα
|(∇− iA)Ψ(X)|2 dX, ∀Ψ ∈ V(qα). (4)

The norm attached with the space V(qα) is

||Ψ||2V(qα) = ||Ψ||2L2(Gα) + ||(∇− iA)Ψ||2L2(Gα).

Note that if Ψ ∈ V(Gα), then for any ball B, Ψ ∈ H1(Gα ∩ B). We denote by Qα

the operator associated with the form qα. Then,

Qα = −(∇− iA)2,

is defined on D(Qα) with :

D(Qα) =
{
Ψ ∈ V(qα), (∇− iA)2Ψ ∈ L2(Gα), ν · (∇− iA)Ψ

∣∣∣
∂Gα

= 0
}
.

Definition 2.1. Let µk(α) be the k−th smallest element of the spectrum of Qα,
given by the max-min principle:

µk(α) = max
Ψ1,··· ,Ψk−1

min

{
qα(Ψ)

〈Ψ,Ψ〉
, Ψ ∈ V(qα), Ψ ∈ [Ψ1, · · · ,Ψk−1]

⊥
}
. (5)

Here 〈·, ·〉 denotes the hermitian scalar product of L2(Gα).

2.2. Essential spectrum

Proposition 2.2. The infimum of the essential spectrum of Qα is equal to Θ0 :=
µ1(π).

Proof. This result is a consequence of the Persson Lemma (cf [23]) which can be
generalized to unbounded domains of R2 and Neumann realizations :

Lemma 2.3. Let Ω be an unbounded domain of R2 with Lipschitz boundary. We
denote by inf σess(−(∇− iA)2) the bottom of the essential spectrum, then :

inf σess(−(∇− iA)2) = lim
r→∞

Σr(−(∇− iA)2), (6)

with, denoting Ωr = {X ∈ Ω| |X| > r} :

Σr(−(∇− iA)2) : = inf
φ∈C∞0 (Ωr),φ6=0

∫
Ω
|(∇− iA)φ(X)|2 dX∫

Ω
|φ(X)|2 dX

. (7)

Relying on this lemma, we use a partition of unity which splits the sector into three
subdomains which can be compared to the models R2 or R× R+ respectively. �
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2.3. Decay of eigenfunctions

Proposition 2.4. Let k be a positive integer and α > 0 such that µk(α) < Θ0. We
denote by Ψα

k a normalized eigenfunction associated with µk(α). Then Ψα
k satisfies

the following exponential decay estimate

∀ε > 0,∃Cε,α :

∣∣∣∣∣
∣∣∣∣∣ e
(√

Θ0−µk(α)−ε

)
|X|

Ψα
k

∣∣∣∣∣
∣∣∣∣∣
V(qα)

≤ Cε,α. (8)

Proof. Agmon’s estimates (cf [1]) are useful to prove this result. We recall their
principle. Let φ be a uniformly lipschitzian function on Gα, then, by assumption on
Ψα

k : ∫
Gα

(
µk(α) + |∇φ|2

)
e2φ|Ψα

k |2 dX =
∫

Gα
|(∇− iA)(eφΨα

k )|2 dX. (9)

Let BR be the ball in R2 centered on 0 with radius R and χ1, χ2 be real, positive,
smooth functions, with support respectively in B2 and R2\B1, and such that |χ1|2+

|χ2|2 ≡ 1. We define χR
j : = χj

(
.
R

)
, then :

qα(eφΨα
k ) =

2∑
j=1

qα(χR
j eφΨα

k )− 1

R2

2∑
j=1

||eφΨα
k |∇χR

j | ||2L2(Gα).

The two last relations combined with the positivity of qα(χR
1 eφΨα

k ) lead to :

qα(χR
2 eφΨα

k ) ≤
∫

Gα

(
µk(α) + |∇φ|2 +

C

R2

)
e2φ|Ψα

k |2dX. (10)

We can prove (cf Lemma 2.3 and [7] for details) that :

qα(χR
2 eφΨα

k ) ≥
(
Θ0 −

C

R2

)
||χR

2 eφΨα
k ||2L2(Gα). (11)

To obtain a L2-estimate, we put together (10) and (11). We bound ||χR
2 eφΨα

k ||2L2(Gα)

from below by ||eφΨα
k ||2L2(Gα\B2R), choose φ(x) : =

√
Θ0 − µk(α)− ε |X| and split the

integral over Gα in two parts, respectively over Gα \B2R and B2R ∩Gα. To end the
proof, it is enough to use (9) again. �

2.4. Estimates of µ1(α)

Theorem 2.5.
(i) For all α ∈ (0, π

2
], µ1(α) < Θ0 and, therefore, µ1(α) is an eigenvalue.

(ii) There exists a real sequence (mj)j∈N, with m0 = 1/
√

3, such that :

µ1(α) ∼ α
∞∑

j=0

mjα
2j as α→ 0.

Furthermore, µ1(α) ≤ α/
√

3 for any α ∈ (0, π].
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Proof. After a change of variables, a scaling and a gauge transformation, we get a
new operator which is now defined on a constant domain ω : = R+ ×

]
−1

2
, 1

2

[
with

coordinates (t, η) (instead of the constant operator −(∇− iA)2 on an α-dependent
domain Gα). This new operator is associated with the sequilinear form :

aα(u, v) : =
∫

ω

(
2αt(Dt − η)u (Dt − η)v +

1

2αt
Dηu Dηv

)
dt dη,

defined on :

V : =

{
u ∈ L2(ω)|

√
t(Dt − η)u ∈ L2(ω),

1√
t
Dηu ∈ L2(ω)

}
,

We look for two sequences : (uk)k∈N and (mk)k∈N with mk real such that for all

n ∈ N∗, if we define U (n) =
n∑

k=0

α2kuk and µ(n)(α) =
n∑

k=0

α2kmk, then, modulo

On(α2n+2), we have :

aα(U (n), v) ≡ µ(n)(α)〈U (n), v〉L2(ω), ∀v ∈ V .

We expand the equation in powers of α and express that the coefficients of α2k

(k ≥ −1) should cancel. The construction shows that functions uk belong to the
space of polynomial functions in η whose coefficients are in S(R+). �

Remark 2.6. From the expression of the form aα, we immediately see that the
function α 7→ αµ1(α) is increasing and α 7→ µ1(α)/α is decreasing over (0, 2π).
According to results on µ1(α) (cf [7]) and numerical computations (cf [4]), we con-
jecture that µ1 is strictly increasing from (0, π] onto (0,Θ0] and equal to Θ0 on
[π, 2π). Figure 1 presents numerical estimates of µ1(α) that we have obtained (with
G. Vial) using a finite element method. To realize these computations, we consider
a truncated sector Gα

c . We keep Neumann magnetic boundary conditions on the
common boundary between Gα

c and Gα and a Dirichlet conditions on the other
part of the boundary of Gα

c . So we are ensured to obtain an upper-bound of µ1(α),
α ∈ {kπ/100, k = 1, . . . , 85}. For any opening, we consider a uniform mesh with 48
quadrangular elements and a tensor product polynomial of degree 10.

3. Construction of quasi-modes for polygonal domains

Results presented in this section are proved in [9].

3.1. Notation and localized model operators

Let Ω ∈ R2 be a convex bounded polygon with straight edges, Σ be the set of its
vertices s, and αs be its angle at s ∈ Σ. The spectrum of Ph is in close relation with
the spectra of the model operators Qαs , for s describing the set of corners Σ. As
a first step in the explanation of this relation, we introduce, for each vertex s, the
semi-model operator Q̃h,s defined by the same operator as Ph, but on the infinite
plane sector G̃s which coincides with Ω near the vertex s: Let d = mins 6=s′∈Σ d(s, s

′)
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Figure 1: Estimates of µ1(α) by a finite element method.

and Rs be the rotation of angle βs such that

{Rs(x− s), x ∈ Ω ∩ B(s, d)} ⊂ Gαs ,

and let us denote
G̃s = {R−1

s X + s, X ∈ Gαs}.
Finally Q̃h,s is the operator −(h∇− iA)2 on G̃s.

Lemma 3.1. The following relation holds between the spectra of the operators Q̃h,s

and Qαs respectively denoted by σ(Q̃h,s) and σ(Qαs) :

σ(Q̃h,s) = hσ(Qαs).

The corresponding eigenvectors are deduced from each other by a change of variables
and a gauge transformation

V(qαs) −→ V(q̃h,s) =
{
ψ ∈ L2(G̃s), (h∇− iA)ψ ∈ L2(G̃s)

}
,

Ψα
k 7−→ ψ̃h,s,k s.t. ψ̃h,s,k(x) = 1√

h
exp

(
i

2h
x ∧ s

)
Ψα

k

(
Rs(x−s)√

h

)
.

(12)

We now use results on angular sectors and Lemma 12 to construct functions which
are good approximations of the eigenfunctions of Ph.

3.2. Quasi-modes

Lemma 3.2. Let s ∈ Σ and ds be the distance to other vertices

ds = dist(s,Σ \ {s}).
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Let d′ < ds and χs be a smooth cut-off function with support in B(s, ds), equal to 1
in B(s, d′) and such that 0 ≤ χs ≤ 1.
We consider Ψαs a normalized eigenfunction of Qαs on Gαs for the eigenvalue µk(αs).
Using the transformation (12), we define :

ψ̃h,s,k(x) =
e

i
2h

x∧s

√
h

Ψαs
k

(
Rs(x− s)√

h

)
on G̃s, (13)

ψh,s,k(x) = χs(x) ψ̃h,s,k(x) on Ω. (14)

Then, for any ε > 0, there exists Cε such that∣∣∣1− ||ψh,s,k||2Ω
∣∣∣ ≤ Cε exp

(
− 2√

h

(
d′
√

Θ0 − µk(αs) − ε
))
,∣∣∣∣∣ph(ψh,s,k)

||ψh,s,k||2Ω
− hµk(αs)

∣∣∣∣∣ ≤ Cε exp

(
− 2√

h

(
d′
√

Θ0 − µk(αs) − ε
))
,

||Phψh,s,k − hµk(αs)ψh,s,k||Ω ≤ Cε exp

(
− 1√

h

(
d′
√

Θ0 − µk(αs) − ε
))
,

where || · ||Ω denotes the L2-norm on Ω.

The proof relies on the decay of the eigenfunctions Ψαs
k . The following lemma shows

how we can split the corners of the polygon to obtain global informations.

3.3. Partition of unity

Lemma 3.3. For any s ∈ Σ, we consider a real-valued cut-off function χs with
support in B(s, ds). We assume furthermore that for any s 6= s′, suppχs∩suppχ′s = ∅.
We define χ0 on Ω by χ2

0 = 1−∑
s∈Σ χ

2
s . Then, for any ψ̃ ∈ H1(Ω),

ph(ψ̃) =
∑

s∈Σ∪{0}
ph(χsψ̃)− h2

∑
s∈Σ∪{0}

||ψ̃∇χs||2L2(Ω).

4. Approximation of σ(Ph) with the model operators

4.1. Asymptotics

Notation 4.1. Let us denote by λn the n−th eigenvalue of ⊕s∈ΣQ
αs counted with

multiplicity as defined by the min-max principle, and let N be the largest integer
such that λN < Θ0. We assume that N ≥ 1. For any n ≤ N , we denote by Σn the
subset of vertices

Σn =
{
s ∈ Σ, λn is an eigenvalue for Qαs

}
,

and by rn the distance

rn = r(λn) = min
s∈Σn

d(s,Σ \ {s}).
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Let n ≤ N . We denote by µh,n the n−th eigenvalue of Ph counted with multiplicity.
For any s ∈ Σn, we denote by Ψαs a normalized eigenvector for Qαs associated with
λn and by ψ̃h,s the function deduced from Ψαs by (13), then ψ̃h,s is a normalized
eigenfunction of Q̃h,s for hλn. Let ε > 0. We consider a smooth cut-off function
χs ∈ C∞0 (Ω, [0, 1]) as in Lemma 3.2 with d′ < rn and we define ψh,s = χsψ̃h,s as in
(14).

As we will see in the following theorem, according to repetitions of the same values
in {λ1, · · · , λN}, the eigenvalues µh,n are gathered into clusters.

Theorem 4.2. With Notation 4.1, for any ε > 0, there exists Cε such that for any
n ≤ N ,

µh,1 ≤ hλ1 + Cε exp

(
− 2√

h

(
r1
√

Θ0 − λ1 − ε
))

,

|µh,n − hλn| ≤ Cε exp

(
− 1√

h

(
rn

√
Θ0 − λn − ε

))
.

Proof. Upper-bound of µh,1 is a consequence of Lemma 3.2 applied with µk(αs) = λ1

and d′ = r1 − ε and the min-max principle.
Let n ≤ N , s ∈ Σn and d′ = rn − ε. We deduce from Lemma 3.2 and the spectral
theorem that :

d(σ(Ph), hλn) ≤ Cεexp

(
− 1√

h

(
rn

√
Θ0 − λn − ε

))
. (15)

To prove a lower bound of µh,n, we use [10, 24]. �

To approximate eigenvectors of Ph, we have to take account of clusters as explained
in the following result.

Notation 4.3. Using Notations 4.1, we denote by {Λ1 < · · · < ΛM} the set of
distinct values in {λ1, · · · , λN}. Let m ≤M , we define the distances

ρm = r(Λm).

For n ≤ N , we denote by (µh,n, uh,n) the n-th eigenpair of Ph. We introduce the
cluster of eigenspaces of Ph by

Fh,m = span{uh,n for any n such that λn = Λm},
and the cluster of quasi-modes

Eh,m = span{ψh,s,k = χsψ̃h,s,k for any s ∈ Σ, k ≥ 1 such that µk(αs) = Λm}.
Here, χs is a real-valued smooth cut-off function equal to 1 in B(s, ρm − δ).

Theorem 4.4. Under Notation 4.1 and 4.3, for any ε > 0, there exists Cε such
that for any m ≤M ,

d(Eh,m;Fh,m) ≤ Cεexp

(
− 1√

h

(
(ρm − δ)

√
Θ0 − Λm − ε

))
,

where, if we denote ΠEh,m
, ΠFh,m

the orthogonal projections on Eh,m and Fh,m re-
spectively, d is the distance defined by :

d(Eh,m;Fh,m) = ||ΠEh,m
− ΠFh,m

ΠEh,m
||L2(Ω).
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Proof. The proof of this theorem relies on Proposition 4.1.1, p. 30 of [14] (cf also
[17]) which we recall now :

Theorem 4.5. Let A be a self-adjoint operator in a Hilbert space H. Let I ⊂ R be
a compact interval, ψ1, . . . , ψN ∈ H linearly independents in D(A) and µ1, . . . , µN

such that :
Aψj = µjψj + rj with ||rj||H ≤ η. (16)

Let a > 0 and assume that σ(A) ∩ (I + B(0, 2a) \ I) = ∅. Then, if E is the space
spanned by ψ1, . . . , ψN and if F is the space associated with σ(A) ∩ I, we have :

d(E,F ) ≤ η
√
N

a
√
λmin

S

, (17)

where λmin
S is the smallest eigenvalue of S = (〈ψj, ψk〉H) and d is the non-symmetric

distance as :
d(E,F ) = ||ΠE − ΠF ΠE||H,

denoting by ΠE, ΠF the orthogonal projections on E and F respectively.

�

4.2. Numerical experiments

This section is devoted to numerical computations on a square. In this case, we have

λ1 = λ2 = λ3 = λ4 ≈ 0.509905.

We present computations of the eigenpairs realized by M. Dauge with the Finite
Element Method code MELINA (cf [21]). For any h, we use a uniform mesh with
64 elements and tensor product polynomial of degree 10. When h is very small,
very fast oscillations (cf Figure 4) appear on the eigenfunctions as expected in (12)
and it is better to increase the degree of the polynomial than reduce the size of
the mesh. We can note this by looking at [8, 2, 6] where we use an adapted mesh
refinement based on a posteriori error estimates and a low order degree; we need
many elements.
Figure 2 presents the behavior of the twelve first eigenvalues µh,n/h for n = 1, . . . , 12,
as function of 1/h. We draw the exponential tube

λ1 ± exp

(
−r1

√
Θ0 − λ1√
h

)
.

According to Theorem 4.2, we expect that the four first eigenvalues are concentrated
in this tube.
Let us now present the modulus and the real part of the first eigenfunction according
h in Figures 3 and 4 respectively. We can observe the exponential concentration
near the corners in

√
h. Figure 4 displays concentration in e−c/

√
h together with

oscillations in 1/h which appear in the construction of the quasi-modes in (13).
Looking at the symmetry of these figures, we see the linear combination of the four
modes constructed from the quarter plane. Figure 4 is a numerical illustration of a
tunnelling effect. We hope to propose a theoretical interpretation by analyzing an
interaction matrix.
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Figure 2: h−1µh,n versus h−1

Figure 3: h = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01

5. Conclusion

Even if we have given some informations about the bottom of the spectrum of Qα

as a function of α, an open problem is to prove the monotonicity of µ1(α).
Furthermore, this paper completes the results of Helffer-Morame [16], Jadallah [18],
Pan [22] by dealing with the low-lying eigenstates of the Schrödinger operator with
constant magnetic field in a polygon and proving the localization of the eigen-
functions. We can generalize these results (with some assumptions, cf [9]) to the
Schrödinger operator with non constant magnetic field in a bounded open domain
with a curvilinear boundary.
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Figure 4: h = 0.1, 0.08, 0.06, 0.04, 0.02, 0.01
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