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Derivation of Hartree’s theory for mean-field Bose
gases

Mathieu Lewin

Dérivation de la théorie de Hartree pour des gaz de bosons
dans le régime de champ moyen

Résumé

Dans cet article, nous présentons des résultats obtenus avec Phan Thanh
Nam, Nicolas Rougerie, Sylvia Serfaty et Jan Philip Solovej. Nous considérons
un systéme de NV bosons qui interagissent avec un potentiel d’intensité 1/N (on
parle de régime de champ moyen). Dans la limite ot N — oo, nous montrons
que le premier ordre du développement des valeurs propres du Hamiltonien
a N corps est donné par la théorie non linéaire de Hartree, alors que 'ordre
suivant est donné par 'opérateur de Bogoliubov. Nous discutons également en
détails du phénomene de condensation de Bose-Einstein dans de tels systemes.

Abstract

This article is a review of recent results with Phan Thanh Nam, Nicolas
Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of N
bosons with an interaction of intensity 1/N (mean-field regime). In the limit
N — o0, we prove that the first order in the expansion of the eigenvalues
of the many-particle Hamiltonian is given by the nonlinear Hartree theory,
whereas the next order is predicted by the Bogoliubov Hamiltonian. We also
discuss the occurrence of Bose-Einstein condensation in these systems.
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The purpose of this article is to review recent results obtained in collaboration
with Phan Thanh Nam and Nicolas Rougerie in [40] and, in the last section, with
Phan Thanh Nam, Sylvia Serfaty and Jan Philip Solovej in [42]. In these works we
studied the behavior of a quantum system containing a large number N of bosons,
in the mean-field regime corresponding to having interactions of order 1/N. The first
term in the expansion of the eigenvalues of the many-particle Hamiltonian is given
by Hartree’s theory, whereas the second term is predicted by Bogoliubov’s theory.

1. Derivation of Hartree’s energy

1.1. The quantum many-particle Hamiltonian

We consider here the simplest case of N spinless non-relativistic particles leaving
in the whole space R? with d > 1. More general situations can be dealt with using
our method and we refer to [40, 42] for details. The corresponding many-particle
Hamiltonian reads
N
1
HN = Z(—ij +V(l’j)) +ﬁ Z UJ(;Ck—xg). (11)
j=1 T 1<k<t<N
It is an operator acting on the subspace
HY = LI((RDY)
of symmetric functions in L?((R?)Y), that is, which satisfy
\I/(:L‘U(l), ~--7IU(N)> = \I/(Il, ...,:L‘N)
for every permutation ¢ of the indices 1,..., N. This symmetry requirement is the
mathematical expression of the fact that our particles are bosons.! For fermions we
would have to require anti-symmetry and everything would be completely different.
In (1.1), the first term corresponds to the sum of the kinetic energies of the parti-
cles, V' is an external potential which is applied to the system and which could as well
be V' = 0 (the system is then translation-invariant), and w is a two-body interaction.

Everywhere in this paper we make the assumption that w is even, w(—z) = w(x).
We will also assume that V = f; + fo + Vy and w = f3 + f; with f; € LPi(R?%) and

IIn the particular case considered here, the first eigenfunction of Hy on L2(R4N) is always
symmetric. If we are only interested in the lowest eigenvalue, we could therefore drop the symmetry
condition. However the constraint matters for the higher eigenvalues, as well as for more general
Hamiltonians which are not based on the Laplacian.
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max(1,d/2) < p; < oo, or with p; = oo and f; — 0 at infinity. These conditions
imply that V' — V, and w are perturbations of the Laplacian, which are relatively
compact in the quadratic form sense. We may want to consider the case where the
system is confined and we use 0 < V. € Lﬁ)/f(]Rd) to describe this situation. Here

we will therefore discuss two particular cases:
e confined case: V, (z) — oo when |z| — o0;
e unconfined case: V, = 0.

Under our assumptions on V' and w, the quadratic form associated with Hy is
bounded from below, and Hy can be realized as a self-adjoint operator on §V =
L2((RY)N) by Friedrich’s theorem. The domain of the quadratic form is exactly the
Sobolev space H!((R?)Y) in the unconfined case and it is smaller in the confined
case. This allows us to define the bottom of the spectrum of Hy as follows:

E(N):=info(Hy)= inf (¥ Hy¥) (1.2)
[1w2=1

Later we will consider the higher eigenvalues \;(Hy) of Hy, but we stick to E(N)
for the moment.

The fact that we are considering the mean-field regime is apparent in the factor
1/(N — 1) in front of the interaction term in (1.1). It has the effect of keeping the
single particle energy and the interaction energy of the same order of magnitude,
so that one may expect a well-defined limit problem. Note that this factor could be
replaced by any constant behaving like 1/N in the limit N — oo, without changing
the result; the use of 1/(IN — 1) only simplifies some expressions. While this is
certainly not the only scaling one may consider, it is simple and instructive, and has
been very often considered in the past as a model case for the rigorous derivation
of mean-field theories in many-body physics.

1.2. Hartree states

On the contrary to fermions, it is possible to put all the bosons in the same quantum
state. This amounts to taking a wave function ¥ of the special form
U(xy,...,ox5) = u®N (2, ..., 2n) = u(zy) - ulzy)

with v € L*(R?) := § and [za |u|?> = 1. Such functions are called Hartree states [32)].
We recall that |U(zy,...,zy)[? is interpreted as the density of probability for the
positions of the N particles. For a Hartree state, the corresponding probability
factorizes into a product of independent densities: |u(z1)|?- - |u(zy)|?. Similarly,
|W(p1,...,pn)|? is the probability for the momenta of the N particles and we have
here [W(py, ..., pn)[* = [i(p1)* - - [a(pn)[*.

The Hartree states form a manifold in the sphere of square-integrable symmet-
ric functions and, therefore, even if the many-particle energy is given by a linear
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operator, we end up with a nonlinear function of wu:
<u<z<>N7 HNU®N>
N
1
= [ (1Vu@ P + V@lu@) ) do+ 5 [ ] wle=y)lu@)Plu)? dedy
R4 2 Jrd Jrd
= Eu(u).

The nonlinear functional £y is called the Hartree energy. The lowest energy that
can be reached with Hartree states is Ney where

en = inf Ey(u). (1.3)

Jul=1

Since ¥ = u®N can be used as a trial state, it is obvious that F(N) < Ney for all
N > 2. Note that any minimizer ug of (1.3) (when there is one) is a weak solution
to the nonlinear equation

(—A—i—V—i—w* |u0|2)u0(a:) = pp uo(z). (1.4)

Here w * |u|? is called the mean-field potential.
The main result of [40] is that the many-body quantum energy is, to first order
in N, given by the energy of Hartree states.

Theorem 1 (Validity of Hartree’s theory [40]). Under the previous assumptions on
V and w, we have

. E(N) _

The theorem justifies a posteriori that the chosen scaling in front of the interaction
places us in the mean-field regime. It says that the quantum energy is, to first order
in N, given by Hartree states.

There are many similar results in the literature but the previous theorem seems
to be the first which does not rely on any specific property of V' and w. The confined
case was previously treated in [25, 66, 56, 67]. Bosonic atoms corresponding to d = 3
and . .

YO T YO Ty
were considered in [9, 60, 6, 7, 37] but the proof uses some particular properties
of the Coulomb potential. In [49, 50|, Lieb, Thirring and Yau studied the case of
bosons stars in which V' = 0, w(z) = —1/|z| and —A is replaced by the fractional
Laplacian /1 — A. Our approach also applies to this case as well [40]. Other results
include the homogeneous Bose gas [58], trapped Bose gases [31] and the Lieb-Liniger
model in a random external potential [44, 59].

Recently, the experimental realization of Bose-Einstein condensates has motivated
the study of a more subtle, so called Gross-Pitaevskii, limit [46, 45]. The effective
theory obtained in this limit is the cubic nonlinear Schrodinger equation, corre-
sponding to taking w(x — y) = 4wad(x — y) where a is the scattering length of the
potential w. We will not consider this limit here, but we hope that our method will
in the future be useful to deal with it as well.

That the linear many-particle quantum system is well described by a nonlinear
theory in the mean-field limit N — oo has important physical implications. It is
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the main explanation for the occurrence of symmetry breaking which cannot be well
described in a linear model. For instance, it has been observed in the laboratory that
in a Bose gas which is rotated along an axis, vortices appear and they tend to place
themselves on a triangular lattice. This phenomenon is very well explained in the
framework of the nonlinear Hartree and Gross-Pitaevskii theories (see, e.g., [2, 1, 3]).

Let us remark that there are many works on the related (but still different) deriva-
tion of the time-dependent Hartree theory from the time-dependent Schrédinger
equation associated with the Hamiltonian Hy, see for instance [33, 27, 62, 8, 21,
22,4, 24, 26, 57, 38, 55, 41]. In this case one starts close to a Hartree state at time
zero, and then proves that the Schrodinger flow stays close to the corresponding
trajectory of the Hartree state. This is a priori different from the time-independent
case considered here.

Simple proof when w > 0

There is a simple proof of Theorem 1 in the particular case when @ is non-negative
and integrable. We quickly outline it for the convenience of the reader. The main
trick is the observation that, in this case,

L, L wte =)@ dedy = @ny¥? [ o) FE k> 0

for any measure f such that f € L®(R%). For f = YN | 0z, — ¢, this leads to the
estimate

a 1 N
> wlor ) 2 S wegla) =5 [ ] wle = yg(@)g(y) dedy — S w()
1<k<t<N k=1 REJR
Applied to a given ¥ € L2((R?)") we obtain

/Rd"‘/ Yo wlak — x| V(2 . an) P dry - day

d
R cp<o<N

>N [ ot = wpu(@)gly) dedy
- ;/Rd /Rd w(z —y)g()g(y) de dy — jsz(O)

N? N
=Y / / w(z —y)pw()pu(y) de dy — —w(0),
Rd JRd 2
where
pu(z) = /Rd'-'/Rd U (2,29, ..., on5) [P dog - - - doy

is the density of particles in the system and where in the last line we have optimized
with respect to g (that is, we have taken g = Npg). If we now use the Hoffman-
Ostenhof inequality [35]

N
2
2
jz:l‘/Rd . ”/]Rd Vo, VU(zy,....,on)|"doy - - doy > N/Rd ‘V«/pq,(a:)‘ dx,
which is a simple consequence of the Cauchy-Schwarz inequality, we get that

(U, HyW) > NéEu(y/pw) — N

w(0) > Ney — mw(

o(N — 1) 0)



and the result follows. We have even shown that E(N) = Ney + O(1).

The proof of the validity of Hartree’s theory is very elementary when w > 0.
When @ has no particular sign, the argument is completely different and it is the
purpose of this article to explain the strategy of [40].

2. Bose-Einstein condensation

2.1. Density matrices and the quantum de Finetti theorem

We have claimed that the bottom E(N) of the spectrum of the Hamiltonian Hy is
always described by Hartree’s energy in the limit N — oo. It is of course important
to understand what is happening to states as well. This question is much more
complicated than it looks like. As we will explain in detail in Section 3, a wave
function Wy which has an energy of the order of E (V) is never close to a Hartree
state u®" in norm, except when w = 0. The relationship between ¥y and v®" has
to be expressed in a different way.

The standard technique to compare Wy with Hartree states, is to use density
matrices, which are the non-commutative equivalent of marginals in probability
theory. For any 1 < k < N, we define the k-particle density matrix 7\(1,]“) of an
N-body state ¥ by its integral kernel

'y\(yk)(asl, s TR YLy ooy k)

= /]Rd dzk-‘rl \/]Rd dZN\IJ(Ilv"kaazk-i-la"'7ZN)\IJ(y1a-"7ykazk+17"'azN)‘ (21)

If we take 1 = w1, ...,xr = yr, then we exactly recover the usual marginal of the
probability density |¥|?. If we apply the Fourier transform, we see that

%(k)(ph <y Py 41, an)

- /]Rd drk-‘rl"'/Rd dqu\j(pl)"')pkark-‘rl?"'7TN){I}(q1)'“7qk7Tk+17"'7TN)

and therefore %(k) (1, s Dk D1, -, Pi) 18 exactly the kth marginal of the momentum
density of probability |¥[2. Therefore, 7&,’“) contains an information of our quantum
state U both in direct and Fourier space. The integral kernel %(I,k) defines an operator
acting on $¥ = L2((R9)¥), also denoted by fyl(l,k) for simplicity.

Equivalently, we can define fyl(l,k) by duality:
<\I/, A® ]lﬁka\I/%aN = Tl"ﬁk (A’y\(l,k))

for any bounded operator A on $*. This is the same as saying that 7\(1,19) is the partial
trace of the rank-one projection |W) (| with respect to the last N — k variables:

A = Trg g n |00,

The advantage of using density matrices becomes clear when we look at the energy
of U, which can be expressed only in terms of the one— and two—particle density
matrices:

(W, HyW) y 1 2 1 2
— - Try (—A + V)”)/\(I,) + §Trﬁ2 (wy&,)) = 5Trﬁz (Hﬂ‘(y)). (2.2)
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We see that, thanks to the mean-field factor 1/(N —1) in front of the interaction, the
expression of the energy is even completely independent of N. The N dependence
is hidden in the constraint that 7\(1,2 ) must arise from an N-body state . If we

introduce the set of so-called N-representable two-particle density matrices
PP ={0<7@ <1 AWen”, 1@ =P,

then we have
E(N) inf Trge Hyy?

N 7(2)6735\?) 2

It seems now reasonable to believe that the limit of the ground state energy will be
determined by the limit of the set 77](\?) when N — oo. In infinite dimension, the
main issue is of course the choice of an adequate topology to describe the limit. In
the confined case the problem will be compact and we can use a strong topology,
whereas in the unconfined case, particles can escape to infinity and we have to use
a weak topology. Understanding the set 73](\?) requires to look at all the (similarly
defined) sets 73](\?) for all £ > 1, however.

(1) (N) £

For any N-particle wave function Wy, we have defined a family vy, ..., 7y, ©

density matrices. For each k, we have fy‘(l,k])v > 0 and Trﬁk”y\(l,’?V = 1 and thus (’y\(l,k])v) N
is a bounded sequence of operators in the trace class. So by extracting weak limits,
we may assume that

k
%(p])vj ey (2.3)
weakly-* for every k > 1. This means

jll)rglo Tr(K%(I,kI)V) = Tr(Ky(k))
for every compact operator on $F.

Let us assume for the moment that that the limits are all strong. Partial traces
are continuous for the strong topology of the trace-class, and therefore we obtain in
the limit an infinite hierarchy of operators (y*),>;, which all satisfy Trﬁky(k) =1
and which is consistent in the sense that

(k+1) (k)

Trip1y =
for every k > 1.

When we increase the number N of particles, our intuition is that the system
can become more and more complicated and this is certainly true at the level of
the N particle wave function ¥y. But the surprising fact is that the situation goes
in the opposite direction if we look at the set Pj(\f) of k particle density matrices
for a fixred k > 1. This set actually decreases with N and it becomes trivial in the
limit: nothing else but convex combinations of Hartree states remain. This property;,
which is true for any (strongly convergent) sequence of bosonic wave functions Uy,
is called the quantum de Finetti theorem and it is the main theoretical explanation
of the occurrence of Bose-Einstein condensation in the the mean-field regime.

Theorem 2 (Quantum de Finetti). Let R be any separable Hilbert space and
denote by R* = ®§ﬁ the corresponding bosonic k-particle space. Consider a hier-
archy {y®}22, of non-negative self-adjoint operators, where each v*) acts on 8.
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We assume that the hierarchy is consistent in the sense that
Trpy T = 4® (2.4)

for all k. We also assume that Tray ™ =1 for all k > 1.
Then there exists a unique Borel probability measure p on the sphere SR of R,
invariant under the group action of S, such that

f%k>::jgﬁ|u®k><u®k|du<u> (2.5)
forall k > 1.

The result is the quantum equivalent of the famous Hewitt-Savage theorem for
classical systems [16, 17, 20, 34, 19, 53]. The latter deals with a hierarchy of sym-
metric probability measures u*) on Q¥ such that p*®(A) = p*+™ (A x Q) for any
k,n > 0 and any measurable set A C QF. The quantum de Finetti Theorem 2 was
proved in [63, 36] (see [30, 14] for related content).

Another way to state the theorem is that the only extreme points of the set of
infinite consistent hierarchies of density matrices, are Hartree states. The existence of
the measure p then follows from classical results in convex analysis by Choquet [13].

In order to deal with unconfined systems, we have to consider the case where the
limit in (2.3) is only weak. Then the consistency of the hierarchy is lost, since partial
traces are not weakly continuous. Indeed, when passing to the weak limit we find
by Fatou’s lemma for trace-class operators

(k) (k+1)

k) _ 3 — 1
7 = wlimoy, = vlim T,

. k
> Trkﬂvg__l)gn 7\(111:;1) — Tl"k+1’7(k+1),

where w-lim denotes the weak-* limit in the trace-class. However, the set of all the
infinite hierarchies satisfying this inequality has no interesting structure. We have to
keep track of the fact that our limiting sequence has been obtained from a sequence
of N-particle states. Then the result is the following:

Theorem 3 (Weak quantum de Finetti [40]). Let K be any separable Hilbert
space and denote by KF = ®’;ﬁ the corresponding bosonic k-particle space. Let ¥y
be any sequence of normalized wave functions in &Y such that

k
Yoy =™

weakly-+ in the trace class as N — oo, for all k > 1. Then there exists a unique

Borel probability measure v on the unit ball BR of K, invariant under the group
action of S, such that

19 = [ dp(u) Ju) (2:6)
for all k > 0.

This version of the quantum de Finetti theorem is called ‘weak’ because it deals
with weak limits, but it is actually stronger than Theorem 2! That we find a de
Finetti measure p living on the unit ball instead of the unit sphere of our ambient
Hilbert space K is not surprising as we are looking at weak limits. The reader should
keep in mind the case of

\I/N:u%N with uy — u
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for which the limiting measure p turns out to be the uniform measure on the one-
dimensional circle {ewu}ge[o,gﬂ), which lives in the unit ball BR& and not in the unit
sphere, when |u| < 1.

Ammari and Nier have recently proved in [4, 5] results that imply Theorem 3.
In analogy with semi-classical analysis, they called p a Wigner measure. They deal
with an arbitrary sequence of states in Fock space and, therefore, obtain in the limit
a measure p which can live over the whole one-particle Hilbert space R, instead of
the unit ball as in our situation.

In [40], we provided two different proofs of Theorem 3, which are both based
on Theorem 2. The first proof uses the finite-dimensional de Finetti Theorem and
the geometric techniques introduced in [39]. It has the merit of clarifying how the

measure j arises in case the density matrices 7&,’9]3[ do not converge strongly. This
is particularly important to understand unconfined quantum systems. The second
proof provided in the Appendix of [40] follows arguments similar to those of Hudson
and Moody in [36].

That the quantum de Finetti theorem is useful to study the occurrence of Bose-
Einstein condensation was known for a long time, see, e.g., [25, 54, 56]. The weak
version and its importance to deal with unconfined systems seem to have been
discovered only recently.

2.2. Confined case

With the (strong) de Finetti theorem at hand, it is very easy to write the proof of
Theorem 1 in the confined case and, even, to describe the behavior of the sequence
Uy, in terms of its density matrices. The precise result is the following.

Theorem 4 (Validity of Hartree and BEC, confined case [40]). Under the
previous assumptions on V and w, and if V. — oo at oo, we have
E(N)

lim ——% = eg.
N—o0 N H

If (W) is any sequence such that (U, HyWy) = E(N)+ o(N), then there exists a
subsequence and a probability measure p on the set M of minimizers of ey (modulo
a phase), such that

lim 7, = [ dpw) 1) (]

strongly in the trace-class for any fived k. In particular, if eq admits a unique min-
imizer ug, then there is complete Bose-Einstein condensation (BEC) on wy:

. k
lim 1) = ug*){ug (27)
forall k > 1.

The minimizers of the Hartree functional arise naturally as limits of the k-particle
density matrices of any sequence (W) of approximate ground states. Since physi-
cally measurable quantities can usually be expressed in terms of the density matrices,
we deduce that, if the Hartree functional has a unique minimizer ug, they will all
be given in terms of this minimizer uy. For instance the density of particles in the
system will converge to |ug(z)|? and the momentum density to |uy(p)|*.
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Because the effective model is nonlinear, it can happen that the system has some
spacial invariance but that the minimizers of the Hartree energy do not (then only
the set of minimizers is invariant). In this case there cannot be a unique Hartree
minimizer, of course. Our theorem gives convergence to any possible convex combi-
nation of these minimizers and it is easy to check that, indeed, any such combination
can be reached by an approximate sequence ¥y with (U, HyVy) = E(N)+o(N).
By adding a small perturbation, one can force the system to converge to one of the
Hartree minimizers.

In the rest of this section we give a sketch of the proof of Theorem 4, which is only
based on extraction of weak limits in the trace class, Fatou’s lemma for operators,
and the strong quantum de Finetti theorem.

Sketch of the proof of Theorem 4. First, as before we extract subsequences
such as to have y(k) — ) weakly-*. We recall that

Uy,

(Un,HyUy) 1 2)
— N §TYL§<(W>2>(H2WN)

which tells us that Trpz(ra)) <H2’y‘(1,22,) is bounded. Since when V' — oo the operator

H, has a compact resolvent, it is easy to verify that this implies 7\(1/2; — @ strongly
J

in the trace-class. The same argument can be used to prove that 751,’2

- — 4" for
every fixed k > 1. By the continuity of the partial trace, we deduce that the sequence
is consistent, that is, we have Trj,;7*+Y = %) for all k.

Applying now the quantum de Finetti theorem, we obtain a Borel probability

measure 4 on the unit sphere of L?(R?) such that

2 — u U®2 u®2. .
W= [ duw) i) (2:8)

lL2gay=1

By Fatou’s lemma for trace-class operators (using that Hy > 0 except on a space
of finite dimension) and inserting the de Finetti integral representation for the two-
particle density matrix, we get

E(N; 1 1

i 209 — iy L (110, ) > L1 (1)
Jj—ro0 j J—00 J

®2 H ®2

_ dpu(u) O )

"u"LQ(Rd):l 2

= dpu(u) En(u)

"ullLQ(Rd):l

> du(u) ey = eq.
"u"LQ(Rd):l

Note that in the last equality we have used that p is a probability measure. Since
E(N) < eg N, we have equality everywhere and, finally, we find that p has its
support on the set of minimizers for ey. O

The previous theorem can be generalized to several situations including rotating
Bose gases and positive temperature [40].
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2.3. Unconfined case

When the potential V' does not tend to infinity at infinity, the system is not fully
confined anymore and particles can escape to infinity. In order to describe this
situation, we introduce the Hartree minimum energy corresponding to having (1 —
A)N of the particles at infinity:

ey (\) == inf &Y (u).

u€eH
fRd [ul?=X

As usual, by sending a mass 1 — A to infinity, it is easy to verify the large inequality
er(1) < e (M) +eg (1 —N).

Since the particles at infinity will not see the local potential V' anymore, we need
to emphasize the local potential V' in our notation. In particular, e} (1 — \) is the
infimum of the Hartree energy with a mass 1 — A and with the term involving V'
removed. The particles however always interact with each other, and the nonlinear
term involving w stays the same at infinity when V' = 0.

By using the concentration-compactness method of Lions [51, 52|, one can easily
prove that the strict binding inequalities

e (1) < eff(N) + e (1 — N, VO < A< 1,

guarantee the existence of a minimizer for ey, as well as the compactness of all the
minimizing sequences in H*(R?). If V = 0 then the system is translation-invariant,
and the strict inequality

(1) < el (N +ef(1—2), VYo<Aa<l1

give the existence of at least one minimizer, and the compactness of all the mini-
mizing sequences up to translations.

Our theorem concerning the validity of Hartree’s theory does not rely on the
validity of the binding inequalities. But the statement is stronger when they are
satisfied.

Theorem 5 (Validity of Hartree and BEC, unconfined case [40]). Under the
previous assumptions on V and w, with V, =0, we have
E(N)

lim ———% = ep.
N—o0

If (W) is any sequence such that (U, HyWy) = E(N)+ o(N), then there ezists a
subsequence and a probability measure p1 on the unit ball B$) = {u € § : [u] 2ga) <
1}, supported on the set
M =Lue B - g = () = ()~ 4~ )}, (29)
such that
(k) Qk\ 7, Ok
W = [ ) du(w) (2.10)
weakly-+ in the trace-class, for every k > 1.
If the strict binding inequality
e (1) < efr(A\) + e (1 = N) (2.11)
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is satisfied for all 0 < X\ < 1, then p is supported on the unit sphere of L*(R?)
and the limit (2.10) for 7](\];],) is strong in the trace-class. In particular, if e};(1)
admits a unique minimizer ug, up to a phase, then there is complete Bose-Einstein
condensation on it:

k
v, = ) ("] (2.12)
strongly in the trace class for any fived k > 1.

We see that there is not always convergence of the density matrices of Uy to the
ones of minimizers of the Hartree energy, simply because these minimizers do not
necessarily exist. However, there is always weak convergence if we allow the system
to have less particles. The set M"Y contains all the minimizers for ey, with a mass
which may be less than 1. More precisely, MV contains all the functions u for which
EY (u) = ef;(1) and, furthermore, e}j(1) = e}{(\) + e} (1 — X) where \ := [za |ul?.

When the potential w is non-negative (or, even more generally, when Hy > 0 in
the sense of quadratic forms), then ¢°(\) = 0 for all 0 < A < 1, and the proof of
Theorem 5 goes along the same lines as the ones of Theorem 4. One can use the
weak de Finetti theorem and Fatou’s lemma, since Hy > 0.

However, when w has no particular sign, then the particles escaping to infinity
can have a non trivial behavior (that is, they can bind), and a much more delicate
analysis is needed. The proof of [40] is based on the geometric localization techniques
which have been developed by the author in [39], as well as on some ideas of Lieb,
Thirring and Yau in [49, 50] in order to deal with the problem at infinity. It would
be too long to explain this here and we refer the reader to [40] for details.

3. The next order: Bogoliubov’s theory

We have said that the approximate minimizer Wy is not necessarily close to a
Hartree state u®Y in norm in $%. In this section we give the exact behavior of
the wave function ¥y, under the additional assumption that there is a unique, non
degenerate Hartree minimizer. This requires to expand the energy to the next order
in N, which we can do for any eigenvalue, not only for the lowest one.

Theorem 6 (Validity of Bogoliubov’s theory [42]). We work under the same as-
sumptions on'V and w as before, and assume furthermore that ey possesses a unique,
non-degenerate minimizer ug, and that

L, L we =92 luole) Pluoy) P de dy < oo. (3.1)
Re JRd
Let us denote by \;(Hy) the jth min-maz level of the operator Hy. Then

Ni(Hy) = Nen+ Aj(H) +o(1) (3.2)

where H is the Bogoliubov Hamiltonian on the Fock space

Fr=CoPpRH: =CaPn,, 9 = {uo}t,

n>1sym n>1

that is, the second quantization of (1/2)Hess Eu(ug), the Hessian of the Hartree
functional Eq at the point ug on the tangent space $, = {ug}*.
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Furthermore, if \;(H) lies below the bottom of the essential spectrum of H, then

so does N\j(Hy) for N large enough and, if \If%) is a corresponding sequence of
eigenvectors, we have, up to extraction of a subsequence,

U — 3 (ug)®N T @, )
k=0

lim
N—oo

=0 (3.3)

H 3
5N

where ®U) = (go,(j))kzo € F. is a corresponding normalized eigenvector for H:
HeW — )\jq)(j).

Let us recall what “non-degenerate” means. First, since ug minimizes Ey, then |uy
as well and, by uniqueness, we get that ug is real and > 0. The first order condition
reads

hug =0, with h=—A+V + |up|* xw — p, (3.4)

where py is the Lagrange multiplier associated with the constraint |u| = 1. The
second order condition is that the Hessian is non-negative on the tangent plane at
up. A simple calculation gives

;Hess En(ug)(v,v) = (v, hv) + ;/Q/Qw(w — y)uo(x)uo(y) (v(x)v(y) + v(x)v(y)

+v(z)v(y) + v(:c)v(y)) dx dy

A

for all v in the tangent plane $, := {uo}t. Here K is the restriction to £, of the
operator with kernel k(z,y) = w(x — y)ug(x) ug(y). More precisely, the kernel of K
can be obtained by projecting the symmetric function k£ onto ), ®$ . The operator
h leaves ) invariant and we do not use any specific notation for its restriction. Now,
that the minimizer ug is non-degenerate means that there exists a positive constant
nu > 0 such that

h+ K K

Note that since ug > 0, it is necessarily the first eigenfunction of h and we then
know that it is non-degenerate. In particular, h > 7y > 0 on $H,. If K > 0 (for
instance when w > 0), we deduce that

h+K K h 0 /
( K h+K>2<o h)Z”H'
The minimizer ug is therefore always non-degenerate when w > 0 (and it is also
always unique). For more general potentials w, we need the non-degeneracy as-
sumption, however.
The theorem says that the exact behavior of the sequence \I/%) (for instance \Ifg\l,)
for the lowest eigenvalue A;(Hy) = E(N)) can be described through a series which

involves the functions uy and go,(g ) which are independent of N. The eigenfunction
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\IIE\J}) is not close to the Hartree state (u)®" and we have, indeed,

2
<u0)®N_k s gpl(c])

M=

99 - )] = ) = D)+

k=1

f)N

. N N2
= o’ — 11>+ kZ |t o
=1

. 0 2
— ey’ — 1P+ kZl o
Except in the very exceptional situation where the particles do not interact, w = 0,
then we have ¢/ ) £ 0 for an infinite number of ks. Therefore ||‘IJ%)—(UO)®N | - 0and
all the terms in the series must be taken into account in order to reach convergence.
The term (uo)®*V* ®, gog ) describes a situation where N — k particles are in
the condensate in the state ug, whereas k are excited outside of the condensate, in
the state go,(cj ) e ﬁi. Having a finite number of excited particles furnishes the same
energy Ney to first order, and this is why \I/%) is a superposition of such states.
Note, however, that since ®V) is normalized in the Fock space F,

P+ 3 [
k=1

f)kzl’

the higher excitations give a small (but N-independent) contribution.

So far we have not defined the Bogoliubov Hamiltonian H explicitly. Second quan-
tization means that we must replace v(z) by an annihilation operator a(x) and v(x)
by a creation operator af(z) in the formula of the Hessian of &, with v € $,.. We
arrive at the following expression

Hi= [ a(@)((h+ K)a)(z) da
+ ; /ﬂ /Q K(z,y) (a* (x)a*(y) + a(x)a(y))dm dy. (3.7)

For the reader unacquainted to second quantization, we describe this Hamiltonian
in a different fashion. The space on which H acts is the Fock space

Fi 3:C@ﬁ+@(55+®s55+)@<ﬁ+®sﬁ+®sﬁ+)@---

::S’Ji 1:5:)1

which is the direct sum of all the spaces with an arbitrary number of excited particles.
This Hilbert space is endowed with its usual Hilbert scalar product. Now, H is the
sum of three terms,

H=H; +H, + (Hy)*

where H, corresponds to the (particle-conserving) terms with a'(z)a(x), whereas
H, corresponds to the other (non particle-conserving) terms involving a(z)a(y) and
its adjoint. The operator Hj is diagonal with respect to the decomposition of F, in
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a direct sum:

H, =0 (h+K) ® ((h+K)1+(h+K)2)69~-~@ (Xk:(h+K)j>@--~

j=1

acts on f’j’j_

The operator H, is off-diagonal and it maps a vector of .6’_1 into .6{?“2:

K ®;
Hz(O@---@@@O@OG}”):O@---@OGBO@(\/590]6)@---

enlt?

enh

Here K (z,y) is the kernel of the operator K defined above. We see the importance
of our assumption (3.1) that K > L?(R? x R?), which is necessary to properly define
Hs,.

Under (3.1) and the non-degeneracy assumption, it may be proved that the Bo-
goliubov Hamiltonian H is a bounded below self-adjoint operator on F.. We refer
to [42] for more properties of H, and for some examples.

A result similar to (3.2) has recently been obtained for weakly interacting Bose
gases by Seiringer [58] and Grech-Seiringer [31]. They assumed that w is bounded,
decays fast enough and has non-negative Fourier transform. In [58] the system is
restricted to a box with periodic boundary conditions and in [31] only the confined
case is considered. Our method is different from that of [58, 31] and it applies to a
larger class of models. Recently, the expansion (3.2) was considered for a system in a
box which slowly grows with N in [18], leading to the famous cusp at the origin, for
the Bogoliubov spectrum o(H). The latter is the main explanation of the superfluid
behavior of such systems, which was originally predicted by Bogoliubov [10].

Since Bogoliubov’s work, there have been several attempts to formulate Bogoli-
ubov’s theory in a mathematically rigorous way. This was especially successful for
completely integrable 1D systems [28, 44, 43, 12, 11, 64, 65], for the ground state
energy of one and two-component Bose gases [47, 48, 61], and for the Lee-Huang-
Yang formula of dilute gases [23, 29, 68]. See, e.g., [69] for a recent review on the
subject and [15] for a discussion of translation-invariant systems.

We will now quickly explain how the Bogoliubov Hamiltonian H and the Fock
space F, arise in this theory. The main crucial observation of [42] is that any
function ¥ of the bosonic N-particle space $§ can be written as

U= o ud™ +ug "V @, o1 + 4TV @, 00 -+ o

where ¢, € H% and ug is our Hartree minimizer (but so far it could be any fixed
reference function). Saying differently, we have

SN =gl o - @8Ry
where &) = span(uy ® - -+ ® up) and

k
.RN =U Q- QU R ®~6+ = U6®(N7k) (S8 f)i
—— —

N—Ek sym
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So, there is a natural isometry

N
Ux: 9 o FEY =@
n=0
UV = 9o®dp@- - @pn

from $H” onto the truncated Fock space ffN, which is itself a subspace of the full
Fock space F,. The unitary Uy is adapted to the description of the fluctuations
around the Hartree minimizer ug. In particular, the Hartree state (ug)®" is simply
mapped onto the vacuum 1 € C in the Fock space F..

After applying the unitary Uy (which does not change the spectrum of Hy), we
settle the eigenvalue problem for Hy in the truncated Fock space .FEN. In the limit
N — o0, we obtain this way a problem posed on the Fock space F,. Now, the
Bogoliubov Hamiltonian is simply the weak limit of Hy — N ey, as stated in the
following lemma.

Lemma 1 (Weak limit towards H [42]). Under the previous assumptions, Uy (Hy —
N en)U} converges weakly to H, in the sense that

lim (@', Un(Hy = Nen)Uy <I>>F+ = (¢, H )5, (3.8)
for every fized ®,®" in the quadratic form domain of H, and where Uy is by con-
vention extended by 0 outside of .FEN.

Verifying the above convergence is not difficult, but requires some tedious cal-
culations. These are much simpler to carry out using the formalism of second-
quantization. With Lemma 1 it is not hard to prove an upper bound on the eigen-
values of Hy in the limit N — oo. The proof of the lower bound in [42] is based on
a localization procedure in Fock space, inspired of [47].

Conclusion

In this article we have reviewed recent results obtained in [40, 42] concerning the
behavior of Bose gases in the mean-field regime.

We have mainly discussed the emergence of Hartree’s theory, which is a conse-
quence of the special structure of the set of bosonic density matrices in the limit
N — o0, as described by the quantum de Finetti theorem. For unconfined system, a
careful analysis of the lack of compactness of the infinitely many particles is neces-
sary and a new weak de Finetti theorem is then useful to describe the particles which
have not escaped to infinity. In all cases, the first eigenvalue of the many-particle
Hamiltonian is, to first order in N, given by the nonlinear Hartree functional which
is obtained by restricting to wave functions of the form u®".

If the Hartree minimizer ug is unique and non degenerate, it is possible to expand
the energy to the next order in N. The next term in the expansion is described by
a linear model posed in Fock space, based on the so-called Bogoliubov Hamiltonian
H, the second-quantization of the Hessian of the Hartree energy at the minimizer
up. The eigenvectors of H give the precise behavior of the N-particle wave function
VU in the limit N — oo.
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