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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

Dynamics of a small rigid body in a perfect
incompressible fluid

Olivier Glass
Abstract

We consider a solid in a perfect incompressible fluid in dimension two.
The fluid is driven by the classical Euler equation, and the solid evolves un-
der the influence of the pressure on its surface. We consider the limit of the
system as the solid shrinks to a point. We obtain several different models in
the limit, according to the asymptotics for the mass and the moment of iner-
tia, and according to the geometrical situation that we consider. Among the
models that we get in the limit, we find Marchioro and Pulvirenti’s vortex-
wave system and a variant of this system where the vortex, placed in the
point occupied by the shrunk body, is accelerated by a lift force similar to
the Kutta-Joukowski force. These results are obtained in collaboration with
Christophe Lacave (Paris-Diderot), Alexandre Munnier (Nancy) and Franck
Sueur (Bordeaux).

1. Introduction

In this paper, I describe several results obtained in collaboration with Christophe
Lacave (Université Paris-Diderot), Alexandre Munnier (Université de Lorraine) and
Franck Sueur (Université de Bordeaux).

These studies concern the asymptotic behaviour of a solid immersed in a perfect
incompressible fluid, when the solid shrinks to a point. We obtain a simple particle
in the limit whose trajectory we can characterize in various situations.

We begin by introducing the model of fluid/rigid body interaction.

The author was partially supported by the Agence Nationale de la Recherche, projects CISIFS (ANR-09-BLAN-
0213-02) and DYFICOLTI (ANR-13-BS01-0003-01). He wishes to thank Franck Sueur for many useful comments
on a first version of this note.
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1.1. Presentation of the model: a rigid body immersed in an
incompressible perfect fluid

We consider the motion of a rigid body immersed in an incompressible perfect fluid
in a regular domain Ω ⊂ R2 where Ω = R2 or is a bounded domain, such as described
for instance in Figure 1.1.

S(t)F(t) Ω

Figure 1.1. A solid immersed in an incompressible perfect fluid

The solid occupies at each instant t ≥ 0 a subset S(t) ⊂ Ω, and the fluid occupies
F(t) := Ω \ S(t). We take the convention that S(t) is a closed subset in R2 and
consequently F(t) is an open subset of the plane. Since the solid is rigid, S(t) is
obtained at each time t as the image of S(0) by a rigid movement, that is, the
composition of a translation and a rotation.

Now, let us be more specific about the equations that drive the fluid and the solid.

Fluid equation. In F(t), the fluid satisfies the incompressible Euler equation:
∂u

∂t
+ (u · ∇)u+∇p = 0, t ∈ [0, T ], x ∈ F(t),

divu = 0 t ∈ [0, T ], x ∈ F(t).

At the boundaries, the fluid satisfies the no-penetration/slip condition:
u · n = 0 for x ∈ ∂Ω,

u · n = [h′(t) + ϑ′(t)(x− h(t))⊥] · n for x ∈ ∂S(t).
Here:

• u = u(t, x) : F(t) → R2 is the fluid velocity, p = p(t, x) : F(t) → R the
pressure,

• n is the normal to the boundaries ∂Ω and ∂S(t), pointing outside F(t),

• h(t) is the position of the center of mass of the solid (we will take the con-
vention that h(0) = 0), ϑ is the angle with respect to the initial position (so
ϑ(0) = 0). Of course, one can deduce S(t) from h(t), ϑ(t) and S(0).

When Ω = R2, one should add a condition at infinity, typically lim|x|→+∞ u(x) = 0.

The main difference with the usual setting of Euler’s equation in a bounded
domain is that here the fluid domain F(t) actually depends on time. But should
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F(t) be given in advance (which is not the case), many classical results could be
transposed in this situation.

Dynamics of the solid. The dynamics of the solid is driven by the action of the
pressure on its surface, and obeys Newton’s law of classical mechanics:

mh′′(t) =
∫
∂S(t)

p n ds,

J ϑ′′(t) =
∫
∂S(t)

p (x− h(t))⊥ · n ds,

where

• m > 0 is the mass of the body,

• J > 0 denotes its moment of inertia.

We could naturally add a force such as gravity in the right hand side.

We can see in these equations that the coupling between the solid and the fluid
is reciprocal: the solid influences the fluid through the moving domain and the
boundary conditions on ∂S(t), and the fluid influences the solid through the pressure
appearing in the right hand side of the equations.

Initial data. We prescribe as initial data the following:

• S(0) = S0, with S0 ⊂ Ω a smooth closed subset of Ω,

• u|t=0 = u0, for x ∈ F0 := Ω \ S0,

• (h′(0), ϑ′(0)) = (h′0, ϑ′0), with (h′0, ϑ′0, u0) satisfying
div(u0) = 0 in F0, u0 · n = (h′0 + ϑ′0 × (x− x0)) · n on ∂S0,

u0 · n = 0 on ∂Ω or lim
|x|→+∞

u0(x) = 0.

Given the whole set of these data, it is reasonable to expect a good Cauchy theory.
We will discuss this a bit in a moment.

Two remarks. Before giving a few words on the Cauchy problem, two remarks are
in order.

A remark on D’Alembert’s paradox. It is worth mentioning that D’Alembert’s para-
dox does not apply here, because it concerns fluids which are potential in R2, sta-
tionary and constant at infinity. In that case (only), D’Alembert’s paradox states
that the fluid does not influence the dynamics of the solid.

Alternative formulations. One can also describe the system with a bit different for-
mulations. The first one is the formulation using the vorticity ω = curlu, which is
scalar in dimension two. The fluid part of the system can indeed be written in the
form

∂tω + (u · ∇)ω = 0 in F(t),
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and 

curlu = ω in F(t),
divu = 0 in F(t),
u · n = (h′ + ϑ′(x− h(t))⊥) · n on ∂S(t),
u · n = 0 on ∂Ω or lim|x|→+∞ u(t, x) = 0,∮
∂S(t) u · τ ds =

∮
∂S0

u0 · τ ds = γ (Kelvin’s law).

(1.1)

Here τ is the unit tangent to ∂S(t), such that (τ, n) is direct.
And another formulation of the problem is more geometrical. As we showed in

collaboration with F. Sueur [12], the complete system can be indeed viewed as an
equation of geodesics on an infinite dimensional Riemannian manifold, in the spirit
of Arnold’s work [1] for the Euler equation alone, see also Ebin-Marsden [7]. The
main difference here is that the infinite dimensional Riemannian manifold has no
longer a group structure and hence cannot be seen as a Lie group.

Cauchy problem. Let us give a few references about the Cauchy problem con-
cerning this system. In the context of regular solutions (say at least C1) with finite
energy, the problem has been considered by Ortega, Rosier and Takahashi [25] in
the full plane, by Rosier and Rosier [26] in the full space and by Houot, San Martin
and Tucsnak [16] in a bounded domain (see also G., Sueur and Takahashi [14]).

Concerning weak solutions (solutions à la Yudovich [31] or à la DiPerna-Majda
[6]) the problem has been studied by Sueur and the author [11, 13] (with possibly
infinite energy) and by Wang and Xin [30] (in a finite energy setting but with less
restrictions on the support of the vorticity.)

Now we give the statement on the Cauchy problem that we will use in the sequel.
This result is the equivalent of Yudovich’s theorem in the context of the fluid-body
system.

Theorem 1 (G.-Sueur [13]). Let S0 be a smooth, bounded domain in Ω ⊂ R2 or
Ω = R2. For any u0 ∈ C0(F0;R2), (h′0, ϑ′0) ∈ R3 such that

divu0 = 0, curlu0 = ω0 ∈ L∞c (F0), (1.2)
u0 · n = (h′0 + ϑ′0(x− h0)⊥) · n on ∂S0, lim

|x|→+∞
|u0| = 0 or u0 · n = 0 on ∂Ω,

(1.3)
there exists a unique maximal solution

(h, ϑ, u) ∈ C2([0, T ∗);R3)× L∞loc([0, T ∗);LL(F(t))),
where T ∗ ∈ (0,+∞] is the first meeting time between S(t) and ∂Ω.

Here, we denoted by LL the usual space of log-Lipschitz functions:

LL(U) :=
{
f ∈ C0(U) / ∃C > 0, ∀x, y ∈ U, |f(x)−f(y)| ≤ C|x−y|(1+ln− |x−y|)

}
.

We made a slight abuse of notations in “L∞loc([0, T ∗);LL(F(t)))” since the space
domain depends on time. This space refers to functions that belong to LL(F(t))
for almost every t, with uniform norm on compacts subsets of [0, T ∗) (but for a
negligible set).
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The main difference of Theorem 1 with Yudovich’s result is that here the time of
existence of a solution can be limited by the possible encounter of the solid and the
outer boundary (when ∂Ω 6= ∅).
Remark 1. When Ω = R2, in general u(t, ·) /∈ L2(F(t);R2). Finite energy solutions
would be too particular in the sequel. . .

1.2. The problem of a small body
We are now in position to explain the main problem under view, that is to determine
the behaviour of the solutions of this system when the body becomes very small.

Let us be more specific. We suppose that we are given S0 smooth and h′0, ϑ′0,
γ, ω0 ∈ L∞c (R2) fixed as above. The question is the following: what can be said
for as the size of solid goes to zero, that is, how behaves the solution (hε, ϑε, uε)
corresponding to the initial position of the solid:

Sε0 := εS0,

as ε goes to 0+?
We note in particular that for fixed ε > 0, we can reconstruct from the data

above the initial velocity field uε0 via the system (1.1) and apply Theorem 1 to get
the solution (hε, ϑε, uε). In the absence of an outer boundary ∂Ω, this solution is
global in time; in the presence of a boundary, on the contrary, the question of getting
a uniform time of existence is quite important.

Prescribing the initial vorticity rather than the initial velocity gives the advantage
that it can be given on R2 rather than on a domain depending on ε, in such a way
that the compatibility conditions (1.2)-(1.3) are automatically satisfied.

We will give answers to these questions in various situations which we now describe.

Asymptotic regimes. We will be interested in the following two particular regimes
concerning the mass and the moment of inertia:

• A massive point in the limit:
mε = m1 and Jε = ε2J1, (1.4)

• A constant density:
mε = ε2m1 and Jε = ε4J1, (1.5)

where m1 and J1 are fixed positive constants.

Two geometric situations. We have obtained results in that direction in two situa-
tions:

• Situation 1: Ω = R2 and ω0 ∈ L∞c (R2 \ {0}). We note that a consequence of
this constraint on the support of ω0 is that for small ε > 0,

dist
(
Supp(ω0),Sε0

)
> 0 . . .

• Situation 2: Ω is a smooth bounded domain and the fluid is irrotational, that
is, ω0 = 0.
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Hence we have two regimes and two geometrical situations; this gives four possi-
bilities which we describe in the following table. The goal of this text is mainly to
explain how to fill the cells.

Situation 1 : Situation 2 :
Ω = R2 Ω bounded domain

ω0 ∈ L∞c (R2 \ {0}) ω0 = 0
Massive particle :

mε = m1

Jε = ε2J1

Light particle:
mε = ε2m1

Jε = ε4J1

Table 1.1. Two regimes, two geometrical situations, four possibilities

Motivations. Our motivations to study the limits of a small body are of several
nature.

• Obtain simplified fluid-solid models. As we will see, we will obtain in the limit
models which are much simpler, in particular because they take place in a
fixed domain. Hence at the computational level, when studying these models,
one does not have to adapt the grid to the moving domain. This would be
particularly interesting in the case of many bodies (for which no rigorous
derivation is obtained yet, but the study of the limit of a single body is an
important step toward this goal).

• Give another justification of classical vortex models. As we will see, some of
the models that we get in the limit exist in the literature but were obtained in
another way (as limits for a singular initial vorticity for instance), or formally.
Our studies give a rigorous justification of these models as limits of rigid/body
systems.

• One would like to study control problems associated to a fluid-rigid body
system. A problem for instance would be to understand how one can control
the trajectory of the solid by acting on the fluid, or by using the deformation
of the body. A possibility to tackle such problems would be to prove a control
result on the simplified limit model (for instance by using tools of geometric
control theory) and then to use a perturbation argument to obtain a result
on the original one.

2. Results
Now let us describe the results that we obtain in the various situations mentioned
above.
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2.1. First case: a massive small solid in R2

We start with the case where we have a non trivial vorticity distribution in R2

(compactly supported away from 0) and where the inertia regime is given by (1.4).

Notations. Let us recall the Biot-Savart formula in R2: K[ω] describes the velocity
generated in R2 by the vorticity ω ∈ L∞c (R2):

K[ω] := 1
2π

∫
R2

(x− y)⊥
|x− y|2

ω(t, y) dy,

so that
curlu = ω, divu = 0 in R2, lim

|x|→+∞
u(x) = 0.

Note however that in general u /∈ L2(R2) (except in the case where ω has zero mass).
This explains why we wanted a result on the Cauchy problem in the infinite-energy
case.

We also recall that a point vortex located at h with intensity γ corresponds to a
Dirac mass at h with mass γ in the vorticity, generating the velocity field:

K[γδh] := γ

2π
(x− h)⊥
|x− h|2

.

Our main result in this situation is the following one.
Theorem 2 (G.-Lacave-Sueur [8]). Let m1 > 0, J1 > 0, h′0 ∈ R2, ϑ′0, γ ∈ R
and ω0 ∈ L∞c (R2 \ {0}) be fixed. Let (hε, ϑε, uε) the maximal solution on [0,+∞)
of the fluid-solid system with solid of size ε, with mε and Jε given by (1.4), and
corresponding to ω0, h′0, ϑ′0 and γ. Let T > 0. Up to a subsequence, one has:

• hε −⇀ h, εϑε −⇀ 0 weakly-? in W 2,∞(0, T ),

• ωε −→ ω in C0([0, T ];L∞(R2)− w?),

• uε −→ K
[
ω + γδh(t)

]
in C0([0, T ];Lqloc(R2)), q < 2.

Moreover, one has in the limit
∂ω

∂t
+ div

(
K
[
ω + γδh(t)

]
ω

)
= 0 in [0, T ]× R2,

mh′′(t) = γ
(
h′(t)−K[ω(t, ·)](h(t))

)⊥
,

ω|t=0 = ω0, h(0) = 0, h′(0) = h′0.

In this statement, we made a small abuse of notations: we actually “complete”
the functions defined in F ε(t) (that is, uε and ωε) by 0 in Sε(t), in order that the
convergences can take place in R2.
Remark 2. The vorticity ω is transported by the total velocity field K[ω + γδh(t)],
but of course δh(t) follows h. Hence it is possible that the vortex point located at h(t)
enters in finite time the support of vorticity, even if it is not the case at initial time.
This explains why we do not know how to prove uniqueness in the limit, and hence,
why this result is stated “up to a subsequence”. See Marchioro-Pulvirenti [22] and
Lacave-Miot [19] for related questions of uniqueness on fluid/vortex models.
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The force appearing in the equation of the point in the limit

F := γ
(
h′(t)−K[ω(t, ·)](h(t))

)⊥
,

is similar to the Kutta-Joukowski lift force of the irrotational theory (see e.g. Lamb
[20]): the force applied to a body at speed v, immersed in an irrotational fluid, with

F

u∞

γ

v

Figure 2.1. The Kutta-Joukowski force

fluid velocity u∞ at infinity and circulation γ around the body (see Figure 2.1) is
given by

F = γ(v − u∞)⊥.

Remarks.

• In the case of a small fixed obstacle, a similar result was obtained by Iftimie,
Lopes Filho and Nussenzveig Lopes [17]. Of course in that case, the vortex in
the limit is δ0.

• An analogous system was introduced and studied in the irrotational case with
several solids by Grotta Raggazzo, Koiller and Oliva [15]:

mjh
′′
j = γj

h′j −∑
i 6=j

K [γiδhi
]
⊥ ,

see also Vankerschaver, Kanso and Marsden [29]. Our result above gives a
rigorous derivation of their system in the “single-body + vorticity” case.

2.2. A light small solid in Ω with ω0 = 0
We now turn to the case where Ω is a smooth bounded domain, where the flow is
irrotational, i.e. ω0 = 0, and where the inertia regime is given by (1.5). We begin by
introducing the limit system. We let ψ(h, ·) be the solution of the following Dirichlet
problem (from which S0 is absent!):

∆ψ = 0 in Ω, ψ(h, ·) = G(· − h) on ∂Ω, where G(r) := − 1
2π ln |r| for r ∈ R2.

The Kirchhoff-Routh stream function ψΩ/velocity uΩ is defined as

ψΩ(x) := 1
2ψ(x, x) and uΩ := ∇⊥ψΩ.
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The limit system here reads as follows
h′ = γuΩ(h) for t ∈ [0,∞), h(0) = 0. (2.1)

This ODE describes the dynamics of a single vortex point in a bounded domain.
It has solutions which can be obtained as limits of regular solutions of the Euler
equation where the vorticity concentrates to a point (see Turkington [28]). The
solutions of this system are known to be global in time when γ 6= 0 (cf. Ibid.)

Our result in this situation is as follows.
Theorem 3 (G.-Munnier-Sueur [10]). Let m1 > 0, J1 > 0, h′0 ∈ R2, ϑ′0 ∈ R and
γ 6= 0 be fixed. Let h the maximal solution on [0,+∞) of (2.1). Let (hε, ϑε, uε) the
maximal solution on [0, T ε) of the fluid-solid system with solid of size ε, with mε and
Jε given by (1.5), corresponding to ω0 = 0, h′0, ϑ′0 and γ. Then one has as ε→ 0+,

• limT ε = +∞,

• hε −⇀ h in W 1,∞([0, T ];R2) weak-? for all T > 0,

• εϑε −⇀ 0 in W 1,∞([0, T ];R) weak-? for all T > 0.

We note that, with respect to Theorem 2, the uniqueness of the solutions in the
limit ensures that the whole family (hε) converges to the solution of the particle
system (2.1), and not merely a subsequence.

2.3. Remaining cases
We have “filled” two diagonally opposite cells in Table 1.1. The two remaining ones
are obtained by retaining features of the above two cases, according to their column
and their row.

A massive small solid in a bounded Ω. We begin with the case where Ω is a smooth
bounded domain, the flow is irrotational but the inertia regime is given by (1.4).
In that case, we obtain the following result which mixes Theorems 2 and 3 in the
sense that the equation for the limit particle is second-order, but with a reference
velocity field coming from the Kirchhoff-Routh potential.
Theorem 4 (G.-Munnier-Sueur [10]). Let m1 > 0, J1 > 0, h′0 in R2, ϑ′0 and γ in R
be fixed. Let h the maximal solution on [0, T ∗) of the ordinary differential equation:

mh′′ = γ
(
h′ − γuΩ(h)

)⊥
for t ∈ [0, T ∗),

h(0) = 0 and h′(0) = h′0.

Let (hε, ϑε, uε) the maximal solution on [0, T ε) of the fluid-solid system with the solid
of size ε, with mε and Jε given by (1.4), ω0 = 0, h′0, ϑ′0 and γ. Then one has as
ε→ 0+,

• lim inf T ε ≥ T ∗,

• hε −⇀ h in W 2,∞([0, T ];R2) weak-? for all T ∈ (0, T ∗),

• εϑε −⇀ 0 in W 2,∞([0, T ];R) weak-? for all T ∈ (0, T ∗).
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A light small solid in R2. The last situation concerns the case where Ω = R2, the
vorticity is not trivial, and the inertia regime is given by (1.5). In that case, we
obtain the following result.

Theorem 5 (G.-Lacave-Sueur [9]). Let m1 > 0, J1 > 0, h′0 ∈ R2, ϑ′0 ∈ R, γ 6= 0
and ω0 ∈ L∞c (R2 \ {0}) be fixed. Let (hε, ϑε, uε) the maximal solution on [0, T ε) of
the fluid-solid system with the solid of size ε, with mε and Jε given by (1.5), and
with initial conditions ω0, h′0, ϑ′0 and γ. Then for all T > 0 one has as ε→ 0+,

• hε −⇀ h, εϑε −⇀ 0 weakly-? in W 1,∞(0, T ),

• ωε −→ ω in C0([0, T ];L∞(R2)− w?),

• uε −→ K[ω + γδh(t)] in C0([0, T ];Lqloc(R2)), q < 2,

Moreover one has in the limit
∂ω

∂t
+ div

(
K[ω + γδh(t)]ω

)
= 0 in [0, T ]× R2,

h′(t) = K[ω(t, ·)](h(t)),
ω|t=0 = ω0, h(0) = h0.

The limit system here is known as Marchioro and Pulvirenti’s wave/vortex system.
It can be obtained as limits of regular solutions of the Euler equation (as a part of
the vorticity concentrates in h0). If h0 /∈ Suppω0, then one has global existence and
uniqueness, and h(t) /∈ Suppω(t) for all t. We refer here to Marchioro-Pulvirenti
[21], Lacave-Miot [19] and Bjorland [3].

2.4. Summary
The above results can be summarized in the following table.

Situation 1 : Situation 2 :
Ω = R2 Ω bounded domain

ω0 ∈ L∞c (R2 \ {0}) ω0 = 0
Massive particle :

mε = m1 mh′′ = γ(h′ − ũ)⊥ mh′′ = γ(h′ − ũ)⊥

Jε = ε2J1 ũ = K[ω(t, ·)](h(t)) ũ = γuΩ(h(t))
Light particle: h′ = ũ

mε = ε2m1 ũ = K[ω(t, ·)](h(t)) h′ = ũ

Jε = ε4J1 ∂tω + div(K[ω + γδh(t)]ω) = 0 ũ = γuΩ(h(t))
Table 2.1. The filled table

3. Several ideas on the proofs
We finish this note by giving a few ideas about the proofs.
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3.1. Difficulties
Let us first mention the difficulties that we have to face. We focus on the the solid
equations:

mε h
′′(t) =

∫
∂Sε(t)

p n ds, Jε ϑ′′(t) =
∫
∂Sε(t)

p (x− h(t))⊥ · n ds.

• First, as is clear in these equations, we have to study the pressure in detail.
In many works on incompressible fluid dynamics, the pressure is more or less
ignored: one uses the vorticity formulation or the Leray projector to get rid
of the pressure from the equations. Here this is no longer possible, since the
pressure plays a central role in the dynamics of the solid.

• The problem is singular in space since the solid domain Sε shrinks to a point
and the circulation remains constant. This clearly means that the velocity uε
becomes singular on the solid boundary as ε→ 0+.

• The problem is also singular in time when mε = ε2m1 and Jε = ε4J1. In
particular, it is conspicuous in the case of a light particle that one passes
from a second order equation for the dynamics of the solid, to a first order
equation for the dynamics of the limit particle.

• The energy is not finite (in the case Ω = R2); hence one cannot rely on
the standard energy estimate to get bounds on the solid velocity. Moreover,
even when considering a “desingularized” energy, this does not give a strong
control when mε = ε2m1 and Jε = ε4J1. Even when assuming that the energy
is finite, this tells us that ε(hε)′ and ε2(ϑε)′ are bounded, which is a very poor
information. . .

3.2. Some ideas of the proof (light particles)
Let us give some ideas in the case where mε = ε2m1 and Jε = ε4J1. In some sense,
this case is the most singular, since it gives the poorest information when performing
energy estimates.

As one can guess, the main difficulty consists in obtaining uniform estimates as
ε→ 0+. Even if we assume the total energy to be finite, this merely gives

‖(hε)′‖L∞ = O(1/ε) and ‖(ϑε)′‖L∞ = O(1/ε2) . . .
We begin to describe our general strategy, and then explain several steps of its
implementation.

General strategy. The general principle of the proof is as follows.

• Find a modulated energy which gives a better a priori estimate on (hε)′ (cf.
Brenier [4]).

• For that purpose, find a normal form for the equation of the solid, with
“modulated unknowns”.
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• This equation in normal form will look like an equation of geodesics but with
a right hand side.

• These additional terms in the right hand side will not all be conservative, but
will give a “reasonable” contribution to the modulated energy. In particular it
is useful to put them in electromagnetic form, and to use the analogy with the
dynamics of a charged particle in a strong electromagnetic field (cf. Berkowitz-
Gardner [2]).

Now we describe important steps in the proof.

1. The added mass effect. A first step to reformulate the equation, which is
important for this study as well as for the Cauchy problem, is to identify the “added
mass effect”. This effect is quite intuitive: a solid immersed in a fluid acts as if it
had a larger mass, because moving it requires to give some energy to the fluid as
well. Mathematically speaking, this can be described as follows.

Suppose for instance that we are in the case Ω = R2. We consider equations in
the body frame. For that we introduce

v = R(ϑ)Tu(t, R(ϑ)x+ h(t)),
q = p(t, R(ϑ)x+ h(t)),
` = R(ϑ)T h′,

with R(ϑ) the rotation of angle ϑ(t). The equations of the fluid/body system become

∂tv +
[
(v − `− ϑ′x⊥) · ∇

]
v + ϑ′v⊥ +∇q = 0 for x ∈ F0,

div v = 0 for x ∈ F0,

m`′(t) =
∫
∂S0

qn ds−mϑ′`⊥

J ϑ′′(t) =
∫
∂S0

x⊥ · qn ds.

The great advantage is that the domain is now fixed. The price to pay is singular
terms (such as ϑ′(x⊥ · ∇)v) appearing in the equation, but it is worth it. (This
possibility makes the analysis simpler in the case Ω = R2.)

Now one introduces Kirchhoff’s potentials Φ1,Φ2,Φ3 as the solutions of the fol-
lowing Neumann problems:

∆Φi = 0 in F0, ∇Φi−→∞ 0, (3.1)

∂nΦi =
{
ni (i = 1, 2),
x⊥ · n (i = 3), on ∂S0, (3.2)

where denoted by ni the i-th component of the normal n.
The solid equations then become after an integration by parts:[

m Id2 0
0 J

] [
`
ϑ′

]′
=

[∫
F0
∇q · ∇Φi dx

]
i=1,2,3

−
[
mϑ′`⊥

0

]
.

Let P the Leray projector, that is, the orthogonal projection in L2(F0;R2) on tangent
divergence-free vector fields (parallel to gradient fields). The pressure is decomposed
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as follows:
∇q = (I − P )(−∂tv)︸ ︷︷ ︸

=:∇ϕ

+ (I − P )(−(v − `− ϑ′x⊥) · ∇v − ϑ′v⊥)︸ ︷︷ ︸
=:∇µ

.

Using that ∂tv is already divergence-free, one easily deduces that

∇ϕ = −
(
`
ϑ′

)′
·
(
∇Φi

)
i=1,2,3

.

We end up with this new equation for the solid:

M
[
`
ϑ′

]′
=
[
mr`⊥

0

]
+
[∫
F0
∇µ · ∇Φi dx

]
i=1,2,3

, (3.3)

where
M :=

[
m Id2 0

0 J

]
︸ ︷︷ ︸

=:Mg

+
[∫
F0
∇Φi · ∇Φj dx

]
i,j=1,2,3︸ ︷︷ ︸

=:Ma

.

The matrixMa is a matrix of added inertia, expressing how the fluid opposes the
movement of the solid. It is positive, and even positive definite when S0 is not a disk,
as a Gram matrix of independent functions. The matrix Mg of genuine inertia is
positive definite and independent of the position of the solid.

In this form, the equation of the solid (3.3) has no more terms involving h′′ or ϑ′′
in the right hand side.

This argument of added mass can be performed when Ω is a bounded domain as
well, despite the absence of a rigid change of variables transferring the problem in
a fixed domain. In that case, the added mass matrix Ma depends on the relative
position of the solid and the outer boundary (and not merely on the rotation matrix).

2. Reformulation of the solid equation (irrotational case). We consider the
irrotational case, that is the case where ω = 0. For ε = 1, using arguments of
Lagrangian mechanics and shape derivative, we can prove that the unknown

q := (ϑ, h1, h2),
satisfies the following ODE

M(q)q′′ + 〈Γ(q), q′, q′〉 = F (q, q′), (3.4)
where

• M(q) =Mg +Ma(q) (genuine inertia + added inertia),

• Γ(q) contains the Christoffel symbols associated to the metricM(q),

• F (q, q′) is a Lorentz-type force, of the form:
F (q, q′) := γ2E(q) + γ q′ ×B(q),

with strong conditions on E.
A Lagrangian approach to the dynamics of a solid immersed in a perfect fluid

was already performed by Munnier [24] when γ = 0 (that is, in the potential case).
In that case, no electromagnetic force appears, and in particular (3.4) is an actual
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geodesic equation associated to the metricM(q). Let us underline that it is not quite
the same result as to see the whole system as a geodesic equation in the spirit of
Arnold (see [1, 12]), since here the configuration space contains merely the position
of the solid.

Equation (3.4) is the starting point towards a normal form.

A important particular case: without outer boundary. In the particular case where
Ω = R2, the coefficients above can be identified (depending on S0), and turn out to
be useful in the general case.

To be more precise, when Ω = R2, the ODE becomes:

M∂Ω(ϑ) q′′ + 〈Γ∂Ω(ϑ), q′, q′〉 = F∂Ω(ϑ, q′),

with

F∂Ω(ϑ, q′) = γ

(
R(ϑ)ζ · h′

(h′)⊥ − ϑ′R(ϑ)ζ

)
= γq′ ×B∂Ω(ϑ), (3.5)

where

B∂Ω(ϑ) =
(
−1

R(ϑ)ζ⊥
)
,

and ζ is a geometrical constant (known as the conformal center of S0) depending
on S0 only; it could be described in terms of a certain complex integral. Moreover,
one can simply describe the total mass matrix as follows

M∂Ω(ϑ) =Mg +Ma,∂Ω(ϑ) =Mg +Q(ϑ)Ma,∂Ω(0)Q(ϑ)T = Q(ϑ)M∂Ω(0)Q(ϑ)T ,
(3.6)

with Q(ϑ) the 3× 3 matrix acting as a rotation of angle ϑ on the (h1, h2) variables.

3. A normal form (Ω bounded, irrotational case). The next step towards a
normal form and a modulated energy estimate is to introduce a new unknown. Here
we consider the case of an irrotational fluid in a bounded domain.

We consider the modulated velocity

p̃ =
(
εϑ′, h′ − γuΩ(h)− εγuc(ϑ, h)

)
,

where uc is explicit and depends merely on Ω, S0 and q = (ϑ, h). Note that γuΩ(h)
is the expected limit of h′; the subprincipal term at order ε that we add will be
useful to get rid of some singular terms in the equations.

Then one shows that in terms of the new unknown the ODE can be put in the
following normal form:

ε2
(
M1

g +M1
a,∂Ω(ϑ)

)
p̃′ + ε〈Γ1

∂Ω(ϑ), p̃, p̃〉 = F 1
∂Ω(ϑ, p̃) + εγ2G(q) +O(ε2), (3.7)

where G(q) is weakly gyroscopic in the sense that it satisfies:∣∣∣∣ ∫ t

0
p̃ ·G(q)

∣∣∣∣ ≤ εK(1 + t+
∫ t

0
|p̃|2R3).

One recognizes the coefficients corresponding to the case with outer boundary. Here
the exponent 1 means that the quantity is computed for ε = 1, and hence does no
longer depend directly on ε (but is applied to ϑ or p̃ which of course depend on ε).
In other words, these quantities are of order 1.
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Using this normal form, one is in position to win a factor ε in the energy estimate.
Recall that F∂Ω given in (3.5) is purely magnetic, and hence does not contribute to
the energy!

4. To get to the normal form. The main difficulty is to get to the normal form
(3.7). The recipe consists in:

• developing in powers of ε the Kirchhoff potentials Φε
i ,

• developing in powers of ε the “circulation potential” ψε satisfying

∆ψε = 0 in F(t), ψε = 0 on ∂Ω, ψε = Cε on ∂Sε(t),
∫
∂Sε(t)

∂nψ
ε ds = 1,

where Cε is some constant fixed by the latter constraint,

• decompose the fluid velocity in terms of these potentials and inject the devel-
opments in the velocity decomposition and in the coefficients of the equation
(that is, the inertia matrix, the Christoffel symbols and the electromagnetic
field),

• make computations (using the so-called Lamb’s lemma [20]) and use some
cancellations...

Expansions of the potentials. To expand the potentials in powers of ε, one uses
an iterative procedure of successive corrections, relying on potential and Fredholm
theories. One “ignores” alternatively the solid S0 and the outer boundary ∂Ω, and
then introduces the corresponding corrector.

F(t) Ω
Sε(t)

Figure 3.1. The shrinking solid

To state it informally, one can describe the procedure as:
Fluid state in Ω \ Sε(t) = Fluid state as if there were no ∂Ω

+ Correction from ∂Ω as if there were no Sε(t)
+ Correction(Correction) on ∂Sε(t) as if there were no ∂Ω
+ ...

Once these expansions are performed, one can inject them in the equation. To obtain
the normal form mentioned above, we then rely on key cancellations when regrouping
certain terms. The property that the subprincipal term in (3.7) (that is, the term

III–15



of order ε in the right hand side) is weakly gyroscopic is in particular a crucial
phenomenon.

5. Passage to the limit. Once the normal form is obtained, one can achieve a
modulated energy estimate implying that, as long as Sε(t) is at a minimal distance
from the boundary, one has

‖(hε)′‖L∞ = O(1) and ‖(ϑε)′‖L∞ = O(1/ε).
Next it remains to pass to the limit in

ε2
(
M1

g +M1
a,∂Ω(ϑ)

)
p̃′ + ε〈Γ1

a,∂Ω(ϑ), p̃, p̃〉 = F 1
∂Ω(ϑ, p̃) + εγ2G(q) +O(ε2),

with

F 1
∂Ω(ϑ, p̃) = γ

 R(ϑ)ζ ·
[
h′ − γuΩ(h)− εγuc(ϑ, h))

]
[
h′ − γuΩ(h)− εγuc(ϑ, h)

]⊥
− εϑ′R(ϑ)ζ


This can be done by arguments of compactness and weak/strong convergence. Note
in particular that the left hand side converges to 0, as well as the last two terms in
the right hand side.

6. In the context Ω = R2 and ω0 6= 0. Let us give a few words about the case
with non trivial vorticity, which in our studies is restricted to Ω = R2.

Here, on the one hand, we can change the frame in order to work in R2 \ Sε0 ,
but on the other hand, we know the vorticity with little precision. However, using
dist

[
Sε(t), Supp

(
ωε(t)

)]
> 0, we can reach here the following normal form:

ε2
[
M1

g +M1
a

]
p̃′ + ε〈Γ, p̃, p̃〉 = γ p̃×B + εγG(ε, t) +O(ε2), (3.8)

where

• the modulated velocity takes the following form:

p̃ :=
(
εϑ′, R(ϑ)T

(
h′(t)−K[ω(t, )](h(t))− εDK[ωε(t, ·)](0) · ζ

))
,

• the inertia matricesM1
g andM1

a =M1
a,∂Ω(0) are the same as in (3.6),

• Γ generates a gyroscopic (skew-symmetric) term,

• B is given by B = B∂Ω(0) and the term γ p̃×B is gyroscopic as well,

• G(ε, t) is weakly gyroscopic, in the same sense as above, and depends on the
vorticity.

Approximation of the velocity on the solid’s boundary. Here to get to the normal form
(3.8), and hence to evaluate the pressure force on the solid’s boundary, one computes
an approximation of the velocity on the boundary of the solid. This approximation
uses:
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• Kirchhoff’s potentials Φε
i (defined as (3.1)-(3.2) in the domain F ε0) and the

harmonic field Hε defined by

divHε = 0 in F ε0 , curlHε = 0 in F ε0 , Hε · n = 0 on ∂Sε0 ,∫
∂Sε

0

Hε · τ ds = 1, lim
|x|→+∞

Hε(x) = 0.

When Ω = R2, the scaling of these objects with respect to ε is not difficult to
determine.

• The Taylor first order approximation of the fluid contribution to this velocity:

K[ω]|x=0 +DK[ω]|x=0 · x.

• New harmonic potentials (to approach the latter) in the same spirit as Kirch-
hoff potentials, for instance with x · n as Neumann boundary conditions.

We are led to compute many integrals on ∂Sε0 . Using Blasius’ lemma, these are
transformed into complex integrals that one can compute using basic complex anal-
ysis (Laurent series and so on). Here again we rely again on many cancellations to
reach the above normal form. Again this leads to a modulated energy estimate and
to weak convergence arguments.

3.3. Perspectives
Let us give as a final word a few perspectives connected to these studies.

• It would be natural to try to get an asymptotic expansion in ε of the solution.
This would involve multiple scales in time.

• Clearly, it would be satisfying to get a unified treatment with a boundary and
vorticity at the same time.

• The many-bodies systems would be a natural and important generalization.
From a computational viewpoint, the complexity grows importantly as the
number of solids increases; hence the simplified models become more and
more interesting. This could be a good starting point to study the limit of in-
finitely many particles, which are important for spray models, see in particular
Moussa-Sueur [23].

• The cases of dimension 3 and of a viscous fluid leave many open questions
(see however Dashti-Robinson [5], Silvestre-Takahashi [27]).

• Finally, many control questions related to these systems remain open!
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