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Journées Équations aux dérivées partielles
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GDR 2434 (CNRS)

Transport equation and Cauchy problem

for BV vector fields and applications

Luigi Ambrosio

Introduction

In this talk I am going to describe the main results of [7], where the DiPerna–Lions
theory is extended to the case of a BV dependence of the vector field with respect
to the spatial variables. I will also illustrate some differences between my approach
and the DiPerna–Lions one in the treatment of the uniqueness of the flow, and some
applications obtained in [8], [9], [25] to PDE’s. Finally, I will also mention some
open problems and some work in progress.

1. Description and short history of the problem

1.1. The Lagrangian side

Given b(t, x) : [0, T ] × Rd → Rd, we would like to find conditions ensuring the
“generic uniqueness” of solutions of the ODE

{
γ̇(t) = b (t, γ(t))
γ(0) = x.

Even though uniqueness is lacking, we would like to have a kind of selection principle
relative to the approximation of b by smooth vector fields bh:

∃ lim
h→∞

γh(x, t) in C([0, T ]; Rd) for L
d-a.e. x,

where γh(x, ·) are the solutions of the approximating Cauchy problems.

We don’t assume that b(t, ·) is Lipschitz but, to prevent blow-up in finite time, we
assume from now on that |b| is globally bounded (more general conditions are consid-
ered in [28], [11]). In order to simplify even more, we assume that b is autonomous,
i.e. b = b(x).
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1.2. The Eulerian side

We consider the Cauchy problem for the transport equation in conservative form:

d

dt
µt + Dx · (bµt) = 0, µ0 = L

d A, t ∈ [0, T ].

Here µt is a time-dependent family of positive measures. We want to study the well
posedness of this problem and obtain a comparison principle for solutions.
Particular classes of solutions (e.g. µt = wtL

d with wt locally uniformly bounded)
can be considered.

1.3. Essential bibliography

DiPerna–Lions ’89. [28] Sobolev regularity for b(t, ·).
Cellina ’95, Cellina–Vornicescu ’98. [18], [19] γ′(t) ∈ A (γ(t)), with A maximal
monotone.
Lions ’96. [35] Extension to the case when b(t, ·) is “piecewise W 1,1”.
Bouchut ’02. [15] II order ODE’s γ′′(t) = b (t, γ(t)) and equations of Vlasov type in
the Hamiltonian space, with a BV dependence.
Colombini–Lerner ’03. [22] Co-normal BV fields, with singularities.
A. ’03. [7] The general case b(t, ·) ∈ BV .
A.–De Lellis ’03, A.–Bouchut–De Lellis ’03. [8], [9] Applications to Keyfitz–Kranzer
system of PDE.

2. Renormalized solutions of the transport equation with BV

vectorfields

2.1. Sobolev case: the DiPerna–Lions result

Theorem 2.1 (Renormalization) Let B ∈ W 1,1
loc (Rm; Rm) and let w ∈ L∞

loc(R
m)

be satisfying the transport equation

B · ∇w := D · (Bw)− wD · B = cL m.

Then
B · ∇(h(w)) = ch′(w)Lm ∀h ∈ C1(R).

Choosing m = d + 1, B = (1, b) and c = ew we obtain that

wt + b · ∇xw = ew in R
+
t × R

d
x

implies

h(w)t + b · ∇x(h(w)) = ewh′(w) in R
+
t × R

d
x.

Choosing h(t) = t±, via Gronwall Lemma one obtains, under some natural boundary
conditions at infinity and L∞ bounds on e and D · b, uniqueness and comparison
results for the PDE.
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Sketch of proof. Mollifying both sides we get

(B · ∇wt) ∗ ρε = c ∗ ρεL
m

and therefore
B · ∇(wt ∗ ρε) = c ∗ ρεL

m + rε

with
rε := B · ∇(wt ∗ ρε)− (B · ∇wt) ∗ ρε.

Multiplying both sides by h′(wt ∗ ρε) we get

B · ∇h(wt ∗ ρε) = h′(wt ∗ ρε) [c ∗ ρεL
m + rε]

and therefore the renormalization property follows as ε ↓ 0, using the fact that
rε → 0 in the strong topology of L1

loc.
Why rε → 0 strongly? We have indeed

rε(t, x) =

∫
wt(x− εy)

B(x− εy)− B(x)

ε
· ∇ρ(y) dy − (wtdiv B) ∗ ρε(x)

and the strong convergence of difference quotients of Sobolev functions gives

rε(t, x) ∼ −wt(x)

∫ d∑

i, j=1

∂Bi

∂xj
(x)yj

∂ρ

∂yi
(y) dy − wt(x)div B(x) = 0

since ∫
yj

∂ρ

∂yi
(y) dy = −

∫
ρ
∂yi
∂yj

dy = −δij .

When B /∈W 1,1
loc the behaviour of rε is very sensitive to the choice of ρ: for instance

when ρ is radial we have (see [17])

DiBj + DjBi ∈ L1
loc =⇒ rε → 0 in L1

loc.

In general, however, rε do not converge strongly to 0 in L1
loc when B ∈ BVloc.

2.2. The BV case

Notation. We split |DB| as |DaB|+ |DsB|, with |DaB| � L
m and |DsB| ⊥ L

m,
and we write DsB = M |DsB|.
Given a convolution kernel ρ and a d× d matrix M , we define

I(ρ) :=

∫
|y||∇ρ(y)| dy, I(M, ρ) :=

∫
|〈M(y),∇ρ(y)〉| dy.

Since
D ·B = trace(M)|DsB|+

∑

i

Da
i Bi

we have that trace(M) = 0 |DsB|-a.e. if and only if D · B � L m.
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Optimal commutator estimates. If K ⊂ R
m is any compact set, then

lim sup
ε↓0

∫

K

|rε| dx ≤ ‖w‖∞I(ρ)|DsB|(K)

and

lim sup
ε↓0

∫

K

|rε| dx ≤ ‖w‖∞
∫

K

I(M(x), ρ) d|DsB|(x) + ‖w‖∞ (m + I(ρ)) |DaB|(K).

The proof of the first estimate, the more delicate one, requires a splitting of the
difference quotient into a strongly converging part and a weakly converging one, the
latter controlled by the singular part of derivative only.
Roughly speaking, the first estimate is useful in the regions K where |DaB| is
dominant (so that |DsB|(K) << 1), while the second estimate is useful in the
regions K where |DsB| is dominant (so that |DaB|(K) << 1).

Theorem 2.2 Let B ∈ BVloc(R
m; Rm) with D ·B � L

m and let w ∈ L∞
loc(R

m; Rk)
be satisfying

B · ∇wi = ciL
m, i = 1, . . . , k.

Then

B · ∇h(w) =
k∑

i=1

∂h

∂zi
(w)ciL

m ∀h ∈ C1(Rk).

Sketch of proof. It is a refinement of the anisotropic smoothing argument de-
vised by Bouchut [15] and improved by Colombini–Lerner [22]: repeating the same
smoothing scheme of the Sobolev case, the first estimate gives that

σ := B · ∇h(w)−
k∑

i=1

∂h

∂zi
(w)ciL

m

is a measure absolutely continuous with respect to |DsB|.
But we can use the second estimate to obtain

|σ| ≤ C(h, w)I(M, ρ)|DsB|+ C(h, w, ρ)|DaB|,

and therefore the two informations together give

|σ| ≤ C(h, w)I(M, ρ)|DsB|.

Now, notice that σ does not depend on ρ, therefore we can improve the estimate
above just varying the convolution kernel:

|σ| ≤ C(h, w) inf
ρ

I(M, ρ)|DsB|.

Recalling the definition of I, we are led to the pointwise minimization problem:

inf

{∫

Rm

|〈Mz,∇ρ(z)〉| dz : ρ convolution kernel

}
.
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One can show ([4], see the proof in [11]) that the infimum above is the modulus of
the trace of M , therefore infρ I(M(x), ρ) = 0 for |DsB|-a.e. x because D ·B � L m.
If M = η ⊗ ξ the ”optimal” choice of mollifiers results in a smoothing in the ξ
direction much faster than in the η direction, or in all other directions, i.e.

ρε(x) = ρ1
ε (x− 〈x, ξ〉ξ) ρ2

ε′(〈x, ξ〉) with ε′ = o(ε).

This is the procedure used in the previous papers on the subject.
The information that M has rank one, i.e. that M is representable as η ⊗ ξ, is
provided by Alberti’s rank one theorem [2], but this information is not strictly
necessary in the kernel optimization argument outlined before.

3. Applications

3.1. Uniqueness and stability of Lagrangian flows

Definition. A Lagrangian flow associated to b is a map Γ(t, x) : [0, T ]× Rd → Rd

such that:
• Γ(·, x) is an integral solution of the ODE γ(t) = x +

∫ t

0
b(γ(τ)) dτ in [0, T ];

• The image measures λt := Γ(t, ·)#L d satisfy λt ≤ CL d for any t ∈ [0, T ].
The following theorem is proved in [7] for the case of bounded vector fields and in
[11] for the general L1 + L∞ assumptions considered in the DiPerna–Lions paper
[28].

Theorem 3.1 Assume that b ∈ L∞ ∩ BVloc and D · b = αL d, with α− ∈ L∞
loc.

Then there exists a unique, up to sets whose projection on the second factor is L d-
negligible, Lagrangian flow Γ.
If bh are smooth, equi-bounded and converge to b in L1

loc, then

lim
h→∞

∫

BR

max
[0,T ]
|Γh(·, x)− Γ(·, x)| dx = 0 ∀R > 0,

where Γh are the classical flows associated to bh.

This definition of Lagrangian flow is slightly different from the DiPerna–Lions one,
as it does not involve the semigroup property. It is however equivalent, and the
semigroup property comes as a consequence.
Strategy of the proof: [1] Look at the behaviour of the measures ηh in BR ×
C([0, T ]; Rd) defined by

(1)

∫

BR×C([0,T ];Rd)

ϕ(x, γ) dηh :=

∫

BR

ϕ(x, Γh(x, ·)) dx.

[2] Show that the family ηh is tight, i.e. for any δ > 0 there is a compact set K such
that ηh(K) ≥ 1− δ for any h. This comes from the apriori bound

∫ (∫ T

0

|γ̇|
1 + |γ| dt

)
dηh(x, γ) ≤ C.
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[3] Show that any weak limit point η is concentrated on pairs (x, γ) solving the ODE.
Then, using the comparison principle, show that η has still the same structure in
(1) for some limit flow Γ. This immediately leads to the uniqueness of Γ and to the
stability property.
This strategy involves the comparison principle only for positive and bounded dis-
tributional solutions of the PDE and it does not require the concept of renormalized
solutions that are not distributional solutions.
Both methods work under the same growth and regularity conditions on b, but fail
to give a quantitative order of convergence (in mean) of the trajectories, e.g. a
polynomial order of convergence in ‖bh − b‖.

3.2. Bressan’s conjecture

In connection with the Keyfitz–Kranzer system of PDE, Bressan recently made this
conjecture:
Let bh(t, x) be smooth, equi-bounded and such that

∫ T

0

∫

Rd

|∇t,xbh| dxdt + sup Jh + sup
1

Jh
≤ C < +∞,

where Jh are the Jacobians of the classical flows Γh induced by bh. Then Γh is
strongly relatively compact in L1

loc

(
[0, T ]× Rd

)
.

By applying the theory of renormalized solutions to vector fields B of the form

B = (ρ, ρb), D ·B = 0, b ∈ BVloc, ρ +
1

ρ
∈ L∞, Dx · b� L

d+1,

in a joint work [9] with Bouchut and De Lellis we proved the conjecture under the
additional assumption that some limit point b of bh satisfies Dx · b� L d+1 (in this
case the statement is true even with no bounds on ∂tbh). The general case is still
open.

3.3. The Keyfitz–Kranzer system of conservation laws

We consider the system of conservation laws

(∗) ut +

d∑

i=1

∂

∂xi
(fi(|u|)u) = 0, u : R

d × (0, +∞)→ R
k

with f : R+ → Rk smooth. Bressan has recently shown in [16] that the problem is
ill posed (at least in the stability sense) for L∞ initial data ū. We proved in [9] the
following result.

Theorem 3.2 If |ū| ∈ L∞ ∩ BVloc then (*) has a unique distributional solution in
the class of u’s whose modulus ρ is an entropy solution of the scalar conservation
law

ρt + Dx · (ρf(ρ)) = 0, ρ(0, ·) = |ū(·)|.
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Sketch of proof. (Existence) Given ρ by Kruzkhov’s theory, we know that the
vector field B := (ρ, ρf(ρ)) is bounded, divergence-free and BVloc. Therefore the
Lagrangian flow associated to ρ is well defined. A reparameterization w.r.t. time
then defines a flow Γ for the vector field f(ρ), i.e.

Γ̇(t, x) = f (ρ(t, Γ(t, x))) , Γ(0, x) = x.

Setting ū = θ̄|ū| and u = θρ the PDE can be (formally) decoupled, writing the
system

θt + f(ρ) · ∇xθ = 0, θ(0, ·) = θ̄(·).

A solution of the system above is given by θ(t, x) = θ̄ (Γ−1(t, x)).

Is this formal solution a distributional one ? Yes, because the whole theory is stable
w.r.t. smooth approximations of B.

(Uniqueness) Uniqueness of ρ = |u| follows by Kruzhkov’s theory. Uniqueness of θ
is based on the observation that if a vector valued map w solves

∂t(ρw) + Dx · (ρf(ρ)w) = 0,

then |w|2 solves the same PDE.

On the other hand, uniqueness for the scalar problem

∂t(ρz) + Dx · (ρf(ρ)z) = 0, z(0, ·) = 0

can be proved regardless of boundary conditions (under the assumptions z ≥ 0,
z ∈ L∞) by integration on suitable cones, thanks to the condition |ρf(ρ)| ≤ Cρ.

We apply the uniqueness result to z = |θ1 − θ2|2, with ui = ρθi solutions of the
system.

3.4. Solutions in physical space of the semi-geostrophic sys-
tem

We consider the semigeostrophic system arising in metereology (here Dt = ∂t+u ·∇
is the Eulerian derivative)

{
Dt(v

g
1 , v

g
2) + (∂1p, ∂2p) = (u2,−u1), (vg1, v

g
2) = (−∂2p, ∂1p)

Dtρ = 0, D · u = 0, ∂3p + ρ = 0

Recently Cullen and Feldman proved in [25] an existence result for the system in
the original physical variables, using previous existence results by Benamou–Brenier
[13] and Cullen–Gangbo [24] in the so-called dual coordinates.

Since the passage from physical to dual coordinates requires a non smooth but
BV vector field (more precisely, the gradient of a convex function), the stability
theorem provides a natural way to justify some formal calculations, going back to a
“physical” solution.
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4. Beyond BV vectorfields ?

Let us discuss the sharpness of the two assumptions in our main result, namely that
B ∈ BVloc and that D · B � L m.
We know, by the Capuzzo Dolcetta–Perthame result [17], that denoting by EB the
symmetric part of the distributional derivative, the renormalization lemma holds
provided EB ∈ L1.
Recall that the space BD of functions of bounded deformation (Matthies–Kristiansen–
Strang, Suquet, Temam–Strang) consists of all functions B ∈ L1 such that EB is a
symmetric matrix of measures.
Therefore it is natural to guess that the whole theory extends to BD. This is still
open, but in a recent work [10] with Crippa and Maniglia we prove the result for
SBD fields (i.e. such that |EsB| is concentrated on the union of countably many
C1 hypersurfaces). The kernel optimization argument cannot be used and a new
one is needed.
Another interesting class of vector fields to be considered is

B(x, v) := (b(x), c(x, v)) , with c measurable w.r.t. v

in connection with the linearized theory of Lagrangian flows, initiated in the Sobolev
context by Le Bris–Lions [33] (in that context c(x, v) = ∇b(x)v), see also the recent
work of Lerner [34]).
If we wish to linearize even Lagrangian flows of BV vector fields, we should even
consider vector fields of the form

B(x, v) := (b(x), Db(x)v) b ∈ BVloc, D · b = 0

This is a work in progress with Lecumberry and Maniglia. In connection with
conservation laws, see also the recent work by Chen–Frid [20] on divergence measure
fields.
In the joint work with Bouchut and De Lellis we considered the following conjecture.
Conjecture. Let B = (ρ, ρb) be divergence-free, with ρ > 0, ρ + 1/ρ ∈ L∞ and
b ∈ BVloc. Then any distributional solution w of

∂t(ρw) + Dx · (ρbw) = 0

is a renormalized solution.
We proved that this conjecture implies Bressan’s one. Notice that the vector field
B in the conjecture is not BV , but divergence-free. On the other hand, the field b
is BVloc, but we have no control on its divergence.
The study of this conjecture leads in a natural way to the following problem:

Assume that B ∈ BVloc and w is a scalar function such that D · (wB) is a measure.
Given h ∈ C1(R) we know, by the commutator argument, that D · (h(w)B) is still a
measure. Can we compute this measure ?

If we replace “distributional divergence” by “distributional derivative” this problem
is exactly the problem of writing a chain rule in BV , solved by Vol’pert in the ’60
(still in connection with scalar conservation laws). The problem is non trivial and
interesting even if one assumes that wB is divergence-free.
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Recall that any measure σ can be uniquely written as σa+σj+σc, where σa � L
d,

σj is concentrated on a set σ-finite with respect to H d−1 and σc, the so-called
Cantor part, is singular with respect to L d and vanishing on any set with finite
H d−1-measure.
In a work in progress with De Lellis we proved that:

Da · (h(w)B) = [h(w)− wh′(w)]Da ·B + h′(w)Da · (wB)

and that

Dj · (wB) = 0 =⇒ Dj · (h(w)B) = 0.

However the rule for the computation of Dc · (h(w)B) is still missing, and therefore
a complete solution to the conjectures above.
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transport. C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833–838.

[36] G.Petrova & B.Popov: Linear transport equation with discontinuous coef-
ficients. Comm. PDE, 24 (1999), 1849–1873.

[37] F.Poupaud & M.Rascle: Measure solutions to the liner multidimensional
transport equation with non-smooth coefficients. Comm. PDE, 22 (1997), 337–
358.

[38] L.C.Young: Lectures on the calculus of variations and optimal control theory,
Saunders, 1969.

Scuola Normale Superiore, Pisa

l.ambrosio@sns.it

http://cvgmt.sns.it

I–11


