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Journées Équations aux dérivées partielles
Roscoff, 2–6 juin 2014
GDR 2434 (CNRS)

Uniform Lipschitz estimates in stochastic
homogenization
Scott Armstrong

Abstract
We review some recent results in quantitative stochastic homogenization

for divergence-form, quasilinear elliptic equations. In particular, we are in-
terested in obtaining L∞-type bounds on the gradient of solutions and thus
giving a demonstration of the principle that solutions of equations with ran-
dom coefficients have much better regularity (with overwhelming probability)
than a general equation with non-constant coefficients.

1. Introduction

In this note, we review some recent progress in the quantitative theory of stochastic
homogenization for uniformly elliptic equations in divergence form.

At the most general level, we consider equations of the form

−∇ ⋅ (a(∇uε(x), x
ε
)) = 0 in U ⊆ Rd, (1.1)

where ε > 0 is a small parameter and p↦ a(p, x) is a uniformly monotone, Lipschitz
vector field (and say measurable in x). We further assume that a is a random object–
that is, it is sampled by a stationary-ergodic probability measure P on the space of
all such coefficient fields. Then the essential result of qualitative homogenization is
roughly that, subject to a given Dirichlet boundary condition on ∂U , we have

P [lim sup
ε→0

∥uε − uhom∥L2(U) = 0] = 1, (1.2)

where uhom is the solution of a deterministic equation
−∇ ⋅ a(∇uhom) = 0 in U,

where the existence of the non-random coefficients a is part of the assertion of the
theorem. This was proved for linear equations by Papanicolaou and Varadhan [14],
Kozlov [12] and Yurinskii [15], all independently. The first statement for nonlinear
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equations was obtained by Dal Maso and Modica [6, 7], who considered minimizers
of convex integral functionals which corresponds to (1.1) in the case that a(⋅, x) is
the gradient of a convex function.

If the qualitative theory of stochastic homogenization is concerned with prov-
ing (1.2), the goal of the quantitative theory is then to quantify it, i.e., to find the
rate at which ∥uε − uhom∥L2(U) converges to zero and the rate at which the probabil-
ity in (1.2) converges to one. The first such statement was obtained by Yurinskii [16],
who used probability methods to show that, for linear equations, we have the fol-
lowing statement: for every p ∈ [1,∞), there exists α > 0, depending on p in addition
to the dimension d and the ellipticity, which we hereafter denote by Λ ≥ 1, such that

P [∥uε − uhom∥L2(U) ≥ εα] ≤ Cεp. (1.3)

Here the prefactor C depends also on (d,Λ, p). Such a quantitative result is not pos-
sible to prove under qualitative assumptions, so Yurinskii naturally had to assume
that the coefficients satisfies a mixing condition, that is, he imposed a quantitative
ergodicity hypothesis on his probability measure.

It is of great practical and theoretical importance to determine the optimal ex-
ponent α in (1.3), especially under the most natural ergodicity hypothesis on the
coefficients, which is independence (or to be precise, a finite range of dependence).
Progress on this question proved elusive and Yurinskii’s result was unsurpassed for
more than twenty years until Gloria and Otto [9, 10] obtained, still in the case of
linear equations, the optimal scaling for the error. Their first papers were written
for discrete equations on Zd, but their basic methodology extends to the continuum
setting without more than routine technical difficulties (as has been shown recently
by those authors in [11]). They proved (1.3) with α = 1 (up to a logarithmic cor-
rection in d = 2, which they show is optimal). A corollary of their analysis is the
existence of stationary correctors, answering a long-standing theoretical question.

The methodology of Gloria and Otto is based in part on an insights in an un-
published paper of Naddaf and Spencer [13], which is that one should measure the
magnitude of random fluctuations in the solutions uε by applying appropriate con-
centration inequalities. The right ones for the task are “spectral gap” inequalities
(also called Poincaré inequalities, or Efron-Stein inequalities). A basic version of this
family of inequalities states that, if Z = F (X1, . . . ,Xn) is a real-valued function of
independent random variables X1, . . . ,Xn, then

var [Z] ≤ E [
n

∑
i=1

(Z −E [Z ∣ {Xj}j≠i])2]

Notice that the random variable Z −E [Z ∣ {Xj}j≠i] measures precisely how sensitive
Z is on the value of Xi (informally, it is the “derivative" of Z with respect to
Xi) and thus this is a kind of Poincaré inequality. In the context of stochastic
homogenization, we think of the solutions uε (playing the role of Z) as functions of
the coefficients a (playing the role of the X1, . . . ,Xn, here each Xi may represent
the value of the coefficients in a unit-sized cube with vertices in Zd, say).

The key step in the analysis is then to obtain good bounds on how sensitively the
solutions depend on the coefficients. But this turns out to reduce to estimating the
expected size of the gradient of the solution. Indeed, if we resample the coefficients

I–2



in a unit cube, then from the equation we see that the solution should change in
proportion to how large its gradient was in that cube.

Unfortunately, it is well-known that there is no general L∞ estimate for the gradi-
ent of solutions with highly oscillating coefficients. The best Hölder regularity in gen-
eral is known to be C0,ε (De Giorgi-Nash-Moser estimate) and the best Sobolev regu-
larity isW 1,2+ε (Meyers estimate), while what we need is Lipschitz, i.e., C0,1 =W 1,∞.
Therefore the crucial step can be seen from the point of view of elliptic regularity
theory, with a stochastic twist: how can we show that solutions of equations with
random coefficients are more regular (at least with high probability) than solutions
of general elliptic equations? In the work of Gloria and Otto, this question is tackled
in an indirect way: they analyze the gradient of the approximate correctors and that
of the Green’s function, using the random properties of these functions.

In this note, I will review some recent results of the author in collaborations with
Smart [3] and Mourrat [1] in which we answer this question completely. Roughly
speaking, what we proved (for variational equations in [3] and recently for general
quasilinear equations of the form (1.1) in [1]) is that an arbitrary solution with U =
B1 (i.e., we take no boundary condition) of the equation (1.1), under independence
assumptions on the coefficients, satisfies, for every ε ∈ (0,1],

∣∇uε(0)∣ ≤ X (1 + ∥uε∥B1) ,

where X is a random variable (it is necessarily not bounded above by a constant
almost surely) which satisfies the estimate

E [exp (X s)] < ∞ for every s < d.

The previous estimate is optimal in the sense that it is false for s = d, because the
probability of sampling any particular set of coefficients in a ball of radius R is
roughly exp(−cRd). In other words, there is some chance we will get unlucky and
select the coefficients which witness the counterexample to higher elliptic regularity
and our estimate must factor in this possibility.

Since the results in [3, 1] apply to general quasilinear equations, they open the way
to an optimal quantitative theory for stochastic homogenization of nonlinear elliptic
equations, which is work currently in progress. The methods also yield estimates up
to the boundary of smooth domains, which paves the way for a quantitative analysis
of boundary layers in stochastic homogenization.

The idea for proving an L∞ estimate of this kind for the gradient of solutions
comes from the celebrated work of Avellaneda and Lin [4, 5] in the case of peri-
odic homogenization. They showed that, even though these equations have highly
oscillating coefficients, one can “borrow" the higher regularity of the constant coef-
ficient homogenized equation they are limiting to. The method in [4, 5] relies on a
compactness argument which is not available in the stochastic case, and therefore
the scheme for obtaining the Lipschitz bound, while sharing the philosophy of the
work in [4, 5], is not quite the same. It is based on a sub-optimal quantitative ho-
mogenization statement, rather than a qualitative statement. We also note that this
modified version of the idea of Avellaneda-Lin has shown to be useful even in the
case of periodic and almost periodic coefficients, see the recent work of the author
and Shen [2].
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We conclude by mentioning the recent work of Gloria, Neukamm and Otto [8]
who, partially inspired by [3], obtained a quenched Lipschitz estimate for linear
equations and systems. In particular, they give the first such estimate for linear
equations and systems with nonsymmetric coefficients (as their paper was written
after [3] but before [1]), although their techniques do not seem to generalize in a
straightforward way to nonlinear equations and do not so far yield estimates with
optimal stochastic integrability.

2. The precise statement of the main result

Ee fix the parameters K0 ≥ 1 and Λ ≥ 1. We consider coefficient fields a = a(p, x)
satisfying

a ∶ Rd ×Rd → R is Lebesgue measurable, (2.1)
such that p↦ a(p, x) is uniformly monotone and Lipschitz, uniformly in x, that is,
for every x, p1, p2 ∈ Rd,

∣a(p1, x) − a(p2, x)∣ ≤ Λ ∣p1 − p2∣ (2.2)
and

(a(p1, x) − a(p2, x)) ⋅ (p1 − p2) ≥
1
Λ ∣p1 − p2∣2 (2.3)

We define the set of all coefficient fields by
Ω ∶= {a ∶ a satisfies (2.1), (2.2) and (2.3)} . (2.4)

We endow Ω with the translation group {Ty}y∈Rd , which acts on Ω via
(Tza)(p, x) ∶= a(p, x + z),

and the family {FU} of σ–algebras, with FU defined for each Borel U ⊆ Rd by

FU ∶= σ–algebra on Ω generated by the family of random variables

a ↦ ∫
U
ξ ⋅ a(p, x)ϕ(x)dx, p, ξ ∈ Rd, ϕ ∈ L1(Rd).

The largest of these σ–algebras is denoted by F ∶= FRd . The translation group also
acts naturally on F via the definition

TzA ∶= {Tza ∶ a ∈ A} , A ∈ F .
Throughout the paper, we consider a probability measure P on (Ω,F) which is
assumed to satisfy the following three conditions:

(P1) The random field a is locally uniformly bounded on the support of P in the
sense that, for all x ∈ Rd,

P [∣a(0, x)∣ ≤K0] = 1

(P2) P is stationary with respect to Zd–translations: for every z ∈ Zd and A ∈ F ,
P [A] = P [TzA] .

(P3) P satisfies a unit range of dependence, that is, for all Borel U,V ⊆ Rd,
FU and FV are independent provided that dist(U,V ) ≥ 1.
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We now present the statement of the main result.

Theorem 2.1. Suppose that P satisfies (P1), (P2), (P3). Fix p > d. Then for every
M ≥ 1 and s ∈ (0, d), there exist C(d,Λ,M, s) ≥ 1 and a random variable X ≥ 1
satisfying

E [exp (X s)] ≤ C (2.5)

such that the following holds: if R ≥ 1, u ∈H1(BR) satisfies both

K0 +
1
R

(⨏
BR

∣u(x)∣2 dx)
1
2
≤M (2.6)

and
−∇ ⋅ a (∇u,x) in BR, (2.7)

then

⨏
Br(0)

∣∇u(x)∣2 dx ≤ CM2 for every X ≤ r ≤ 1
2R. (2.8)

Remark 2.2. We call Theorem 2.1 a “Lipschitz" estimate because typically R is
very large and in this scaling the microscopic scale is O(1) rather than O(ε). We
therefore think of the left side as representing ∣∇u(0)∣. Notice that (2.8) also implies

⨏
B1

∣∇u(x)∣2 dx ≤ CX d (1 + ⨏
BR

∣∇u(x)∣2 dx) ,

so we may also think of X as a random prefactor constant in an estimate with de-
terministic scales. Under the additional assumption that the coefficients are smooth
on the microscopic scale, the left side of (2.8) with r = X controls the local Lipschitz
constant of u in Br/2 (by the Schauder estimates) and, in that case, we then have
a true (pointwise) Lipschitz estimate. It is better, however, to think of control over
the very small scales as a separate issue, since the behavior of solutions on scales
smaller than the microscopic scale is outside of the purview of homogenization.

Remark 2.3. An estimate like (2.8) is the best possible for the control of microscopic-
scale fluctuations in terms of large scale fluctuations for solutions of (1.1). Indeed,
we expect the gradient of a solution to act like “white noise" on the microscopic
scale, so in particular there is no hope to obtain a uniform modulus of continuity.

Remark 2.4. Optimal results under much weaker mixing conditions than (P3)
appear in [1].

Remark 2.5. The integrability of X given in (2.5) is optimal, because the proba-
bility of obtaining any particular coefficient field (for the random checkerboard, say)
in a ball of radius R is of order exp(−cRd).

Remark 2.6. The parameter M in Theorem 2.1 may be removed in the case that
F is positively homogeneous of order two (e.g., in the case that the corresponding
PDE is linear), but it is necessary and not an artifact of our method in the general
nonlinear case.
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3. The scheme for proving the Lipschitz estimate

The general scheme for proving Lipschitz estimates introduced in [3] is presented
in the following proposition. It reduces Theorem 2.1 to Theorem 4.1 (stated in the
next section) by a Campanato-type iteration, and most of the effort in the proof of
the main theorem is focused on obtaining the latter. The statement here is close to
the same as [3, Lemma 5.1], but we have formulated the result using the L2 norm
rather than the L∞ norm (which makes no difference in the argument but clarifies
that the methods work for systems).

We first introduce some notation. We take L to be the set of affine functions on
Rd and define, for each σ ∈ (0, 1

2] and r > 0, the set

A(r, σ) ∶=
⎧⎪⎪⎨⎪⎪⎩
v ∈ L2(Br) ∶

1
σr

inf
l∈L

(⨏
Bσr

∣v(x) − l(x)∣2 dx)
1
2

≤ 1
2 (1

r
inf
l∈L

(⨏
Br

∣v(x) − l(x)∣2 dx)
1
2
)
⎫⎪⎪⎬⎪⎪⎭
.

Roughly, the set A(r, σ) consists of those L2(Br) functions u which satisfy one step
of a C1,β Campanato iteration with dilation factor σ: the flatness of u in Bσr is
improved from its flatness in Br by a factor of two (note that β can be computed
in terms of σ, but this does not matter for our purposes).

Proposition 3.1. Assume R ≥ 1, α,σ > 0, K ≥ 0, r0 ∈ [1,R/4] and u ∈ L2(BR) have
the property that, for every r ∈ [r0,R/2],

inf
v∈A(r,σ)

1
r
(⨏

Br
∣u(x) − v(x)∣2 dx)

1
2
≤ r−α (K + 1

2r inf
a∈R

(⨏
B2r

∣u(x) − a∣2 dx)
1
2
) .

Then there exists C(α,σ) ≥ 1 such that, for every s ∈ [r0,R/2],

1
s

inf
a∈R

(⨏
Bs

∣u(x) − a∣2 dx)
1
2
≤ C ( 1

R
inf
a∈Rd

(⨏
BR

∣u(x) − a∣2 dx)
1
2
+K ( s

R
)
α

) . (3.1)

Proposition 3.1 asserts that if a function u ∈ L2(BR) (we are thinking of R very
large) has the property that, in every ball Br with radius r between R/2 and a
“minimal radius" r0, it can be well-approximated by a function in A(r, σ), then in
fact u does not oscillate too much on scales larger than the minimal radius. Its proof
is a completely straightforward and elementary argument.

In order to make use of Proposition 3.1, we need to check that local minimizers
of the homogenized functional belong to A(r, σ). This is handled by the following
simple lemma, which is a reflection of the well-known fact that a family of scale-
invariant functions satisfies a C1,β estimate if and only if they satisfy an improvement
of flatness property.

Lemma 3.2. Suppose that β ∈ (0,1], K ≥ 0, and u ∈ C1,β(BR) has the property
that, for every r ∈ (0,R/2],

[∇u]C0,β(Br) ≤Kr
−β ( 1

2r inf
l∈L

(⨏
B2r

∣u(x) − l(x)∣2 dx)
1
2
) .

Then there exists σ(β,K) ∈ (0, 1
2] such that u ∈ A(r, σ) for every r ∈ (0,R/2].
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The previous lemma states that solutions of constant coefficient equations belong
to A(r, σ) on all scales. This is what makes Proposition 3.1 useful in our proof of
Theorem 2.1.

4. The error estimate for the Dirichlet problem

The main analytic step in the proof of Theorem 2.1, which is an interesting result
in its own right, is a “quenched" error estimate for the Dirichlet problem. Thus
the Lipschitz estimate, which we explained in the introduction is the key step to
obtaining optimal error estimates, is itself a consequence of a sub-optimal error
estimate.

The estimate, given in Theorem 4.1 below, is roughly speaking the same sort of
estimate as Yurinskii’s result (1.3) mentioned in the introduction. Both are alge-
braic yet sub-optimal in the scaling of the error. The one we present improves on
Yurinskii’s result in several respects: first, and this is also our reason for calling it
“quenched," is that it gives an estimate for the error which is independent of the
boundary condition (which is necessary in our strategy, based on Proposition 3.1,
for proving Theorem 2.1). Secondly, it is also optimal in stochastic integrability
(which is where the optimal integrability of X in Theorem 2.1 comes from) and in
particular gives a scaling exponent α > 0 which is independent of the parameter p
in (1.3). Finally, we mention another important advantage of our approach is that it
applies to general nonlinear equations. In fact, the versions of the following theorem
proved in [3, 1] are the first quantitative results in stochastic homogenization for
nonlinear equations in divergence form.

Theorem 4.1. Consider a bounded Lipschitz domain U0 ⊆ Rd, M ≥ 1 and exponents
δ > 0 and s < d. There exist α(d,Λ, δ, s) > 0, C(d,Λ,M, δ,U0, s) ≥ 1 and a random
variable Y satisfying

E [exp (Y)] ≤ C (4.1)
such that the following holds: for every R ≥ 1, U ∶= RU0 and f ∈W 1,2+δ(U) satisfying

K0 + (⨏
U
∣∇f(x)∣2+δ dx)

1
2+δ

≤M,

the unique solutions u,uhom ∈ f +H1
0(U) of the equations

−∇ ⋅ a (∇u,x) = 0 and −∇ ⋅ a (∇uhom, x) = 0 in U (4.2)
satisfy the estimate

R−2⨏
U
∣u(x) − uhom(x)∣2 dx ≤ CM2 (1 + YR−s)R−α. (4.3)

The conclusion (4.3) may appear to be put in a strange form, but Chebyshev’s
inequality and (4.1) immediately puts it into a form like (1.3), but with stronger
exponential-type bounds on the right side.

We next show that the combination of Proposition 3.1 and Theorem 4.1 does
indeed imply our main result, Theorem 2.1.

Proof of Theorem 2.1. Take δ(d,Λ) > 0 to be the exponent δ0 in the statement of
the interior Meyers estimate (see [1] for a statement). We may suppose without loss
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of generality that R = 2k for some k ∈ N. For each r ∈ [1,R/2], let uhom,r ∈ u+H1
0(Br)

denote the (unique) solution of

−∇ ⋅ a (∇uhom,r) = 0 in Br.

We first define the random minimal radius X ≥ 1. With Y as in the second
statement of Theorem 4.1, we define

X ∶= Y 1
s .

Then the conclusions of the second statement of Theorem 4.1 give the bound

E [exp (X s)] ≤ C

and imply that, for every r ∈ [X , 1
2R], we have

1
r2 ⨏Br

∣u(x) − uhom,r(x)∣2 dx ≤ CM2r−α

provided that r satisfies

K0 +
1
4r inf

a∈R
(⨏

B4r
∣u(x) − a∣2 dx)

1
2
≤ cC ′M, (4.4)

where the exponent α > 0 in (4) depends on the appropriate quantities.

According to the conclusion of Theorem 4.1, for every r ∈ [X , 1
2R],

1
r
(⨏

Br
∣u(x) − uhom,r(x)∣2 dx)

1
2
≤ Cr−β (K0 + (⨏

B2r
∣u(x)∣2 dx)

1
2
) . (4.5)

We claim that, for every s ∈ [X , 1
2R],

1
s

inf
a∈Rd

(⨏
Bs

∣u(x) − a∣2 dx)
1
2
≤ C (K0 +

1
R

inf
a∈R

(⨏
BR

∣u(x) − a∣2 dx)
1
2
) . (4.6)

It suffices to prove the estimate for s ∈ [X , 1
2R] ∩ {2−k−1R ∶ k ∈ N}. We argue by

induction: suppose that the estimate holds for every radius s = 2−j with j = 1, . . . , k
such that 2−k > 2X , and with C ′′ ≥ 1 in place of C. Then we have (4.4) for r = 2−k,
provided we choose C ′ to be large enough multiple of C ′′, and so an application of
Proposition 3.1 yields

K0 +
1

2−k−1R
inf
a∈Rd

(⨏
B2−k−1R

∣u(x) − a∣2 dx)
1
2

≤ CM ≤ C ′′M,

provided C ′′ = C is chosen large enough. By induction, we thus obtain (4.6) for all
s = 2−kR ≥ X .
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We conclude by observing that, by the Caccioppoli inequality, (4.6) and the
Poincaré inequality, give us, for every r ∈ [X , 1

2R],

⨏
Br

∣∇u(x)∣2 dx ≤ C inf
a∈R⨏B2r

∣u(x) − a∣2 dx

≤ C (K0 + inf
a∈R

1
R

(⨏
BR

∣u(x) − a∣2 dx)
1
2
)

≤ C (K0 + (⨏
BR

∣∇u(x)∣2 dx)
1
2
)

≤ CM.

This completes the proof of the theorem. �

5. A vague overview of the proof of Theorem 4.1

Most of the analysis in [3, 1] is focused on the proof of Theorem 4.1 and it is
too involved to give the detailed argument here. We mention only some of the
important ideas and for simplicity we restrict ourselves to the variational setting
(i.e., we assume that a = ∇L for a uniformly convex Lagrangian L). The detailed
arguments can be found in [3].

There are two components in the proof of Theorem 4.1: the first is the most im-
portant, and is a probabilistic statement that asserts that the energy of a minimizer
in a large cube with prescribed affine boundary data with slope say p converges
in expectation to L(p), where L is the effective Lagrangian, with a rate which is a
power of the side length of the cube. This is [3, Theorem 3.1]. The second, presented
in [3, Proposition 4.1], is a deterministic statement which asserts the error in ho-
mogenization for a general Dirichlet problem is controlled by the spatial average of
the differences between the energy in mesoscopic cubes and the homogenized limit,
effectively reducing Theorem 4.1 to the probabilistic statement.

The proof of the latter is based on subadditive arguments. Let us denote the (nor-
malized) energy of a minimizer in a bounded domain U with given affine boundary
data by

ν(U, p) ∶= inf
v∈H1

0(U)
⨏
U
L(p +∇v(x), x)dx.

This quantity is naturally monotone in the sense that, if U is the (interior of the
closure of the) disjoint union of subdomains U1, . . . , Un, then

ν(U, p) ≤
n

∑
j=1

∣Uj ∣
∣U ∣

ν(Uj, p).

This is because we can construct a candidate for achieving the infimum in the
definition of ν(U, p) by gluing together the minimizers in each subdomain Uj. Since
we assume that the statistics of P are stationary, this means that, for every n,m ∈ N
with n ≤m, we have

E [µ(Qm, p)] ≤ E [µ(Qn, p)] ,
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where we denote dyadic cubes by Qn ∶= [0,2n]d. The key step in the analysis is to
quantify the monotone limit

lim
n→∞

E [µ(Qn, p)] = inf
n∈N

E [µ(Qn, p)] =∶ L(p).

In [3, Theorem 3.1] it is shown that there exists α > 0 such that, for every t ≥ 1 and
n ∈ N,

P [∣ν(Qn, p) −L(p)∣ ≥ C(2n)−αt] ≤ C exp (−c(2n)st) ,
for any s < d. To prove this, we need to introduce the dual (in the sense of convex
analysis), superadditive quantity µ defined by

µ(U, q) ∶= inf
u∈H1(U)⨏U

(L(∇u(x), x) − q ⋅ ∇u(x)) dx

Note that the there is no boundary condition in the definition of µ, which gives
it its superadditivity (by restriction of minimizers on larger domains to smaller
ones). Together, ν and µ give the problem monotonicity “from both sides", that
is, they reveal the additive structure of the problem, rendering the analysis of the
randomness more feasible. What is shown in Section 3 of [3] is that, for very large
cubes, the minimizers of µ (which we recall do not necessarily have affine traces on
the boundary) are nevertheless, with high probability, very flat. This allows them to
be compared to solutions with affine boundary data, thereby showing that µ(q) is
close to ν(p) when p is properly dual to q, and that the limit of µ of −L∗(q), where
L
∗ is the Legendre transform of L. This is the justification that µ is “dual in the

homogenized limit" to ν, and what allows the quantitative argument to succeed.
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