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Journées Équations aux dérivées partielles
Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

Geometric structure of magnetic walls
Myriam Lecumberry

Abstract

After a short introduction on micromagnetism, we will focus on a scalar
micromagnetic model. The problem, which is hyperbolic, can be viewed as
a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits
a kinetic formulation. We will use both points of view, together with tools
from geometric measure theory, to prove the rectifiability of the singular set
of micromagnetic configurations.

1. Micromagnetism: a short introduction

Micromagnetism is the study of the spontaneous magnetization which exists in any
ferromagnetic material. A thorough presentation of micromagnetism can be found
in [HS]. Here, we consider a thin cylindrical sample of a ferromagnetic material.
The magnetization u, defined at every point of the domain D of R3 delimited by
the sample, has a constant norm in D which we choose to be equal to 1 (after
renormalization). Because of the small thickness of the sample, we will assume that
the magnetization is invariant under translation along the axis of the cylinder D so
that u is actually defined on a domain Ω of R2 which corresponds to a section of
D. The magnetization distribution is then given by a vector field u defined in Ω,
taking values in S2 the unit sphere of R3.
To this magnetization vector field is associated an energy composed of three terms:
- the exchange energy, A

∫
Ω |∇u|2, which penalizes variations of u,

- the demagnetizing energy, Kd

∫
R2 |H(u)|2, which comes from the existence of

a demagnetizing field H(u), created by the magnetization u, defined by the usual
Maxwell equations in the whole R2 :{

div (H(u) + 1Ωu) = 0 in R2,
curl (H(u)) = 0 in R2,

where 1Ω denotes the characteristic function of Ω, this energy forces u to be diver-
gence free,
- the anisotropic energy, K

∫
Ω Ψ(u), where Ψ is a non-negative function which

vanishes only when the component of u along the axis of D vanishes, so that planar
magnetizations are preferred.
The free micromagnetic energy is then given by

E = A
∫
Ω
|∇u|2 + Kd

∫
R2
|H(u)|2 + K

∫
Ω

Ψ(u).
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Figure 1: Magnetic domains and walls, image of a silicon-iron crystal ([HS])

It depends on two parameters d :=
√

A
Kd

, the exchange length, and Q := K
Kd

, the
anisotropy coefficient. In typical experiments, one can observe areas where the mag-
netization is constant (see Figure 1). These areas, called "magnetic domains", are
separated by "walls" whose thickness, proportional to d , is very small (d ' 10 nm)
compared to the size of the sample (' 10 µm). It is then natural to introduce in
mathematical models a small parameter ε which takes into account the different
scalings of physical coefficients.
The AG model, introduced by P. Aviles and Y. Giga, modelizes the low anisotropy
case (Q << 1). Since the demagnetizing energy is the strongest term, u is con-
strained to be divergence free and the energy is given by

EAG
ε (u) = ε

∫
Ω
|∇u|2 +

1

ε

∫
Ω

∣∣∣1− |u|2∣∣∣2 ,

where u : Ω → R2 is the projection of the magnetization in the plane of the cylinder
D and is divergence free.
The RS model, introduced by T. Rivière and S. Serfaty, modelizes the strong
anisotropy case (Q >> 1). In this case, the strongest term in the energy is the
anisotropic energy and u is constrained to be planar and then to take values in S1

the unit sphere of the plane. The energy is given by

ERS
ε (u) = ε

∫
Ω
|∇u|2 +

1

ε

∫
R2
|H(u)|2,

where u : Ω → S1. In a physical point of view, this model is not relevant, since the
vortex configuration (u(x) = |x|−1x⊥) carries in this model some positive energy
at the limit ε → 0 (i.e. lim Eε(uε) = 0 for any family uε approaching u in L1).
The frequent observation of such a configuration in experiments suggests that its
energy should be minimal. That’s why F. Alouges, T. Rivière and S. Serfaty have
introduced a third model (the ARS model) to modelize the strong anisotropy
case:

EARS
ε (u) = ε

∫
Ω
|∇u|2 +

1

ε

∫
R2
|H(u)|2 +

1

cε

∫
Ω
|u · k|2,

where u : Ω → S2, k is the direction of the axis of D and cε << ε.
In this note, we will focus our analysis on the RS model which is simpler in a math-
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Figure 2: The rectangle 2× 1 ([HS])

ematical point of view. Indeed, any u ∈ H1(Ω, S1) admits a lifting φ ∈ H1(Ω,R)
such that

∫
Ω |∇u|2 =

∫
Ω |∇φ|2. The RS model is then a scalar model, whereas the

two other models are truly vectorial.

In order to study the asymptotic problem when ε goes to 0, we need a compactness
result which has been given by T. Rivière and S. Serfaty in [RS1] by a compensated
compactness argument and in [RS2] by a kinetic averaging argument via a kinetic
formulation. Let (φε) be a family in H1(Ω,R) such that ‖φε‖∞ + ERS

ε (eiφε) ≤ C,
then there exist εn → 0 and φ ∈ L1(Ω,R) such that φεn → φ strongly in L1.
Moreover, the limit φ satisfies the hyperbolic problem:{

div (1Ωu) = 0 in D′(R2),
|u| = 1 a.e. in Ω,

(1.1)

where u = eiφ. By "a.e.", we mean almost everywhere with respect to the Lebesgue
measure when no measure is precised.
There exist an infinite number of solutions of (1.1): a particular one, called the
viscosity solution u = −∇⊥dist(·, ∂Ω), where ∇⊥ = (−∂x2 , ∂x1), and many config-
urations built from the distance function as, for instance, the configuration in the
right of Figure 2: u = −∇⊥dist(·, S ∪ ∂Ω) where the segment S separates the rec-
tangle Ω into two squares. The question is: is it possible to characterize, among all
solutions of (1.1), those which come from the micromagnetic relaxation?

2. Singular set of limiting configurations

Any configuration u = eiφ in L1(Ω, S1) such that φ is the limit in L1 of a sequence
of L∞ ∩H1 functions φεn satisfying the following uniform bound

‖φεn‖∞ + ERS
εn

(eiφεn ) ≤ C (2.1)

is called a limiting configuration. Such a configuration satisfies the hyperbolic prob-
lem (1.1) which can be reformulated in the following equivalent way : there exists
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g ∈ W 1,∞(Ω,R) such that u = −∇⊥g (since u is divergence free) and such that g
satisfies the Hamilton-Jacobi problem:{

|∇g| = 1 in Ω,
g = 0 on ∂Ω.

One can also understand this problem as a conservation law: indeed the divergence
free condition implies the following equation on the lifting φ,

∂

∂x1

(cos φ) +
∂

∂x2

(sin φ) = 0.

To characterize micromagnetic limiting configurations among all solutions of (1.1),
we need to know what further information on φ is yielded by the uniform bound
(2.1). An answer is given in [RS2]:

Proposition 2.1. ∫
Ω

∫
R
|div eiφ∧a| da dx ≤ lim inf

n→+∞
ERS

εn
(eiφεn )

where φ ∧ a := inf(φ, a), φεn strongly converges to φ in L1 and φεn satisfies (2.1).

Ideas of proof (we refer to [RS2] for a complete proof)
The main trick is the following inequality

ERS
ε (eiφε) = ε

∫
Ω
|∇φε|2 +

1

ε

∫
R2
|Hε|2 ≥

∫
Ω
|∇φε ·Hε|

where Hε = H(uε). Then, the conclusion is given by the following equality which
holds in the space of distributions in Ω:

∇φε ·Hε = −
∫
R

div
(
eiφε∧a + 1{φε≤a}Hε

)
da. (2.2)

Indeed, since when ε → 0, 1{φε≤a}Hε → 0 in L2, Proposition 2.1 follows. (2.2)
is obtained applying co-area formula (CF) and integration by parts (IP): let ξ ∈
C∞

c (Ω), ∫
Ω

ξ∇φε ·Hε =
(CF )

∫
R

∫
{φε=a}

Hε ·
∇φε

|∇φε|
ξ dx da

=
(IP )

∫
R

∫
{φε≤a}

(ξ div Hε + Hε · ∇ξ) dx da

= −
∫
R

∫
Ω

div
(
eiφε∧a + 1{φε≤a}Hε

)
ξ dx da.

�

By Proposition 2.1, for any limiting configuration u = eiφ, the distribution div eiφ∧a

is a finite Radon measure on Ω×R. We then introduce the following limiting set of
configurations as the best candidate for the Γ-limit problem:

Mdiv(Ω) :=
{
u = eiφ, φ ∈ L∞(Ω,R), div u = 0 and div(ei φ∧a) ∈M(Ω×R)

}
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M(Ω × R) denotes the space of finite Radon measures on Ω × R. The Γ-limit
problem is still open. In this note, we present the result we obtained with L. Am-
brosio, B. Kirchheim and T. Rivière in [AKLR] on the geometric structure of the
singular set of any configuration u in Mdiv(Ω). Precisely, let us consider the jump
set Jφ of the lifting φ of u which is defined as soon as φ is in L1 by

x ∈ Jφ ⇐⇒ ∃ φ+(x) 6= φ−(x) ∈ R,∃ νx ∈ S1
∣∣∣ lim

r→0

1

r2

∫
B±r (x)

|φ(y)− φ±(x)|dy = 0

where B±
r (x) = {y ∈ Br(x) | ± (y − x) · νx > 0}.

First, let us assume that φ has locally bounded variations in Ω (φ ∈ BVloc(Ω)).
Then, Jφ is 1-rectifiable (i.e. is a countable union of C1 curves). The derivative of
φ, which is a Radon measure, can be written as follows:

Dφ = ∇φL2 + (φ+ − φ−)νφH1 Jφ + Dcφ,

where H1 Jφ is the one-dimensional Hausdorff measure restricted to Jφ, φ+, φ−

and νφ come from the definition of Jφ, ∇φL2 is the absolutely continuous part of
Dφ with respect to L2 the Lebesgue measure, the remaining term Dcφ is called the
Cantor part of Dφ. For any f : R → R Lipschitz, f(φ) ∈ BVloc(Ω) and by the
Vol’Pert chain rule (see [AFP]), we have:

D
(
f(φ)

)
= f ′(φ)∇φL2 +

(
f(φ+)− f(φ−)

)
νφH1 Jφ + f ′(φ)Dcφ.

Applying this equality to f(φ) = cos(φ ∧ a) and f(φ) = sin(φ ∧ a) we get

div
(
eiφ∧a

)
= χ(φ+, φ−, a)

(
eia − eiφ−

)
· ωφH1 Jφ, (2.3)

where χ(φ+, φ−, a) = 1 if φ− < a < φ+, −1 if φ+ < a < φ− and 0 otherwise, and
ωφ = ei(φ++φ−)/2.
It is not hard to see, with formula (2.3), that the control on the mass of the defect
measure,

∫
Ω

∫
R |div eiφ∧a| da dx yields a control on

∫
Jφ
|φ+ − φ−|3dH1 which is not a

BV type control. Actually, Mdiv(Ω) is not included in BVloc(Ω) (see [ADM] for a
counter-example). However, the control given by Proposition 2.1 may imply that φ
has the same properties as BV functions, namely Jφ is 1-rectifiable and the defect
measure

µ =
∫
R
| div eiφ∧a|da ∈ Mdiv(Ω)

is concentrated on Jφ and is given by (2.3).

In [AKLR], the 1-rectifiability of Jφ is proved. The strategy of the proof is based on
the study of the defect measure µ at the one-dimensional level.
The first observation is that µ is absolutely continuous with respect to H1. Indeed,
µ is nearly defined as the divergence of a L∞ function. Let us assume for simplicity
that µ = div m where m ∈ L∞ and µ ≥ 0. Let K be a compact subset of Ω such
that H1(K) < +∞. Then, K can be approached by a sequence of sets An where
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each An is a union of balls covering K such that Per(∂An) → πH1(K) (where Per
denotes the perimeter). For all n ∈ N,

µ(An) =
∫

An

div m =
∫

∂An

m · ν ≤ ‖m‖∞ Per(∂An)

(ν is the unit normal of An). Passing to the limit, we have µ(K) ≤ ‖m‖∞πH1(K).
Hence, for any set B such that H1(B) = 0, µ(B) = 0.

We then use a blow-up technic, defining the rescaled measures at x ∈ Ω, for any
r > 0, by

µr,x(B) =
µ(x + rB)

r
. (2.4)

If lim sup
r→0

µ(Br(x))
r

< +∞ (which is true for H1 a.e. x, then for µ a.e. x), then there

exists a sequence rn → 0 and ν ∈ M(R2), such that µx,rn ⇀ ν in M′(R2), i.e.
∀ ξ ∈ C0

c (Ω), 〈µx,rn , ξ〉 → 〈ν, ξ〉. The set of such a limit ν is called the set of tangent
measures of µ at x and is denoted by Tan(µ, x).

In order to have information on the jump set Jφ, we focus on points x of Ω such
that Tan(µ, x) 6= {0}. Therefore, we introduce the set

Σ =

{
x ∈ Ω

∣∣∣ lim sup
r→0

µ(Br(x))

r
> 0

}
.

Since Σ is σ-finite with respect to H1 (see [AFP]), the restriction of µ on Σ can be
written as µ Σ = fH1 Σ. The remaining part δ = µ (Ω \Σ) is orthogonal to H1,
i.e. for any B ⊂ Ω such that H1(B) < +∞, µ(B) = 0. The goal is then to show that
Σ is rectifiable and that it coincides with Jφ up to a H1-negligible set. This can be
done in an indirect way showing in a first step the rectifiability of the subset Σ′ of
Σ

Σ′ =

{
x ∈ Ω

∣∣∣ lim inf
r→0

µ(Br(x))

r
> 0

}
using the following rectifiability criteria (see [AKLR]):

Theorem 2.1. If, for µ almost every x in Σ′, there exists ω(x) ∈ S1 such that
for any ν in Tan(µ, x), supp ν is included in a line oriented by ω(x), then Σ′ is
1-rectifiable.

The second step, which we won’t detail in this note, consists in showing that Σ and
Σ′ coincide µ almost everywhere (i.e. µ(Σ\Σ′) = 0). We then obtain the main result
of [AKLR]:

Theorem 2.2. Let u = eiφ ∈Mdiv(Ω), then

1. Jφ is 1-rectifiable and

div
(
eiφ∧a

)
Jφ = χ(φ+, φ−, a)

(
eia − eiφ−

)
· ωφH1 Jφ.

2. µ (Ω \ Jφ) is orthogonal with respect to H1.

In the last section, we detail the proof of the rectifiability of Σ′.
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3. Some details of the proof of Theorem 2.2

Before going into the proof of Theorem 2.2, let us go back to the analogy with
conservation laws. The defect measure div eiφ∧a can be seen as Kruzhkov entropy
measures where a is the kinetic parameter. This interpetation is hightlighted by
the kinetic formulation which was given in [RS2] for the RS model. For scalar con-
servation laws, unicity for the Cauchy problem holds as soon as a uniform sign
condition is satisfied by Kruzhkov entropy measures (see [Se] for instance). In the
micromagnetic framework, we obtain in [ALR] such a unicity result:

Theorem 3.1. Let u = −∇⊥g ∈ Mdiv(Ω). If ∀ a ∈ R, div eiφ∧a ≥ 0, then g is a
viscosity solution of |∇g| = 1, which is uniquely determined by g|∂Ω:

g(x) = inf
y∈∂Ω

{g(y) + |x− y|} .

In particular g is locally semiconcave in Ω (i.e. D2g ≤ CId) and u = −∇⊥g is in
BVloc(Ω).

Remark 1: In the case when Ω = R2, g is a viscosity solution of |∇g| = 1 in R2 so
that g is concave (D2g ≤ 0).

Remark 2: The BV regularity of u implies the BV regularity of the lifting φ as
soon as the total mass of div eiφ∧a is controlled (see [AKLR]).

Let us go back to the proof of Theorem 2.2. We define the rescaled functions by
φr(y) = φ(x + ry), they are related to the rescaled measures defined by (2.4) as
follows:

µx,r =
∫
R
| div eiφr∧a| da.

The compactness result of [RS1] can be adapted to this situation and we have that,
possibly extracted a subsequence still denoted by rn,

φrn → φ∞ in L1
loc(R

2),

µx,rn ⇀ ν in M′(R2).

The proof of Theorem 2.2 is based on the following observation:

div eiφ∞∧a = h(a)ν where h : R → R is Lipschitz (3.1)

Proof of (3.1): Let D be a countable dense subset of C0
c (R). For all g ∈ D, let us

define νg =
∫
R g(a) div eiφ∧ada ∈M(Ω). νg is absolutely continuous with respect to

µ, therefore, by the Radon-Nikodym theorem, there exists hg in L1
µ(Ω), the space

of integrable functions with respect to µ, such that νg = hgµ. Let us assume that x
is a Lebesgue point of hg for any g ∈ D (which is true for µ a.e. x in Ω). Then, the
rescaled measure (νg)x,rn = hg(x+rn·)µx,rn weakly converges to the measure hg(x)ν.
But, using the rescaled function φrn we also have (νg)x,rn =

∫
R g(a) div eiφrn∧ada and

it weakly converges to
∫
R g(a) div eiφ∞∧ada, so that the following equality holds:∫

R
g(a) div eiφ∞∧a = hg(x)ν. (3.2)
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Let us fix a ∈ R and choose a sequence (gk) in D weakly converging to the
Dirac mass at a. The sequence

(
hgk

(x)
)

is bounded, because of (3.2). Hence, up
to an extraction, it converges to some real h satisfying div eiφ∞∧a = hν. This last
equality implies that the limit h does not depend on the extraction but only on
a. The Lipschitz regularity of h comes from the Lipschitz regularity of the map
a 7→ div eiφ∞∧a (see [RS2]).

�
Let us decompose the space R of the parameter a into three subsets : {h = 0},
{h > 0} and {h < 0}. For each subset, let us take the connected components of
their interior and denote them (bl, cl). We then have a countable set of intervals
(bl, cl) such that R \ ∪

l∈N
(bl, cl) has an empty interior.

We define the truncated function φl := sup
(
inf(φ∞, cl), bl

)
. On one hand, these new

functions satisfy a uniform sign condition on the defect measures:

div eiφl∧a ≥ 0, ∀ a ∈ R or div eiφl∧a ≤ 0, ∀ a ∈ R.

Applying Theorem 3.1, we have that for any l ∈ N, the function gl such that
eiφl = −∇⊥gl is a viscosity solution of |∇g| = 1 in R2, therefore gl is concave by
Remark 1. Moreover, φl ∈ BVloc(R

2) by Remark 2.
On the other hand, we recover some information on φ∞ using the information we
have on all φl. Indeed, a point x ∈ Ω belongs to Jφ∞ if and only if it belongs to at
least one Jφl

. Moreover since φl ∈ BVloc for all n ∈ N, we have that φ∞ ∈ BVloc.
By (3.1) and by the BV regularity of φ∞, ν is concentrated on Jφ∞ . Our goal is
to show that Jφ∞ is included in one line whose direction does not depend on the
subsequence rn.
First, we show that for any l,m ∈ N, l 6= m, H1(Jφl

\ Jφm) = 0 and that for any
l ∈ N, φ+

l and φ−l are constant on Jl, using the two formulations for the defect
measures:

div eiφl∧a =

{
h(a)ν if a ∈ (bl, cl),
0 else,

and

div
(
eiφl∧a

)
= χ(φ+

l , φ−l , a)
(
eia − eiφ−

l

)
· ωlH1 Jφl

, where ωl = ei(φ+
l

+φ−
l

)/2,

the last one holds since φl ∈ BVloc(R
2). In particular, ωl, the unit normal of Jφl

, is
constant on Jφl

, so that Jφl
is included in a set of parallel lines.

Secondly, one can show that Jφl
is actually included in one line arguing by contra-

diction using the concavity of gl on a line passing through two points of Jφl
and

which is not parallel to Rω⊥l .
Then, Jφ∞ = Jφl

for any l ∈ N up to a H1-negligible set and Jφ∞ is included in one
line.

Finally, we have to show that the direction ω of this line does not depend on the
sequence rn. Let us introduce the vector-valued measure ~λ =

∫
R eia div eiφ∧ada

which is absolutely continuous with respect to µ, so that ~λ = ~Hµ, where ~H ∈ L1
µ(Ω).
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Figure 3: Limits of the blow-up, Jφ∞ is either a line or a half-line

Let us assume that x is a Lebesgue point of ~H, then∫
R

eia div eiφ∞∧ada = ~H(x)ν.

But, φ∞ is in BVloc so that div eiφ∞∧a can be evaluated and we also have∫
R

eia div eiφ∞∧ada =
1

2

(
φ+
∞ − φ−∞ − sin(φ+

∞ − φ−∞)
)
ωH1 Jφ∞ .

Therefore, ω is given by ~H(x), and it does not depend on the sequence rn.
Using Theorem 2.1, Σ′ is 1-rectifiable.

To finish the proof of Theorem 2.2, in particular to show that µ(Σ \ Σ′) = 0, one
has to go further in the characterization of limits of the blow-up: indeed, only two
configurations can be obtained at the limit of the blow-up (see Figure 3).

4. Conclusion

Our goal, in this note, was to provide the main ideas of the proof of the rectifiability
of the jump set of any limiting micromagnetic configurations. Many technical details
are missing and we refer to [AKLR] for the whole proof.
For the two other micromagnetic models (the AG and ARS models), a similar study
was carried through by C. De Lellis and F. Otto. Since the problem can’t be reduce
to a scalar problem anymore, the proof is more technical: indeed, no unicity result
(such as Theorem 3.1) exists in the vectorial situation, so that the BV regularity of
the limit of the blow-up is not known a priori. Nevertheless, they manage to obtain
the same rectifiability result as Theorem 2.2 (see [DO]).
The method used in this context of micromagnetism can be applied to conservation
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laws. A rectifiability result on "shock waves", the singular set of solutions of conser-
vation laws, can be obtained without any sign assumption on entropy measures. We
refer to [LR] where the proof presented in this note is adapted to conservation laws
when the space dimension is equal to 1. The general case (any space dimension) is
studied in [DOW].
The problem to know if the defect measure µ is concentrated on the jump set of
configurations (like in the BV case) is left open in all the above papers. It is a crucial
problem in order to solve the Γ-limit problem. As far as we know, the only result
on the concentration of the defect measure has been obtained by C. De Lellis and
T. Rivière in [DR] for a problem of conservation laws in one space dimension, with
a sign assumption on Kruzhkov entropy measures but in a general situation where
the solution is not necesseraly BV.
Eventually, we would like to mention the review made by T. Rivière at Forges-les-
Eaux in 2002 (see [Ri]) on the whole study of micromagnetic problems which have
been described in the introduction. We suggest to the reader to refer to it for other
references, in particular about compactness issues and kinetic formulations.
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