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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

Invariant measures and long-time behavior
for the Benjamin-Ono equation

Yu Deng Nikolay Tzvetkov Nicola Visciglia
Abstract

We summarize the main ideas in a series of papers ([20], [21], [22], [5]) de-
voted to the construction of invariant measures and to the long-time behavior
of solutions of the periodic Benjamin-Ono equation.

1. Introduction

A lot of papers have been devoted to the Cauchy problem associated with the
Benjamin-Ono equation posed on the torus T:∂tu+H∂2

xu+ u · ∂xu = 0, t ∈ R, x ∈ T,
u(0, x) = u0 ∈ Hs

(1.1)

where Hs = Hs(T;R). In particular we quote [13], where it is proved the global
well-posedness in the Sobolev spaces Hs, s ≥ 0. We also refer to [1, 3, 7, 9, 13,
14, 15, 17, 18] for previous results on the topic, as well as to [4] where the Cauchy
problem has been studied in functional spaces larger than L2.

The aim of this paper is to get informations on the long-time behavior of the
solutions associated with (1.1). First we introduce some notations. Denote by µk/2
the gaussian measure induced by the random Fourier series

ϕk/2(x, ω) =
∑

n∈Z\{0}

gn(ω)
|n|k/2

einx. (1.2)

In (1.2), (gn(ω)) is a sequence of centered complex gaussian variables defined on
a probability space (Ω,A, p) such that gn = g−n and (gn(ω))n>0 are independent.
More precisely, we have that for a suitable constant c, gn(ω) = c(hn(ω) + iln(ω)),
where hn, ln ∈ N (0, 1) are independent standard real gaussians. It is well–known
that µk/2(Hs) = 1 for every s < (k − 1)/2, while µk/2(H(k−1)/2) = 0.

Our main result concerning the long-time behavior of solutions to (1.1), can be
summarized in the following theorem.
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Theorem 1.1 (See [5],[21], [22]). Let k > 1 be an integer and s < (k − 1)/2.
Then there exists a Borel set As ⊂ Hs(T,R) with µk/2(As) = 1, and such that
the corresponding solution of the Benjamin-Ono equation with initial data u0 ∈
As is recurrent. More precisely for every u0 ∈ As there is a sequence (tn) (that
depends u0) such that tn n→∞→ ∞ and the corresponding solution of (1.1) satisfies
limn→∞ ‖u(tn)− u0‖Hs = 0.
Remark 1.1. We underline that Theorem 1.1 is true also for k = 1 (see [4]). The
case k > 3 has been treated in [21] and [22] . It is worth noticing, as it will be clear
in the sequel, that two different and independent type of difficulties appear in the
cases k = 1 and k > 3. Moreover both difficulties meet for k = 2, 3. Those cases
have been treated in [5].

A trivial consequence of the theorem above is the following deterministic corollary.
Corollary 1.2. Fix any s ≥ 0. Then there exists a dense set Fs of Hs such that for
every u0 ∈ Fs the solution of the Benjamin-Ono equation, with initial condition u0,
is recurrent.
Remark 1.2. The proof of Corollary 1.2 follows by Theorem 1.1 by choosing Fs = As
and by noticing that open sets in Hs have positive measure w.r.t. µk/2, provided
that s < (k − 1)/2.
Remark 1.3. The main point in our result is that that we get a recurrence property
for data which are not small and which are not of low regularity.

The proof of Theorem 1.1 (and hence Corollary 1.2) follows by the classical
Poincaré Recurrence Theorem provided that we can construct a family of mea-
sures absolutely continuous w.r.t. to µk/2, which are invariant along the flow asso-
ciated with (1.1). Hence the main body of the paper is devoted to the construction
of those invariant measures. More precisely the proof of Theorem 1.1 follows from
the following one.
Theorem 1.3. Let us fix k > 1 and R > 0, then there exists

Fk/2,R(u) ∈ Lq(dµk/2), ∀q ∈ [1,∞)
such that the measure dρk/2,R = Fk/2,R(u)dµk/2 is invariant along the flow associated
with (1.1). Moreover we have the property:⋃

R>0
supp(ρk/2,R) = supp(µk/2).

It is worth noticing that a nontrivial part of Theorem 1.3 is the construction
of the densities Fk/2,R(u), whose existence follows from some delicate probability
arguments. For more details see Theorem 2.1 and its proof. The theory of PDEs,
combined again with suitable probability arguments, plays a more crucial role along
the proof of the invariance of the measures.
The main part of the paper is devoted to the proof of Theorem 1.3.

Comparison with KdV
It is worth noticing that in the case of the KdV equation:∂tu+ ∂3

xu+ u · ∂xu = 0, t ∈ R, x ∈ T,
u(0, x) = u0 ∈ Hs

(1.3)
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much stronger informations are available on the long time behavior of solutions. In
fact by combining [2] and [12] one can deduce that the KdV flow is almost periodic
in time for every initial data u0 ∈ Hs with s ≥ 0.
Namely for every solution u to the KdV equation and for every ε > 0 there exists
an almost period lε (that depends on the solution u) such that for every interval I
of size ≥ lε there exists τ ∈ I such that ‖u(t+ τ)− u(t)‖Hs < ε for every t ∈ R.
In particular the KdV flow is recurrent for every initial data u0 ∈ Hs, s = 0, 1, 2, ...
In view of this strong result available for the KdV flow, Theorem 1.1 and Corollary
1.2 leave open the following questions:

• Question 1: Can we take Fs = Hs in Corollary 1.2?

• Question 2: Is the flow associated with (1.1) almost periodic in time, at least
for small data?

2. Strategy of the proof of Theorem 1.3

The main point is the construction of measures absolutely continuous w.r.t. to µk/2,
which are invariant along the flow of (1.1). The construction of those invariant
measures is based on the existence of infinitely many conservation laws preserved
along the Benjamin-Ono flow.

2.1. Conservation Laws for the Benjamin-Ono Equation

There is an infinite sequence of conservation laws satisfied by the solutions of the
Benjamin-Ono equation (see [11]). More precisely if u is a smooth solution of BO
then :

d

dt
Ek/2(u(t)) = 0, k = 0, 1, 2, 3, . . .

where

Ek/2(u) = ‖|∂x|k/2u‖2
L2 +Rk/2(u), (2.1)
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and Rk/2(u) is a sum of terms homogenous in u of order ≥ 3 (but containing less
derivatives). Here is the list of the first conservation laws :

E0(u) = ‖u‖2
L2 ;

E1/2(u) = ‖u‖2
Ḣ1/2 + 1

3

∫
u3dx;

E1(u) = ‖u‖2
Ḣ1 + 3

4

∫
u2H(ux)dx+ 1

8

∫
u4dx;

E3/2(u) = ‖u‖2
Ḣ3/2 −

∫
[32u(ux)2 + 1

2u(Hux)2]dx

−
∫

[13u
3H(ux) + 1

4u
2H(uux)]dx−

1
20

∫
u5dx;

E2(u) = ‖u‖2
Ḣ2 −

5
4

∫
[(ux)2Hux + 2uuxxHux]dx

+ 5
16

∫
[5u2(ux)2 + u2H(ux)2 + 2uH(∂xu)H(uux)]dx

+
∫

[ 5
32u

4H(ux) + 5
24u

3H(uux)]dx+ 1
48

∫
u6dx.

2.2. Construction of Candidate Invariant Measures dρk/2,R
For N ≥ 1, k ≥ 0 and R > 0 we introduce the function

Fk/2,N,R(u) =
( k−2∏
j=0

χR(Ej/2(πNu))
)
χR(E(k−1)/2(πNu)− αN)e−Rk/2(πNu), (2.2)

where:

• Ej/2 for j = 0, ..., k− 1 are the conservation laws described above and Rk/2 is
the the conservation law Ek/2 without the quadratic part (see (2.1));

• αN = ∑N
n=1

c
n
for a suitable constant c;

• πN is the sharp Dirichlet projector, i.e. πN(∑n∈Z cne
nix) = ∑

|n|≤N cne
inx;

• χR is a cut-off function defined as χR(x) = χ(x/R) with χ : R→ R a smooth,
compactly supported function such that χ(x) = 1 for every |x| < 1.

We have the following result.
Theorem 2.1 (See [19] for k = 1 and [20] for k > 1). For every k = 1, 2, ...., for
every R > 0 there exists a µk/2 measurable function Fk/2,R(u) such that Fk/2,N,R(u)
converges to Fk/2,R(u) in Lq(dµk/2) for every 1 ≤ q < ∞. In particular Fk/2,R(u) ∈
Lq(dµk/2). Moreover, if we set dρk/2,R ≡ Fk/2,R(u)dµk/2 then we have⋃

R>0
supp(ρk/2,R) = supp(µk/2).

Remark 2.1. We recall that the idea to construct invariant measures for Hamiltonian
PDEs by exploiting the associated conservation laws goes back to [6] in the context
of NLS. In this paper the authors exploit the conservation of the Hamiltonian. At
the best of our knowledge the idea to construct invariant measures associated with
higher order conservation laws goes back to the work of Zhidkov (see [23]). The
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main novelty (and source of difficulty) in Theorem 2.1, compared with [23], is that
in the definition of Fk/2,N,R we introduce the renormalizing coefficient αN along
the truncation with the conservation law E(k−1)/2. This is necessary in order to
guarantee that the limit measures are non-trivial. As a consequence, despite to [23],
in Theorem 2.1 the density Fk/2,R(u) belongs to Lq(dµk/2) for q ∈ [1,∞), but it does
not belong to L∞(dµk/2).

2.3. Invariance of the Measures dρk/2,R
In order to prove the invariance of dρk/2,R along the flow associated with (1.1) we
have two key steps:

• the first one is to prove the convergence of solutions to the finite dimensional
approximations of (1.1):∂tu+H∂2

xu+ πN
(
(πNu) · ∂x(πNu)

)
= 0,

u(0, x) = u0
(2.3)

to the true solution of (1.1), as N → ∞. More precisely, if we denote by
ΦN
t (u0) the unique global solution to (2.3) and by Φt(u0) the unique global

solution to (1.1) at time t, then the following estimates are needed:

∃s < σ < (k − 1)/2 s.t. ∀S > 0, ∃ t̄ = t̄(S) > 0 s.t. ∀ ε > 0,
ΦN
t (A) ⊂ Φt(A) +Bs(ε), ∀N > N0(ε),∀ t ∈ (−t̄, t̄),∀A ⊂ Bσ(S), (2.4)

where Bσ(R) denotes the ball of radius R in Hσ. The proof of (2.4) follows by
classical estimates for the Benjamin-Ono equation in the case k ≥ 6 (see [20]),
and it becomes more and more complicated as long as k becomes smaller. In
particular as far as we know it is unclear whether or not property (2.4) it is
true for 0 < σ < 5/4;

• a second and more essential source of difficulty to prove the invariance of
dρk/2,R, is related with the fact that the energies Ek/2, that are conserved for
the equation (1.1), are no longer conserved for the truncated problems (2.3),
as long as k ≥ 2. A partial and useful substitute of the lack of invariance of
Ek/2 along the truncated flow (2.3) is the following property:

lim
N→∞

sup
t∈[0,t̄]

A∈B(H(k−1)/2−ε)

∣∣∣∣ ddt
∫

ΦNt (A)
Fk/2,N,R(u)dµk/2

∣∣∣∣ = 0 (2.5)

where B(Hγ) denote the Borel sets in Hγ.
In the sequel we shall refer to (2.5) as to the almost invariance property
of Fk/2,N,R(u)dµk/2 along the flow ΦN

t .

Remark 2.2. The lack of invariance under truncated versions of the equation, of
quantities conserved along the infinite dimensional equation, appears in other im-
portant situations. See for instance [23] for KdV and [16] for DNLS. In those papers
the problem is solved by evaluating the energy growth of individual solutions. In
particular in the context of DNLS it is crucial to exploit heavily the deterministic
time oscillations of the equation. The main novelty in our approach is that we do
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not exploit the deterministic time oscillations of the equation in order to get (2.5),
but we take full advantage of the random character of the initial data.

Next we focus on the proof of the following proposition.

Proposition 2.2. We have the following implication

(2.4) and (2.5) ⇒ invariance of dρk/2,R for k > 1.

Proof. Since now on we assume k > 1 and R fixed, we shall denote by σ any real
number smaller than (k − 1)/2, FN = Fk/2,N,R, dµ = dµk/2, F (u) = Fk/2,R(u) (see
Theorem 2.1). Based on the deterministic theory well-established for the Benjamin-
Ono equation we get that for every compact set K ⊂ Hσ there exists S > 0 such
that

{Φt(K)|t ∈ [0, t0]} ⊂ Bσ(S). (2.6)
We state the following

Claim: For every S > 0 there exists t̄ = t̄(S) > 0 such that for every compact
set K ⊂ Hσ, with K ⊂ Bσ(S) we have∫

K
F (u)dµ ≤

∫
Φt(K)

F (u)dµ, ∀t ∈ (−t̄, t̄).

Based on the claim we shall prove that for every compact K ⊂ Hσ and for every
t0 ∈ R we get ∫

K
F (u)dµ ≤

∫
Φt0 (K)

F (u)dµ. (2.7)

Notice that by an approximation argument of Borel sets by compact sets, and by
using the reversibility of the flow, this implies the invariance of dρk/2,R = F (u)dµ.

We give the proof of (2.7) only for t0 positive, the analysis for negative t0 is
completely analogous.

Next we consider t̄ = t̄(S) ∈ (0, t0] given in the claim above and we choose t̃ such
that

t̃ ∈ (0, t̄] and t0
t̃
∈ N.

By the claim we get ∫
K
F (u)dµ ≤

∫
Φt̃(K)

F (u)dµ.

Notice that by (2.6) we have Φt̃(K) ⊂ Bσ(S), hence we can iterate the estimate
above and we obtain∫

Φt̃(K)
F (u)dµ ≤

∫
Φt̃(Φt̃(K))

F (u)dµ =
∫

Φ2t̃(K)
F (u)dµ.

By repeating this argument N0 times, where N0t̃ = t0, we get∫
Φ(j−1)t̃(K)

F (u)dµ ≤
∫

Φjt̃(K)
F (u)dµ, ∀j = 1, ..., N

and hence by the above chain of inequalities we deduce∫
K
F (u)dµ ≤

∫
Φt0 (K)

F (u)dµ.
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Next we focus on the proof of the claim. By (2.5) we get∫
ΦNt (K)

FN(u)dµ =
∫
K
FN(u)dµ+ o(1), ∀t ∈ R (2.8)

where limN→∞ o(1) = 0. Moreover FN → F in L1(dµ) and hence by (2.8) we get

lim
N→∞

∫
ΦNt (K)

FN(u)dµ = lim
N→∞

∫
K
FN(u)dµ =

∫
K
F (u)dµ, ∀t ∈ R. (2.9)

By (2.4) we get t̄ = t̄(S) > 0 such that for every ε > 0 there exists a suitable N0(ε)
with the property

sup
N>N0(ε)

∫
ΦNt (K)

F (u)dµ ≤
∫

Φt(K)+Bs(ε)
F (u)dµ, ∀t ∈ (−t̄, t̄). (2.10)

We estimate the l.h.s. as follows:

sup
N>N0(ε)

∫
ΦNt (K)

F (u)dµ ≥ lim
N→∞

∫
ΦNt (K)

F (u)dµ. (2.11)

On the other hands K is closed in Hs and, since Φt is a diffeomorphism on Hs, also
Φt(K) is closed in Hs. As a consequence we deduce⋂

ε>0
(Φt(K) +Bs(ε)) = Φt(K)

and hence by the Lebesgue theorem we deduce that the r.h.s. in (2.10) converges to∫
Φt(K) F (u)dµ as ε→ 0. By combining this fact with (2.11) we get

lim
N→∞

∫
ΦNt (K)

FN(u)dµ ≤
∫

Φt(K)
F (u)dµ, ∀t ∈ (−t̄, t̄).

The proof can be completed by combining the last inequality with (2.9).
�

3. On the invariance of dρk/2,R for k ≥ 4
Following Proposition 2.2, the proof of the invariance of dρk/2,R for k ≥ 4 holds
provided that we can show (2.4) (for σ > 5/4) and (2.5) for k ≥ 4. More precisely
we shall check (2.5) for every k > 1. Concerning (2.4) we shall restrict to the case
σ > 5/4. It is unclear if property (2.4) is verified for smaller values of σ. Indeed we
shall introduce in section 4 a substitute of (2.4) that will allow us to get invariance
of dρk/2,R also for k = 2, 3.

3.1. On the Approximation of Φt by the Truncated Flow ΦN
t

The main result of this subsection is the following proposition, which is strictly
related to the property (2.4).

Proposition 3.1. Fix 5/4 < s < σ < ∞. For every M > 0 there exists T =
T (M) > 0 such that

lim
N→∞

(
sup
t∈[0,T ]

u0∈Bσ(M)

‖Φt(u0)− ΦN
t (u0)‖Hs

)
= 0. (3.1)
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Proof. In the case σ > 3/2 the proof follows by combining a classical energy estimate,
a well-known estimate by Kato-Ponce (see [8]) and the Sobolev embedding H1/2+δ ⊂
L∞. The case 5/4 < σ ≤ 3/2 is treated in [22], where the key tool is the technique
introduced in [10].

�

3.2. On the Almost Invariance of Fk/2,N,R(u)dµk/2 along ΦN
t

The main result of this subsection is the following proposition.

Proposition 3.2. Let k ≥ 2. Then there exists ε0 > 0 such that (2.5) holds ∀ε < ε0,
t ∈ R, R > 0.

In the sequel, when it is not better specified, we use the notations FN(u) =
Fk/2,N,R(u) and dµ = dµk/2.

Remark 3.1. Notice that (2.5) is trivially satisfied also for k = 1. In fact the energy
E1/2 is the Hamiltonian of the Benjamin-Ono equation, and it is easy to check that
it is preserved also along the truncated flow ΦN

t .

Proof. The basic idea is to reduce the problem to t = 0. More precisely we have the
following chain of implications:

lim
N→∞

∥∥∥∥ ddt
(
Ej/2

(
πNΦN

t (u)
))
|t=0

∥∥∥∥
L2(dµk/2)

= 0, ∀j = 1, ..., k

⇒ lim
N→∞

sup
A∈B(H(k−1)/2−ε)

∣∣∣∣ ddt
( ∫

ΦNt (A)
Fk/2,N,R(u)dµk/2

)
|t=0

∣∣∣∣ = 0

⇒ lim
N→∞

sup
t∈[0,t0]

A∈B(H(k−1)/2−ε)

∣∣∣∣ ddt
( ∫

ΦNt (A)
Fk/2,N,R(u)dµk/2

)∣∣∣∣ = 0.

Proof of the second implication. We have
d

dt

( ∫
ΦNt (A)

FN(u)dµ
)
|t=t̄

= lim
h→0

h−1
( ∫

ΦN
t̄+h(A)

FN(u)dµ−
∫

ΦN
t̄

(A)
FN(u)dµ

)
= lim

h→0
h−1

( ∫
ΦN
h
◦ΦN

t̄
(A)

FN(u)dµ−
∫

ΦN
t̄

(A)
FN(u)dµ

)
,

and hence
d

dt

( ∫
ΦNt (A)

FN(u)dµ
)
t=t̄

= d

dt

( ∫
ΦNt (Ã)

FN(u)dµ
)
|t=0

where Ã = ΦN
t̄ (A).

Proof of the first implication.
First of all we notice the following identity (see [21]):∫

ΦNt (A)
FN(u)dµ = γN

∫
A

k−2∏
j=0

χR(Ej/2(πNΦN
t (u)))× (3.2)

χR(E(k−1)/2(πNΦN
t (u))− αN)e−Ek/2(πN (ΦNt (u))du1...duN × dµ⊥N ,
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where the factor γN is given by the following decomposition of dµ as a product
measures:

dµ = γNe
−‖πNu‖2

Hk/2du1...duN × dµ⊥N
where dµ⊥N is supported on the space E⊥N which is orthogonal to the real space EN
spanned by (cos(nx), sin(nx))1≤n≤N . The proof on (3.2) is based on a combination
of: 1) Liouville theorem on the invariance of Lebesgue measure for finite dimensional
hamiltonian systems; 2) invariance of the measure dµ⊥ along the linear flow associ-
ated with the linear Benjamin-Ono flow; 3) Fubini theorem. By (3.2) we see that to
consider the time derivative at time t = 0 of the l.h.s. is equivalent to consider the
time derivative at time t = 0 of the r.h.s., i.e.∫

A
GN(u)

k−2∏
j=0

χR(Ej/2(πN(u)))χR(E(k−1)/2(πN(u))− αN)e−Rk/2(πNu)dµ+

+
∫
A
HN(u)

k−2∏
j=0

χR(Ej/2(πN(u)))χ′R(E(k−1)/2(πN(u))− αN)e−Rk/2(πNu)dµ+

k−2∑
j0=0

∫
A
Lj0N(u)χ′R(Ej0/2(πNu))

k−2∏
j=0
j 6=j0

χR(Ej/2(πNu))χR(E(k−1)/2(πNu)− αN)×

e−Rk/2(πNu)dµ

where GN(u), HN(u), Lj0N(u) for j0 = 0, ..., k − 2 are respectively defined by

GN(u) = d

dt

(
Ek/2(πN(ΦN

t u))
)
|t=0

,

HN(u) = d

dt

(
E(k−1)/2(πN(ΦN

t u))
)
|t=0

,

Lj0N(u) = d

dt

(
Ej0/2(πN(ΦN

t u))
)
|t=0

, j0 = 0, ..., k − 2.

By using the Cauchy-Schwartz inequality w.r.t. dµ we conclude the proof of the first
implication.

Summarizing the proof of Proposition 3.2 follows provided that one proves

lim
N→0

∥∥∥∥ ddt
(
Ej/2

(
πNΦN

t (u)
))
|t=0

∥∥∥∥
L2(dµk/2)

= 0, ∀j = 1, ..., k.

The proof of this fact is quite involved and we skip the details (see [21] and [22]).
We just recall the key steps. The first one is to get a representation of the func-
tions d

dt

(
Ej/2

(
πNΦN

t (u)
))
|t=0

as linear combination of multilinear products of the

gaussian variables gn(ω) that appear in (1.2), i.e.
d

dt

(
Ej/2

(
πNΦN

t (u)
))
|t=0

=
∑
CN
cj1,...,jngj1 ...gjn (3.3)

where cj1,...,jn are suitable numbers and the dependence on N in (3.3) is hidden in
the constraint CN . The second step is to notice that thanks to integration by parts
one can cancel the worst terms in the above representation. In this step some deli-
cate informations on the structure of the conservation laws play a crucial role (see
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[11] and [21]). The remaining terms can be estimated, for k ≥ 6 and k even, via
the Minkowski inequality, hence reducing the problem to the analysis of numerical
series of the type ∑CN |cj1,...,jn|. In the case k = 2, 4 and k ≥ 3 odd the Minkowski
inequality is useless to estimate (3.3), and one needs to exploit the L2

ω orthogonality
of multilinear expressions gj1 ...gjn . Hence we reduce to the study of numerical ex-
pressions of the type∑C′N |cj1,...,jn |2, where C ′N is a large subset of CN where suitable
orthogonality relations occur. The analysis on the resonant set CN\C ′N is then done
in a straightforward way.

�

4. Invariance of dρk/2,R for k = 2, 3
The proof of the invariance of dρk/2,R for k = 2, 3 is more complicated compared
to the case k > 3, since it is unclear whether or not it is satisfied property (2.4)
for 0 < σ < 5/4. For this reason we have to modify the family of approximating
problems by introducing a smoothed version of the Dirichlet projectors πN .
For every fixed ε ∈ (0, 1) we denote by ψε a smooth function ψε : R→ R such that:

ψε(x) = 1 for x ∈ [0, (1− ε)], ψε(x) = 0 for x > 1, (4.1)
‖ψε‖L∞ = 1 and ψε(x) = ψε(|x|).

We denote by SεN the Fourier multiplier:

SεN(
∑
j∈Z

aje
ijx) =

∑
j∈Z

ajψε(
j

N
)eijx. (4.2)

We also denote by Φε,N
t the flow on Hs, s ≥ 0 associated with∂tu+H∂2

xu+ SεN(SεNu · SεNux) = 0,
u(0, x) = u0.

(4.3)

In order to prove the invariance of dρk/2,R for k = 2, 3 we need the following ingre-
dients:

• a modification of the construction of the measures dρ1,R and dρ3/2,R, where
we replace the projectors πN by the smoothed projectors SεN in the sequence
of approximating densities (see (2.2));

• to prove that Φε,N
t is a good approximation to Φt as N →∞;

• a version of (2.5) where we replace the projectors πN by SεN and the flow ΦN
t

by Φε,N
t .

4.1. On the Construction of the Measures dρ1,R and dρ3/2,R
via SεN

We first introduce the modified energies:
Eε
N(u) = ‖u‖2

Ḣ1 − ‖SεNu‖2
Ḣ1 + E1(SεNu), (4.4)

Gε
N(u) = ‖u‖2

Ḣ3/2 − ‖SεNu‖2
Ḣ3/2 + E3/2(SεNu), (4.5)
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and the approximating modified densities:

F ε
N,R(u) = χR(‖πNu‖L2)× χR(‖πNu‖2

Ḣ1/2 − αN + 1/3
∫

(SεNu)3dx) (4.6)

× exp(‖SεNu‖2
Ḣ1 − E1(SεNu)),

Hε
N,R(u) = χR(‖πNu‖L2)× χR(‖πNu‖2

Ḣ1/2 + 1/3
∫

(SεNu)3dx) (4.7)

× χR(Eε
N(πNu)− αN)× exp(‖SεNu‖2

Ḣ3/2 − E3/2(SεNu)).

Next proposition shows that as N → ∞ the measures F ε
N,Rdµ1 (for ε > 0 fixed)

converge to dρ1,R and Hε
N,Rdµ3/2 converge to dρ3/2,R (in a strong sense).

Proposition 4.1. Let R, σ > 0 and ε0 > 0 be fixed, then:

lim
N→∞

sup
A∈B(H1/2−σ)

|
∫
A
F ε0
N,R(u)dµ1 −

∫
A
dρ1,R| = 0, (4.8)

lim
N→∞

sup
A∈B(H1−σ)

|
∫
A
Hε0
N,R(u)dµ1 −

∫
A
dρ3/2,R| = 0. (4.9)

For the proof see [5].

4.2. On the Approximation of Φt by the Truncated Flow Φε,N
t

The following proposition is proved in [5]. It is a simplified version of the result
contained in [4].

Proposition 4.2. Let 0 < ε < 1, σ > σ′ > 0 and M > 0 be fixed, so that σ is small
enough. We have for some T = T (ε, σ, σ′,M) > 0, C = C(ε, σ, σ′,M) > 0 that:

sup
u0∈BM (H1/2−σ′ )

sup
|t|≤T
‖Φε,N

t (u0)− Φt(u0)‖H1/2−σ ≤ CN−θ,

where θ = θ(σ, σ′) > 0.

Remark 4.1. Notice that in Proposition 4.2 we have a time of approximation that
depends on ε > 0 and not only on the size M of the initial data (compare with
Proposition 3.1).

4.3. On the Almost Invariance of F ε
N,R(u)dµ1 and Hε

N,R(u)dµ3/2

along Φε,N
t

We have the following version of Proposition 3.2.

Proposition 4.3. Let σ,R > 0 be fixed. Then for every δ > 0 there exists N =
N(δ) > 0 and ε = ε(δ) > 0 such that:

|
∫
A
F ε
N,R(u)dµ1 −

∫
Φε,Nt A

F ε
N,Rdµ1| ≤ δt, ∀A ∈ B(H1/2−σ), ∀t ∈ R,

|
∫
A
Hε
N,R(u)dµ1 −

∫
Φε,Nt A

Hε
N,Rdµ1| ≤ δt, ∀A ∈ B(H1−σ), ∀t ∈ R.
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Exactly as in the proof of Proposition 3.2 the argument is to reduce the analysis
at time t = 0, more precisely it is sufficient to prove:

lim
ε→0

(
lim sup
N→∞

∥∥∥ d
dt

(
Eε
N(πNΦε,N

t (u))
)
|t=0

∥∥∥
L2(dµ1)

)
= 0,

where the energies Eε
N(u) are defined by (4.4) and

lim
ε→0

(
lim sup
N→∞

∥∥∥ d
dt

(
Gε
N(πNΦε,N

t (u))
)
|t=0

∥∥∥
L2(dµ3/2)

)
= 0,

where the energies Gε
N(u) are defined by (4.5). The proof of the estimates above are

quite involved and are part of the paper [5].

4.4. Invariance of dρ1,R and dρ3/2,R

We shall focus on the proof of the invariance of dρ1,R. The proof of the invariance
of dρ3/2,R follows by a similar argument. We shall prove the following proposition.

Proposition 4.4. Prop. 4.1 + Prop. 4.2 + Prop. 4.3 ⇒ Invariance of dρ1,R.

Proof. By the reversibility of the flow Φt and by an approximation argument of
Borel sets by compact sets, it is sufficient to prove that∫

A
dρ1,R ≤

∫
Φt̄(A)

dρ1,R, (4.10)

where A ⊂ H1/2−σ is compact, σ > 0 is small enough and t̄ > 0 is given. We fix
M > 0 such that A ⊂ BM(H1/2−σ) and we choose L > 0 such that

Φt(BM(H1/2−σ)) ⊂ BL(H1/2−σ) (4.11)
for every t ∈ [0, t̄] (the existence of L follows by [13]). Next we fix k > 0. By
Proposition 4.3 there exist Nk ∈ N and εk > 0 such that:

|
∫
A
F εk
N,Rdµ1 −

∫
Φεk,Nt (A)

F εk
N,Rdµ1| ≤ t/k, ∀N > Nk, ∀t ∈ R. (4.12)

On the other hand we have by Proposition 4.2 the existence of t1 = t1(L, k) > 0
and C = C(L, k) > 0 such that

sup
u∈BL(H1/2−σ)

t∈[0,t1]

‖Φεk,N
t (u)− Φt(u)‖H1/2−σ′ ≤ CN−θ,

and hence ∫
Φεk,Nt (A)

dρ1,R ≤
∫

Φt(A)+B
CN−θ (H1/2−σ′ )

dρ1,R, ∀t ∈ [0, t1]. (4.13)

In turn by combining (4.12) with Proposition 4.1 we get the existence of Ñk ∈ N
such that

|
∫
A
dρ1,R −

∫
Φεk,Nt (A)

dρ1,R| ≤ 3t1/k, ∀N > Ñk, ∀t ∈ R. (4.14)

By combining (4.13) with (4.14) we get∫
A
dρ1,R ≤

∫
Φt(A)+B

CN−θ (H1/2−σ′ )
dρ1,R + 3t1/k, ∀t ∈ [0, t1], (4.15)
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and by taking the limit as N →∞ gives:∫
A
dρ1,R ≤

∫
Φt(A)

dρ1,R + 3t1/k, ∀t ∈ [0, t1].

It is sufficient to iterate the bound above [t̄/t1] + 1 times and to take the limit as
k →∞ in order to get (4.10) (notice that we can iterate thanks to (4.11)).

�
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