
Comptes Rendus

Mathématique

Makoto Sakagaito

A note on Gersten’s conjecture for étale cohomology over
two-dimensional henselian regular local rings

Volume 358, issue 1 (2020), p. 33-39

Published online: 18 March 2020

https://doi.org/10.5802/crmath.9

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.9
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2020, 358, n 1, p. 33-39
https://doi.org/10.5802/crmath.9

Number Theory, Homological Algebra / Théorie des nombres, Algèbre homologique

A note on Gersten’s conjecture for étale

cohomology over two-dimensional henselian

regular local rings

Une note sur la conjecture de Gersten pour la

cohomologie étale sur des anneaux locaux réguliers

henséliens à deux dimensions

Makoto Sakagaitoa

a Indian Institute of Science Education and Research, Mohali.

E-mail: makoto@iiserb.ac.in.

Abstract. We prove Gersten’s conjecture for étale cohomology over two dimensional henselian regular local
rings without assuming equi-characteristic. As an application, we obtain the local-global principle for Galois
cohomology over mixed characteristic two-dimensional henselian local rings.

Résumé. Nous montrons la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux régu-
liers henséliens sans supposer de caractère équicaractéristique. En application, nous obtenons le principe
local-global pour la cohomologie de Galois sur des anneaux locaux henséliens à deux dimensions de carac-
téristique mixte.
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1. Introduction

Let R be an equi-characteristic regular local ring, k(R) the field of fractions of R, l a positive
integer which is invertible in R and µl the étale sheaf of l -th roots of unity. Then the sequence
of étale cohomology groups

0 −→ Hn+1
ét

(
R,µ⊗n

l

)−→Hn+1
ét

(
k(R),µ⊗n

l

)
(1)

−→ ⊕
p∈SpecR
ht(p)=1

Hn
ét

(
κ(p),µ⊗(n−1)

l

)

−→ ⊕
p∈SpecR
ht(p)=2

Hn−1
ét

(
κ(p),µ⊗(n−2)

l

)
−→ ·· ·

is exact by Bloch–Ogus ([2]) and Panin ([10]). Here κ(p) is the residue field of p ∈ SpecR.
By using the exactness of the complex (1) at the first two terms, Harbater–Hartmann–Krashen

([7]) and Hu ([8]) proved the local-global principle as follows.
Let K be a field of one of the following types:

(a) (semi-global case) The function field of a connected regular projective curve over the
field of fractions of a henselian excellent discrete valuation ring A.

(b) (local case) The function field of a two-dimensional henselian excellent normal local
domain A.

Then the following question was raised by Colliot-Thélène ([3]):
Let n ≥ 1 be an integer and l a positive integer which is invertible in R. Is the natural map

Hn+1
ét

(
K ,µ⊗n

l

)−→ ∏
v∈ΩK

Hn+1
ét

(
Kv ,µ⊗n

l

)
(2)

injective ?
Here ΩK is the set of normalized discrete valuations on K and Kv is the corresponding

henselization of K for each v ∈ΩK .
Suppose that A is equi-characteristic. Harbater–Hartmann–Krashen ([7, Theorem 3.3.6])

proved that the local-global map (2) is injective in the semi-global case. Later, Hu ([8, Theo-
rem 2.5]) proved that the local-global map (2) is injective in both the semi-global case and the
local case by an alternative method.

If the sequence (1) is exact (at the first two terms) in the case where R is a mixed characteristic
two-dimensional excellent henselian local ring, then the local-global map (2) is injective even
without assuming equi-characteristic (cf. [7, Remark 3.3.7] and [8, Remark 2.6(2)]).

In the case where R is a local ring of a smooth algebra over a (mixed characteristic) discrete
valuation ring, the sequence (1) is exact (cf. [6, Theorem 1.2 and Theorem 3.2b)]).

In this paper, we show the following result:

Theorem 1 (Theorem 9). Let R be a mixed characteristic two-dimensional excellent henselian
local ring and l a positive integer which is invertible in R. Then Gersten’s conjecture for étale
cohomology with µ⊗n

l coefficients holds over SpecR. That is, the sequence (1) is exact.

See Remark 8(iii) for the reason why we assume dim(R) = 2 in Theorem 1. We obtain the
following result as an application of Theorem 1 :

Theorem 2. With notations as above, assume that A is mixed characteristic and l is a positive
integer which is invertible in A.

In both the semi-global case and the local case, the local-global principle for the Galois coho-
mology group Hn+1(K ,µ⊗n

l ) holds for n ≥ 1. That is, the local-global map (2) is injective for n ≥ 1.

V. Suresh also proved Theorem 2 by an alternative method (cf. [8, Remark in Theorem 1.2]).
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1.1. Notations

For a scheme X , X (i ) is the set of points of codimension i , k(X ) is the ring of rational functions on
X and κ(p) is the residue field of p ∈ X . If X = SpecR, k(SpecR) is abbreviated as k(R). The symbol
µl denotes the étale sheaf of l -th roots of unity.

2. Proof of the main result (Theorem 1)

In this section, we use the following results (Theorem 3 and Theorem 4) repeatedly:

Theorem 3 (cf. [4, Theorem B.2.1 and Examples B.1.1.(2)]). Let A be a discrete valuation ring, K
the function field of A and l a positive integer which is invertible in A. Then the homomorphism

Hi
ét(A,µ⊗n

l ) −→ Hi
ét(K ,µ⊗n

l )

is injective for any i ≥ 0.

Theorem 4 (The absolute purity theorem [5, p. 159, Theorem 2.1.1]). Let Y
i
,→ X be a closed

immersion of noetherian regular schemes of pure codimension c. Let n be an integer which is
invertible on X , and let Λ= Z/n. Then the cycle class (cf. [5, 1.1]) give an isomorphism

ΛY
∼−→ Ri !Λ(c)[2c]

in D+(Yét,Λ). Here D+(Yét,Λ) is the derived category of complexes bounded below of étale sheaves
of Λ-modules on Y .

In this section, we use Theorem 4 in the case where dim X ≤ 2. In this case, Theorem 4 was
proved much earlier by Gabber in 1976. See also [11, §5, Remark 5.6] for a published proof.

Proposition 5. Let R be a henselian regular local ring,m the maximal ideal of R and K the function
field of R. Let l be a positive integer such that l ∉m. Then the homomorphism

Hi
ét

(
SpecR,µ⊗n

l

)−→ Hi
ét

(
SpecK ,µ⊗n

l

)
(3)

is injective for any i ≥ 0.

Proof. We prove the statement by induction on dim(R). Let R be a discrete valuation ring (which
does not need to be henselian). Then the homomorphism (3) is injective by Theorem 3.

Assume that the statement is true for a henselian regular local ring of dimension d .
Let R be a henselian regular local ring of dimension d +1, a ∈m\m2 and p= (a). Then R/p is a

henselian regular local ring of dimension d and

k(R/p) = Rp/pRp

where k(R/p) is the function field of R/p.
Therefore the diagram

Hi
ét

(
SpecR,µ⊗n

l

) //

��

Hi
ét

(
SpecRp,µ⊗n

l

)
��

Hi
ét

(
SpecR/p,µ⊗n

l

) // Hi
ét

(
Speck(R/p),µ⊗n

l

) (4)

is commutative. Then the left vertical map in the diagram (4) is an isomorphism by [1, p. 93,
Theorem (4.9)] and the bottom horizontal map in the diagram (4) is injective by the induction
hypothesis. Hence the homomorphism

Hi
ét

(
SpecR,µ⊗n

l

)−→ Hi
ét

(
SpecRp,µ⊗n

l

)
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is injective. Moreover the homomorphism

Hi
ét

(
SpecRp,µ⊗n

l

)−→ Hi
ét

(
SpecK ,µ⊗n

l

)
is injective by Theorem 3. Therefore the statement follows. �

Proposition 6 (cf. [12, Proposition 4.7]). Let R be a regular local ring and l a positive integer which
is invertible in R. Suppose that dim(R) = 2. Then the sequence

Hi
ét(R,µ⊗n

l ) −→ Hi
ét(k(R),µ⊗n

l )
(∗)−−→ ⊕

p∈(SpecR)(1)

Hi−1
ét (κ(p),µ⊗(n−1)

l )

is exact for any i ≥ 0.

Proof. Let A be a Dedekind ring, q a maximal ideal of A. Then

Hi+1
q ((Spec A)ét,µ

⊗n
l ) = Hi−1

ét (κ(q),µ⊗(n−1)
l )

by Theorem 4. Hence the sequence

Hi
ét(A,µ⊗n

l ) −→ Hi
ét(U ,µ⊗n

l ) −→ ⊕
q∈Z (1)

Hi−1
ét (κ(q),µ⊗(n−1)

l )

is exact where Z is a closed subscheme of Spec A and U = SpecR \ Z . Since

lim→
U

Hi
ét(U ,µ⊗n

l ) = Hi
ét(k(A),µ⊗n

l )

by [9, pp. 88–89, III, Lemma 1.16], the sequence

Hi
ét(A,µ⊗n

l ) −→ Hi
ét(k(A),µ⊗n

l ) −→ ⊕
q∈(Spec A)(1)

Hi−1
ét (κ(q),µ⊗(n−1)

l ) (5)

is exact.
Let m be the maximal ideal of R. Let g ∈m\m2, p= (g ) and Z = SpecR/p. Then R/p is a regular

local ring and we have
Hi+1

Z ((SpecR)ét,µ
⊗n
l ) = Hi−1

ét (R/p,µ⊗(n−1)
l )

by Theorem 4.
We consider the commutative diagram

Hi
ét(R,µ⊗n

l ) //

��

Hi
ét(Rg ,µ⊗n

l ) //

��

Hi−1
ét (R/p,µ⊗(n−1)

l )′

��

// 0

0 // Ker(∗) // Hi
ét(Rg ,µ⊗n

l )′ // Hi−1
ét (k(R/p),µ⊗(n−1)

l )

(6)

where

Hi−1
ét (R/p,µ⊗(n−1)

l )′ = Im
(
Hi

ét(Rg ,µ⊗n
l ) −→ Hi−1

ét (R/p,µ⊗(n−1)
l )

)
and

Hi
ét(Rg ,µ⊗n

l )′ = Ker

Hi
ét(k(Rg ),µ⊗n

l ) −→ ⊕
q∈(SpecRg )(1)

Hi−1
ét (κ(q)),µ⊗(n−1)

l )

 .

Then the rows in the diagram (6) are exact by Theorem 4. Since Rg is a Dedekind domain, the
middle map in the diagram (6) is surjective by (5). Moreover, since

Hi−1
ét (R/p,µ⊗(n−1)

l )′ ⊂ Hi−1
ét (R/p,µ⊗(n−1)

l )

and R/p is a discrete valuation ring, the right map in the diagram (6) is injective by Theorem 3.
Therefore the statement follows from the snake lemma. �
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Corollary 7. Let R be the henselization of a regular local ring which is essentially of finite type over
a mixed characteristic discrete valuation ring. Suppose that dim(R) = 2. Then

Hn+1
Zar (R,Z/l (n)) = 0

for a positive integer l which is invertible in R. Here Z(n) is Bloch’s cycle complex and Z/l (n) =
Z(n)⊗Z/l (cf. [6, p. 779]).

Proof. Let m be the maximal ideal of R. Let g ∈m\m2 and p= (g ). Then the homomorphism

Hn+1
ét (R,µ⊗n

l ) −→ Hn+1
ét (Rg ,µ⊗n

l )

is injective by Proposition 5. Hence the homomorphism

Hn
ét(Rg ,µ⊗n

l ) −→ Hn−1
ét (R/p,µ⊗n−1

l )

is surjective by Theorem 4. Therefore the homomorphism

Hn
Zar(Rg ,Z/l (n)) −→ Hn−1

Zar (R/p,Z/l (n −1))

is surjective by [6, p. 774, Theorem 1.2] and [14]. Moreover the homomorphism

Hn+1
Zar (R,Z/l (n)) −→ Hn+1

Zar (Rg ,Z/l (n))

is injective by the localization theorem [6, p. 779, Theorem 3.2]. We consider the commutative
diagram

Hn+1
Zar (Rg ,Z/l (n)) //

��

Hn+1
ét (Rg ,Z/l (n))

��
Hn+1

Zar (k(Rg ),Z/l (n)) // Hn+1
ét (k(Rg ),Z/l (n)).

(7)

Then the upper map in the commutative diagram (7) is injective by the Beilinson–Lichenbaum
conjecture ([6, p. 774, Theorem 1.2], [14]) and the right map in the commutative diagram (7) is in-
jective by the commutative diagram (6) in the proof of Proposition 6. Hence the homomorphism

Hn+1
Zar (Rg ,Z/l (n)) −→ Hn+1

Zar (k(Rg ),Z/l (n))

is injective and the homomorphism

Hn+1
Zar (R,Z/l (n)) −→ Hn+1

Zar (k(Rg ),Z/l (n))

is also injective. Since
Hn+1

Zar (k(Rg ),Z/l (n)) = 0,

we have
Hn+1

Zar (R,Z/l (n)) = 0.

This completes the proof. �

Remark 8.

(i) If R is a local ring of a smooth algebra over a discrete valuation ring, then

Hi
Zar(R,Z/m(n)) = 0

for i > n and any positive integer m (cf. [6, p. 786, Corollary 4.4]).
(ii) If we have

Hn+1
Zar (R,Z/l (n)) = 0

for any regular local ring R which is finite type over a discrete valuation ring and a positive
integer l which is invertible in R, we can show that the homomorphism

Hn+1
ét (R,µ⊗n

l ) −→ Hn+1
ét (k(R),µ⊗n

l )

is injective by a similar argument as in the proof of [13, Theorem 4.2].
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(iii) The reason why we assume dim(R) = 2 in Propositin 6 and Theorem 9 is that we have to
show that the middle map in the diagram (6), i.e., the homomorphism

Hn+1
ét (Rg ,µ⊗n

l ) −→ Hn+1
ét (Rg ,µ⊗n

l )′

is surjective for an element g of m\m2. Here m is the maximal ideal of R and

Hn+1
ét (Rg ,µ⊗n

l )′ = Ker

Hn+1
ét (k(R),µ⊗n

l ) −→ ⊕
q∈(SpecRg )(1)

Hn
ét(κ(q),µ⊗(n−1)

l )

 .

If we have
Hn+1

Zar (R,Z/l (n)) = Hn+2
Zar (R,Z/l (n)) = 0

for any regular local ring R which is finite type over a discrete valuation ring and a positive
integer l which is invertible in R, then

Hn+1
Zar (Rg ,Z/l (n)) = Hn+2

Zar (Rg ,Z/l (n)) = 0

by the localization theorem ([6, p. 779, Theorem 3.2]) and we can show that

Hn+1
ét (Rg ,µ⊗n

l ) = Γ(SpecRg ,Rn+1ε∗(µ⊗n
l )) = Hn+1

ét (Rg ,µ⊗n
l )′

and Proposition 6 holds. Here ε : (SpecRg )ét → (SpecRg )Zar is the change of site maps.

Theorem 9. Let R be a henselian regular local ring with dim(R) = 2 and l a positive integer which
is invertible in R. Then the sequence

0 −→ Hi
ét

(
R,µ⊗n

l

)−→ Hi
ét

(
k(R),µ⊗n

l

)−→ ⊕
p∈(SpecR)(1)

Hi−1
ét

(
κ(p),µ⊗(n−1)

l

)
−→ ⊕

p∈(SpecR)(2)

Hi−2
ét

(
κ(p),µ⊗(n−2)

l

)
−→ 0 (8)

is exact for any i ≥ 0.

Proof. The exactness of the complex (8) at the first two terms follows from Proposition 5 and
Proposition 6.

We consider the coniveau spectral sequence

Hp,q
1 = ∐

x∈(SpecR)(p)

Hp+q
x

(
SpecR,µ⊗n

l

)⇒ Hp+q
ét

(
R,µ⊗n

l

)= Hp+q

(cf. [4, §1]). Then we have a filtration

0 ⊂ Hp+q
p+q ⊂ ·· · ⊂ Hp+q

1 ⊂ Hp+q
0 = Hp+q ,

such that
Hp+q

p /Hp+q
p+1 ' Hp,q

∞ .

By Theorem 4, it suffices to show that

H1,i−1
2 = H2,i−2

2 = 0.

By Proposition 5, the morphism
Hi −→ H0,i

∞
is injective and

Hi
1 = Hi

2 = 0.

Hence we have
H1,i−1

∞ = H2,i−2
∞ = 0.

Since
Hp,i−p+1

r = 0
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for p ≥ 3 and
H1−r,i+r−2

r = 0

for r ≥ 2, we have
H1,i−1

2 = H1,i−1
∞ = 0.

By the exactness of the complex (8) at the second term, we have

H0,i−1
2 = H0,i−1

∞ = Hi−1

and

Im

(
H0,i−1

2

d0,i−1
2−−−−→ H2,i−2

2

)
= 0.

Hence we have
H2,i−2

2 = H2,i−2
3 .

Moreover, since
H2−r,i+r−3

r = 0

for r ≥ 3, we have

H2,i−2
r+1 = Ker(d2,i−2

r )

Im(d2−r,i+r−3
r )

= H2,i−2
r

for r ≥ 3. Therefore
H2,i−2

2 = H2,i−2
3 = H2,i−2

∞ = 0.

This completes the proof. �
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