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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

Recent results on KAM for multidimensional PDEs

Benoît Grébert
Abstract

In this short overview I present some recent results about the KAM the-
ory for multidimensional partial differential equations (PDEs) trying to avoid
technicalities. In particular I will not state a precise KAM theorem but I will
focus on the dynamical consequences for the PDEs: the existence and the sta-
bility (or not) of quasi periodic in time solutions. Concretely, I present the
complete study of the nonlinear beam equation on the d-dimensional torus re-
cently obtained in collaboration with H. Eliasson and S. Kuksin. When d ≥ 2
we are able to construct explicit examples where the quasi periodic solutions
are linearly unstable, a new feature in Hamiltonian PDEs that could comple-
ment recent results in weak turbulence theory.
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1. Introduction.

In this introduction I would like to convince non-specialists that a KAM theorem
for a nonlinear PDE is something useful in the sense that it gives valuable infor-
mations on the dynamics of the PDE. Then I would like to explain why it is not
so surprising that it works: roughly speaking, a KAM result for the nonlinear PDE

Keywords: Multidimensional PDEs, Quasi periodic solutions, KAM theory, stable and unstable tori.
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is a perturbative version of a simple fact for the associated linear PDE. I will fin-
ish the introduction with a short and non exhaustive presentation of the literature
concerning KAM results for multidimensional PDEs.

In sections 2 and 3, I present the results of [11, 12] as an example of "complete"
KAM study of a nonlinear PDE. In section 4, I give some keys to understand the
difficulties to overcome in a space-multidimensional context.

1.1. Why a KAM theorem for PDEs and why it works?
A PDE can be viewed as a dynamical system in an infinite dimensional phase space.
For most of conservative PDEs used in physics this system is Hamiltonian with the
energy playing the role of the Hamiltonian function.
In the world of finite dimensional Hamiltonian systems, the class of integrable (in
the sense of Liouville) systems is naturally central because we are able to describe
totally their dynamics: the phase space is foliated by invariant tori corresponding
to quasi-periodic solutions (see [1] for a general presentation or the second chapter
of [24] for a nice overview). Then there is a marvelous theorem, namely the KAM
theorem, that says that under a non resonances assumption, the small Hamiltonian
perturbations of an integrable system will still exhibit a lot of quasi periodic solu-
tions. Actually "most" of the invariant tori persist after the perturbation.
In the world of PDEs, the linear PDEs often plays the role of integrable systems.
Then we expect to show with KAM technics that, close to the origin (where the
nonlinearity can be considered as a perturbation) the nonlinear PDE still exhibits
invariant tori and thus quasi periodic solutions. This is exactly what we can do mod-
ulo a non resonance assumption and also restricting ourself to finite dimensional tori
inside the infinite dimensional phase space1.
Of course this is not enough to understand all the dynamics of the nonlinear PDE
since we only concentrate on a finite dimensional part of the phase space. Never-
theless these quasi periodic solutions are observed experimentally. The most famous
example is the numerical experiment by Fermi-Pasta-Ulam(see [15] or [16] for a
recent review).

Now let us try to understand why such a nice theorem is true. Actually we assume
all that we need to be sure that we remain close to the linear case where the KAM
conclusion (existence of invariant tori) can be seen as the consequence of the non
interaction between the linear modes (the Fourier modes in the case of the torus).
More precisely, let us consider a PDE on a compact manifold2 of the following form

i ut = Au+ f(u) (1.1)
where A is a linear operator diagonalized in an orthonormal basis of the phase space
(ϕj)j∈J and f(u) is a nonlinear term, i.e. f(u) = O(u2). The solutions of the linear
equation (when f = 0) read

u(t, x) =
∑
j∈J

cje
iωjtϕj(x) (1.2)

1In particular we cannot reach almost periodic solutions that correspond to infinite dimensional
tori.

2The compactness insures a discrete spectrum which is indispensable in these theory.
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where ωj denotes the eigenvalue of A associated to the eigenfunction ϕj. So each
linear mode j rotates with the frequency ωj without interacting with the others.
The natural question is: what happens when we turn on the nonlinearity? Of course
the linear modes are going to interact but we can try to limit the nonlinear effects.
Actually we assume:

• Smallness: we search for small solution u in such a way the nonlinear term is
a perturbation.

• Regularity: we assume that the nonlinearity u 7→ f(u) preserves the regularity.

• Non resonances: we assume that the linear frequencies are non resonant. The
sense of non resonant will be explained later, for the moment let us say that
essentially this means that the frequencies are not rationally dependent and
that this makes difficult the interactions between linear modes.

These are the three essential hypotheses for a KAM result and the typical result is
that "most of" the quasi periodic solutions constructed on finitely many modes still
persist after we turn on the nonlinearity. "Most of" means that the result holds true
for an asymptotically (with respect to the smallness of the solution) full measure
set of parameters and we distinguish two cases:

• KAM with exterior parameters: the operator A depends on parameters, A =
A(ρ). In that case when you change the parameters you change the PDE (1.1)
and the KAM theorem does not concern one PDE but a family of PDEs.

• KAM with interior parameters: the constant cj in (1.2) are the parameters. In
that case when you change the parameters you change the initial condition.

Of course the second case is much more satisfactory but more subtle. The parameters
allow to move the initial frequencies and it is easier to do it directly at the level of
the linear operator.

The KAM theory also allows to decide on the linear stability of the quasi periodic
solutions3 that we construct. Although we always observed stability for 1-d PDE,
we have recently (see [12]) constructed examples that exhibit unstable invariant tori
(cf. the notion of whiskered tori [8]). Such tori that are invariant under the flow
generated by the PDE, exhibit hyperbolic directions that could be used to escape
from the torus. Such a perspective could complement the weak turbulence approach.

1.2. Short review of related literature
If the KAM theorem is now well documented for nonlinear Hamiltonian PDEs in
1-dimensional context (see [21, 22, 25] for a first overview) only few results exist for
multidimensional PDEs.
Existence of quasi-periodic solutions of space-multidimensional PDE were first proved
in [6] (see also [7]) but with a technic based on the Nash-Moser thorem that do not
allow to analyse the linear stability of the obtained solutions. Some KAM-theorems
for small-amplitude solutions of multidimensional beam equations (see (2.1) above)

3I.e. the stability of the dynamical system obtained by linearizing the PDE around the solution.

IV–3



with typicalm were obtained in [17, 18]. Both works treat equations with a constant-
coefficient nonlinearity g(x, u) = g(u), which is significantly easier than the general
case. The first complete KAM theorem for space-multidimensional PDE was ob-
tained in [14]. Also see [2, 3].
The technics developed by Eliasson-Kuksin has been improved in [11, 12] to al-
low a KAM result without external parameters. In these two papers we prove the
existence of small amplitude quasi-periodic solutions of the beam equation on the
d-dimensional torus. We further investigate the stability of these solutions and give
explicit examples where the solution is linearly unstable and thus exhibits hyper-
bolic features (a sort of whiskered torus). These results are presented in section 3.
NLS equations in the d-dimensional torus and without external parameters were
considered in [28] and [26, 27], using the KAM-techniques of [6, 7] and [14], re-
spectively. Their main disadvantage compare to the 1d theory (see [23]) is severe
restrictions (a non-degeneracy condition) on the finite set of linear modes on which
the quasi-periodic solutions are based. The notion of non-degeneracy is so compli-
cated that it is even not easy to give examples of non-degenerate sets.
All these examples concern PDEs on the torus, essentially because in that case the
corresponding linear PDE is diagonalized in the Fourier basis and the structure of
the resonant sets remains almost the same. Recently I have considered (see [19])
two important examples that do not fit in this Fourier context: the Klein-Gordon
equation on the sphere S2 and the quantum harmonic oscillator on R2. In both cases
I use external parameters. For the existence of quasi-periodic solutions for NLW and
NLS on compact Lie groups via a Nash Moser approach see [5, 4].
Remark 1.1. The KAM technics are also used to prove the reducibility of non ho-
mogeneous linear PDE. We consider the linear PDE

i ut = Au+ V (t, x)u
and the question is: Is this system reducible to a homogeneous system? And a related
question: Is the flow bounded in Sobolev spaces? (see [13, 20, 9] for a first overview
on this problem).

2. The nonlinear beam equation with external parameters
Consider the d dimensional beam equation on the torus4

utt + ∆2u+mu+ V ? u+ εg(x, u) = 0, x ∈ Td (2.1)
where m is the mass, g is a real analytic function on Td× I and I is a neighborhood
of the origin in R. The convolution potential V : Td → R plays the role of external
parameter. It is supposed to be analytic with real Fourier coefficients V̂ (a), a ∈ Zd,
satisfying

|a|4 + V̂ (a) +m > 0 ∀ a ∈ Zd. (2.2)
Introducing v = −u̇ and denoting Λ = (∆2 +m+ V ?)1/2, we write eq. (2.1) as{

u̇ = −v,
v̇ = Λ2u+ εg(x, u).

4Notice that in this section we prefer to bring out the small parameter ε in front of the non-
linearity but, of course, by a scaling of the equation we can make it disappear and then consider
small-amplitude solutions as in section 3.
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Defining ψ = 1√
2(Λ1/2u+ iΛ−1/2v) we get

1
i
ψ̇ = Λψ + ε

1√
2

Λ−1/2g

(
x,Λ−1/2

(
ψ + ψ̄√

2

))
.

Thus, if we endow the space L2(Td,C) = {ψ(x) = 1√
2(ũ(x) + iṽ(x)} with the

standard real symplectic structure, given by the two-form idψ ∧ dψ̄ = dũ∧ dṽ, then
eq. (2.1) becomes a hamiltonian system

ψ̇ = i
∂H

∂ψ̄
(2.3)

with the Hamiltonian

H(ψ, ψ̄) =
∫
Td

(Λψ)ψ̄dx+ ε
∫
Td
G

(
x,Λ−1/2

(
ψ + ψ̄√

2

))
dx. (2.4)

Here G is a primitive of g with respect to the variable u: g = ∂uG. The linear
operator Λ is diagonal in the complex Fourier basis
{ϕs(x) = (2π)−d/2eis·x, s ∈ Zd}:

Λϕs = λsϕs, s ∈ Zd, λs =
√
|s|4 +m+ V̂s.

We decompose ψ and ψ̄ in this basis as follows:

ψ =
∑
s∈Zd

ξsϕs, ψ̄ =
∑
s∈Zd

ηsϕ−s.

On the complex phase-space PC := `2(Zd,C) × `2(Zd,C), endowed with the sym-
plectic form i

∑
s dξs ∧ dηs, we consider the (complex) Hamiltonian system{

ξ̇s = i ∂H
∂ηs

η̇s = −i∂H
∂ξs

s ∈ Zd, (2.5)

where the Hamiltonian H is given by H = H0 + P with

H0 =
∑
s∈Zd

λsξsηs, P = ε
∫
Td
G

x, ∑
s∈Zd

ξsϕs(x) + ηsϕ−s(x)√
2λs

 dx. (2.6)

The beam equation (2.1) is then equivalent to the hamiltonian system (2.5), re-
stricted to the real subspace

PR := {(ξ, η) ∈ `2(Zd)× `2(Zd,C) | ηs = ξ̄s, s ∈ Zd}.

Let A be any subset of cardinality n in Zd. We denote L = Zd \A. Let us fix any n
vector I = {Ia > 0, a ∈ A} with positive components. The n-dimensional torus in
PR {

ξaηa = Ia, a ∈ A
ξs = ηs = 0, s ∈ L = Zd \ A,

is invariant for the unperturbed linear equation (2.5), where H = H0. In a neigh-
borhood of this torus in R2n =

(
(ξa, ξ̄a), a ∈ A

)
, introduce action-angle variables

(ra, θa):
ξa =

√
(Ia + ra)eiθa , ηa =

√
(Ia + ra)e−iθa . (2.7)
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The unperturbed Hamiltonian now becomes

H0 =
∑
a∈A

ωa(ρ)ra +
∑
s∈L

λs(ξsηs)

with

ωa =
√
|a|4 + ρa +m, a ∈ A; λs =

√
|s|2 +m, s ∈ L.

We denoted V̂a = ρa for a ∈ A, the external parameters, and for simplicity of
notation have chosen V̂s = 0 for s ∈ L. In particular

V = V (ρ) = (2π)−d/2
∑
a∈A

ρae
ia·x.

Let us denote

UI,m(r, θ; ξ, η)(x) =
∑
a∈A

√
(Ia + ra)

(
eiθaϕa + e−iθaϕ−a

)
√

2λa
+
∑
s∈L

ξsϕs + ηsϕ−s√
2λs

. (2.8)

Let us set u0(θ, x) = UI,m(0, θ; 0, 0)(x). Then for any I ∈ Rn
+ and θ0 ∈ Td the

function (t, x) 7→ u0(θ0 + tω, x) is a solution of (2.1) with ε = 0 and is quasi-periodic
of quasi-period ω(ρ). We have proved in [11] that for most external parameter ρ
this quasi-periodic solution persists (but is sightly deformed) when we turn on the
nonlinearity :

Theorem 2.1. Fix m ≥ 0 and I ∈ Rn
+. For ε sufficiently small there is a Borel

subset D ⊂ [0, 1]n, meas([0, 1]n \ D) ≤ Cεα, such that for ρ ∈ D there is a function
u1(θ, x), analytic in θ ∈ Tn and smooth in x ∈ Td, satisfying

sup
θ∈Tn
‖u1(θ, ·)− u0(θ, ·)‖Hs ≤ γsε,

for any5 s ≥ 0 and there is a C1-mapping ω′ : D → Rn, ‖ω′ − ω‖C1(D) ≤ βε,
such that for any ρ ∈ D the function u(t, x) = u1(θ + tω′(ρ), x) is a linearly stable
solution of the beam equation

utt + ∆2u+mu+ V (ρ) ? u+ εg(x, u) = 0, x ∈ Td.

The positive constants α and β depend only on d, n and s, while C also depends on
g and γs also depends on s.

Remark 2.2. The one dimensional case (d = 1) is essentially a corollary of [21]. The
d-dimensional case was considered in [17] but only in the case where g does not
depend on x.

3. The nonlinear beam equation without external parame-
ters

We now consider equation (2.1) with V = 0 and ε = 1 but we conserve the mass m
as a unique external parameter. Further we assume that

g(x, u) = 4u3 +O(u4) = 4u3 + ∂uG̃(x, u).

5Here ‖ · ‖Hs denotes the standard Sobolev norm of order s.
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With the same notations as in section 2 we then get H = H0 + P4 +R5 where

H0 =
∑
s∈Zd

λsξsηs,

P4 =(2π)−d
∑

(i,j,k,`)∈J

(ξi + η−i)(ξj + η−j)(ξk + η−k)(ξ` + η−`)
4
√
λiλjλkλ`

, (3.1)

R5 =ε
∫
Td
G̃

x, ∑
s∈Zd

ξsϕs(x) + ηsϕ−s(x)√
2λs

 dx

where J denotes the zero momentum set:

J := {(i, j, k, `) ∈ Zd | i+ j + k + ` = 0}.

In the previous section H was considered as a perturbation of the quadratic Hamil-
tonian H0. But when V = 0 (and d 6= 1) this Hamiltonian is too resonant: λa = λb
when |a| = |b|. So in this section we will consider H as a perturbation of the quartic
Hamiltonian H0 + P4 and we will use the first part of the nonlinearity to destroy
the exact resonances of the linear part of the PDE. This nice idea was first used in
[23] for the 1d-NLS. Concretely we will use the initial actions as internal parameters
and we set

Ia = ρ2
a, a ∈ A. (3.2)

To avoid internal resonances (i.e. resonances inside the torus) we need to restrict
our analysis to admissible sets A:

Definition 3.1. A finite set A ∈ Zd is called admissible if

j, k ∈ A, j 6= k ⇒ |j| 6= |k|.

We still denote L = Zd \ A and set

Lf = {s ∈ L | ∃ a ∈ A such that |a| = |s|} (3.3)

which is a finite subset of L. In particular,

Lf = −(A \ {0}) if d = 1 and A is admissible. (3.4)

For each a ∈ Lf there exists a unique element of A, denoted `(a), satisfying

|a| = |`(a)|.

Further we define two subsets of Lf × Lf :

(Lf × Lf )+ :={(a, b) ∈ Lf × Lf | `(a) + `(b) = a+ b} (3.5)
(Lf × Lf )− ={(a, b) ∈ Lf × Lf | a 6= b and `(a)− `(b) = a− b}. (3.6)

If d = 1, then in view of (3.4) we have `(a) = −a and the sets (Lf×Lf )± are empty.
For d ≥ 2, in general, both of them are non-trivial. Obviously

(Lf × Lf )+ ∩ (Lf × Lf )− = ∅ . (3.7)

Finally we introduce K(ρ), a finite symmetric complex matrix, acting on the space

Y f := span {(ξs, ηs), s ∈ Lf} 3 ζf
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such that the corresponding quadratic form is

〈K(ρ)ζf , ζf〉 = 3(2π)−d
( ∑
`∈A, a∈Lf

(3δ`,|a| − 2)
λ`λa

ρ2
`ξaηa

+
∑

(a,b)∈(Lf×Lf )+

ρ`(a)ρ`(b)
λaλb

(ηaηb + ξaξb) + 2
∑

(a,b)∈(Lf×Lf )−

ρ`(a)ρ`(b)
λaλb

ξaηb

)
.

(3.8)

The quadratic form 〈K(ρ)ζf , ζf〉 is essentially the resonant part of P4 reduced to
Y f . It appears as a remaining term of P4 after a Birkhoff normal form procedure
and some other symplectic transformations (see [12] and section 4.2).

Let us set uI,m(θ, x) = UI,m(0, θ; 0, 0)(x) where UI,m is defined in (2.8). As in
the previous section, (t, x) 7→ uI,m(θ0 + tω, x) is a quasi-periodic solution of the
linear beam equation (i.e. (2.1) with ε = 0 and V = 0). Our main theorem analyses
persistence of this solution in (2.1) with ε = 1 for typical small vectors I and generic
m:

Theorem 3.2. Assume that the nonlinearity g(x, u) = 4u3 +O(u4) is analytic, and
that the set A (cardA = n) is admissible. Then there exists a zero-measure Borel
set C ⊂ [1, 2] and a Borel function ν0 : [1, 2] → R, strictly positive outside C, such
that for m /∈ C and 0 < ν ≤ ν0(m)

1) we can find a Borel set Dm ⊂ [ν, 2ν]n asymptotically of full measure as ν → 0,
i.e. satisfying meas([ν, 2ν]n \ Dm) ≤ C(m)νn+α with α > 0, a function v : Tn ×
Td ×Dm → R, analytic in θ and smooth in x ∈ Td, satisfying

sup
θ∈Td,I∈Dm

‖v(θ, ·; I)− uI,m(θ, ·)‖Hs(Td) ≤ C(m, s)νβ , β > 0 ,

for each s ≥ 0, and a mapping ω′ = ω′m : [0, ν]n → Rn, ‖ω′−ω‖C1 ≤ C(m)νβ, such
that, for any I ∈ Dm, the function u(t, x) = v(θ + tω′(I), x; I) is a solution of the
beam equation

utt + ∆2u+mu+ g(x, u) = 0, x ∈ Td.

2) This solution is linearly stable if and only if the Hamiltonian operator6 iJK,
explicitly constructed in terms of the set A (see (3.8)) is stable7. This is always the
case if d = 1, while for d ≥ 2 for some choices of the set A the solution is linearly
unstable.

For instance, in [12] we verify that

A = {(0, 1), (1,−1)}

is admissible and that the corresponding matrix K is always unstable when ρ(0,1) =
ρ(1,−1). As a consequence the quasi-periodic solutions constructed on the two nodes
of A are linearly unstable.

6To the Hamiltonian function 1
2 〈K(ρ)ζf , ζf 〉 we associate the Hamiltonian operator iJK where

J is the block diagonal matrix J = diag
(

0 1
−1 0

)
.

7Which means that all its eigenvalues have a negative real part.
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4. Some details on resonances and on resonant normal forms

4.1. Resonances
The KAM proof is based on an iterative procedure that requires to solve a so-called
homological equation at each step. Roughly speaking, it consists in inverting an
infinite dimensional matrix whose eigenvalues are the so-called small divisors:

ω̃ · k k ∈ ZA,
ω̃ · k + λ̃a k ∈ ZA, a ∈ L,
ω̃ · k + λ̃a ± λ̃b k ∈ ZA, a, b ∈ L

where ω̃ = ω̃(ρ) and λ̃a = λ̃a(ρ) are small perturbations (changing at each KAM
step) of the original frequencies ω(ρ) = (

√
|a|2 + ρa)a∈A and λa = |a|2, a ∈ L (cf.

section 2).
Ideally we would like to bound away from zero all these small divisors. In particular,
this leads to infinitely many non resonances conditions of the type

|ω̃ · k + λ̃a − λ̃b| >
κ

|k|α
, k ∈ ZA, a, b ∈ L

for some parameters κ > 0 and α > 0. Of course we have to exclude the case
k = 0, a = b for which the small divisor is identically zero and this is precisely the
reason why the external frequencies λ̃a, a ∈ L, move at each step.
When d = 1 we have |λa − λb| ≥ 2|a| for |b| 6= |a|. Therefore for each fixed k there
are only finitely many non resonances conditions and you can expect to satisfy them
for a large set of parameters ρ.
Now when d ≥ 2, the frequencies λa, a ∈ L, are not sufficiently separated and
you really have to manage infinitely many non resonances conditions8 for each k.
It is not possible to control so many small divisors. Part of the solution consists in
decomposing L in blocks [a] := {c ∈ L | |c| = |a|, } and to solve the homological
equation according to this clustering. Then we only have to control the small divisors

|ω̃ · k + λ̃a − λ̃b| for k ∈ ZA, a, b ∈ L, |a| 6= |b|

which is more reasonable.
On the other hand we have to face the problem that the size of the block [a] is
growing with |a|. As a consequence you loose regularity each time you solve a homo-
logical equation (essentially because the norm of the inverse of a matrix is directly
related to its size). Of course this is not acceptable for an infinite induction. The
very nice idea developed in [14] consists in considering a sub-clustering constructed
as the equivalence classes of the equivalence relation on Zd generated by the pre-
equivalence relation

a ∼ b⇐⇒
{
|a| = |b|
|a− b| ≤ ∆

8In fact this is not true at first step since λa = λb = |a|2 for |a| = |b| and the set {λa − λb |
a, b ∈ L, |b| 6= |a|} is included in Z. Nevertheless at each KAM step, the external frequencies λa,
a ∈ L will move a little bit and then the new set {λ̃a − λ̃b | a, b ∈ L, |b| 6= |a|} will not be discrete
anymore.
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Let [a]∆ denote the equivalence class of a. The crucial fact (proved in [14]) is that
the blocks are finite with a maximal “diameter”

max
[a]∆=[b]∆

|a− b| ≤ Cd∆
(d+1)!

2

depending only on ∆. With such clustering, you do not lose regularity when solving
the homological equation. Further, working in a phase space of analytic functions u
or equivalently, exponentially decreasing Fourier coefficients, it turns out that the
homological equation is "almost" block diagonal relatively to this clustering. Then
you increase the parameter ∆ at each step of the KAM iteration.

4.2. Resonant normal form
When you do not allow external parameters (as in section 3), H0 is resonant in
the sense that some of the linear frequencies are rationally dependent. For instance
ω`(a) = λa for a ∈ Lf (see notations in section 3) and thus the internal mode `(a)
is resonant with the external mode a. In other words the small divisor ω · k + λa
vanishes when9 kj = −δ(j, `(a)). As explained in section 3 we want to use P4, the
quartic part of the Hamiltonian, to destroy these exact resonances.
We first perform a Birkhoff normal form procedure that allows us to kill all the non
resonant monomials in P4: we construct a symplectic change of variable τ , close to
the identity, such that

(H0 + P4) ◦ τ = H0 + Z4 +R

where R is a remainder term that can be considered as a perturbation,

Z4 =(2π)−d
∑

(i,j,k,`)∈R

ξiξjηkη`

4
√
λiλjλkλ`

is the effective resonant part and

R =
{

(i, j, k, `) ∈ (Zd)4 | i+ j = k + ` and {|i|, |j|} = {|k|, |`|}
}

is the resonant set. The quartic polynomial Z4 still contains a lot of monomials.
Some of them are very bad (in the sense that they depend on the internal angles
(θ`)`∈A and thus are not integrable) like ξ`(a)ξ`(b)ηaηb for (a, b) ∈ (Lf × Lf )+ or
ξ`(a)ξbηaη`(b) for (a, b) ∈ (Lf × Lf )−. We use some rotations on the internal angles
to reduce them and to build the quadratic form K(ρ) (see [12]). There are also very
nice term in Z4, especially ξ`ξaη`ηa for ` ∈ A and a ∈ L which, using (2.7) and
(3.2), reads (I` + r`)ξaηa = (ρ2

` + r`)ξaηa. Then forgetting for a moment all the "bad"
terms, these nice terms of Z4 will be added to the term λaξaηa in H0 to form a new
external frequency

Λa(ρ) = λa + 6(2π)−d
∑
`∈A

ρ2
`

λ`λa
.

So in this simplified model, the frequencies explicitly depend on the internal param-
eters and we can try to apply a KAM result with parameters.

9Here δ(j, k) denotes the Kronecker symbol.
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