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Abstract. A family of infinite subsets of a countable set X is called positive iff it is closed under supersets and
finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure
X has the strong amalgamation property iff the set P(X) ={Ac X : A= X} contains a positive family. In that case
the family of large copies of X (i.e. copies having infinite intersection with each orbit) is the largest positive
family in P(X), and for each R-embeddable Boolean linear order L whose minimum is non-isolated there is a
maximal chain isomorphic to L \ {minL} in (P(X), ).
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1. Introduction

The purpose of this short note is twofold. One is to present some new results about positive
families. The other one is to provide a natural context for the recent research from [11-13]. For a
countably infinite set X, a family &2 c P(X) is called a positive family on X (see [10]) iff

(P1) < [X]1?,

P2) »5AcBcX=>Be2,

P3) AePAN|Fl<w=A\Fe2?,

(P4) 3AeZ X\ Al =w.

We regard a positive family 2 on X as a suborder of the partial order ([X]“,<) (isomorphic
to {[w]®, <)) and important examples of positive families are co-ideals: if . c P(w) is an ideal
containing the ideal Fin of finite subsets of w, then the set .#* := P(w) \ .# of .#-positive sets is a
positive family. Thus [w] is the largest, while non-principal ultrafilters % < P(w) are the minimal
positive families of this form. Also, &~ = {AcQ: IntA # @} and S, ={AcQ: W(A) > 0} are
positive families on the set of rationals Q, where S, Int S and 1(S) denote the R-closure, R-interior
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and Lebesgue measure of a subset S of the real line R with the standard topology. Taking a non-
maximal filter & c P(w) which extends the Fréchet filter we obtain a positive family which is not
a co-ideal; another such example is the family Dense(Q) from Example 7; see also Theorem 5.

In our notation P(X) = {Ac X : A = X} denotes the set of all copies of a structure X contained
in X. The class of order types of maximal chains in the poset (P(X), <) will be denoted by .#. Let
%r denote the class of order types of sets of the form K\ {min K}, where K c R is a compact set
such that min K is an accumulation point of K. Let % be the subclass of order types from % for
which the corresponding compact set K is, in addition, nowhere dense. Main results from [12,13]
state that for a countable ultrahomogeneous partial order P

{QBR, if P is a countable antichain,
Mp =

%R, otherwise,
while for a countable ultrahomogeneous graph G we have

M = %Br, if Gisadisjoint union of complete graphs,
e %R, otherwise.

These results suggest that there might be a general theorem describing the classes .#x. The rea-
son for focusing on ultrahomogeneous structures is that .#x < %6g for an ultrahomogeneous X
(see [13] for example). Still, there are pathological structures even in the class of ultrahomo-
geneous ones. For example, there are ultrahomogeneous structures without non-trivial copies
(see [8, p. 399]). This kind of obstruction does not exist in the class of countable ultrahomoge-
neous relational structures whose age satisfies the strong amalgamation property (SAP). Recall
the following equivalence (see [8, p. 399]): a countable ultrahomogeneous relational structure X
satisfies SAP if and only if X \ F € P(X), for each finite F c X.

Section 2 contains results about positive families. The central one is that for a countable
ultrahomogeneous relational structure X, there is a positive family 2 on X such that 22 c P(X) if
and only if the age of X satisfies SAP. From this result in Section 3 we deduce that the structures
whose age satisfies SAP provide a natural context for investigating the phenomena we have
described above.

Theorem 1. If X is a countable ultrahomogeneous relational structure whose age satisfies SAR
then Br < My < Eg.

Since the class %y is quite rich, the previous result shows that many linear orders can be
realized as maximal chains in P(X) in that case. For example, the reverse of every countable limit
ordinal, or the order type of the Cantor set without 0. Note also that the countable complete graph
K., satisfies SAP, and that .4, = %r. On the other hand, the Rado graph Gg,q, also satisfies
SAP, but Ag,,,, = 6r. This implies that it is not possible to narrow the interval of possibilities in
Theorem 1. However, we do not know an answer to the following question.

Question 2. Is there a countable ultrahomogeneous relational structure X whose age satisfies SAR
but such that Br < Mx C Er?

We assume that the reader is familiar with Fraissé theory. The theory itself was started in [5-7],
while a detailed treatment is given in [8]. Besides the mentioned book, [13] is a good reference
for all undefined notions. We will only comment on the notion of an orbit. Suppose that X is a
relational structure and F c X finite. We say that x ~r y iff there is g € Aut(X) such that g [ F = idp
and g(x) = y. Clearly, ~r is an equivalence relation, and orbr(x) denotes the class of an element
x. The sets orbr(x) are called the orbits of X. We call a copy A € P(X) large iff it has infinite
intersection with each orbit of X. For sets A and B, let Ac* B denote the inclusion modulo finite,
ie. Ac* Bo |A\B|<w.
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2. SAP, large copies and positive families

Theorem 3. If X is a countable ultrahomogeneous structure X satisfying SAB then a copy A € P(X)
is large iff it intersects each orbit of X.

Proof. Suppose that A is a copy of X intersecting all orbits of X and that the intersection An
orbr(x) = Fj is finite, for some finite set F < X and some x € X \ F. Since X satisfies SAP we have
lorbr(x)| = w and, thus, we can assume that x ¢ F;. Now, orbryr, (x) < orbr(x) \ F; and, hence,
Anorbryr, (x) = @, which is a contradiction. O

Note that the assumption that X has SAP can not be removed from the previous theorem, since
(trivially) X intersects all orbits of X.

Theorem 4. For a countable ultrahomogeneous relational structure X the following conditions
are equivalent:

(a) X satisfies the strong amalgamation property,

(b) X has a large copy,

(c) Thereis a positive family 2 on X such that 2 c P(X),

(d) Thereis a co-infinite AcP(X) such that BEP(X), whenever Ac*Bc X.

Proof. (a) © (b). Recall that X satisfies SAP iff all the orbits of X are infinite (cf. [2, Theorem 2.15,
p- 371). Then X is a large copy of X. Conversely, if A is a large copy of X, then A witnesses that all
orbits of X are infinite; thus X satisfies SAP.

(@) = (c). If X satisfies SAP, then the orbits of X are infinite and by Bernstein’s Lemma (see [9,
Lemma 2, p. 514], with w instead of ¢) there are two disjoint sets Ay, A; < X intersecting all orbits
of X, which implies that Ay, A; € P(X) (see e.g. [14, Theorem 2.3]). By Theorem 3 Aj and A; are
large copies of X (alternatively, see [14, Theorem 3.2]). Now, & := {A € P(X) : Ag <* A} c [X]? and,
since A; € X\ Ay, (P4) is true. If 22 3 Ac B c X, then Ay c* B. In addition, for each orbit O of X
we have |Ap N O| = w and, hence, |B N O| = w, which gives B € P(X) (by [14, Theorem 2.3] again).
Thus B € & and (P2) is true. If A€ & and F c X is a finite set, then, clearly, A c* A\ F and, as
above, A\ F e P(X). Thus A\ F € 22, (P3) is true and &2 is a positive family indeed.

(c) = (d). If 22 cP(X) is a positive family, then by (P4) there is a co-infinite set A € 22 and, hence,
AeP(X). For B c X such that A\ B =: F is a finite set, by (P3) we have 2 3 A\ F c B and, by (P2),
B e 22, thus B € P(X).

(d) = (a). Suppose that A c X is a copy given by (d). Then for each finite set F < X we have
Ac* X\F. Thus, by (d), X\ F € P(X). Now [4, Theorem 2] implies that the structure X satisfies
SAP. O

Now we turn to maximal positive families.

Theorem 5. Let X be a countable ultrahomogeneous relational structure satisfying SAP If
Prmax = {A€P(X):¥Y Bc X (Ac* B= BeP(X))}, then

(a) Pmax is the largest positive family on X contained inP(X);

(b) Pnax={A€eP(X):VBc X (Ac B=> BeP(X))},

(€) Pmax =1{Ac X : Aintersects all the orbits of X};

(d) Pmax={Ac X: Aisalarge copy of X}.

C. R. Mathématique, 2020, 358, n° 7, 791-796
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Proof. (a). PPnax satisfies condition (P1), because P . < P(X) < [X]%.

(P2) Assuming that 254 3 A< C < X we show that C € P «. Let Cc* Bc X. Then Ac* B as
well. Since A € 4%, both C € P(X) and B € P(X) hold. Thus C € %, indeed.

(P3) Let A € Prax and F € [X]<?. Let A\ F c* B c X. Since A € P(X), by [4, Theorem 2],
A\ F € P(X). Note that A c* A\ F implies A c* B. Now from A € P« follows B € P(X). Thus
A\ F € Pax.

(P4) By Theorem 4, there is a co-infinite set A € 2.

Now we show that 27,y is the largest positive family. Let 22 c P(X) be a positive family on
X. We prove & < Py, S0 let Ae P and Ac* B c X. Then F := A\ B is a finite set. Since &
satisfies (P3), we have AnB = A\ F € &2. By (P2) we have B € &. This implies B € P(X) because
P cP(X).So A€ Pax.

(b). Clearly, 22 :={Ae€P(X):V Bc X (Ac B= BeP(X))} 2 Pnax. To prove the reverse inclusion,
take any A € 22 and B c X such that Ac* B. Then F = A\ B € [X]? and A < BU F. Definition of
22 implies BU F € P(X). Since F is finite, Theorem 2 in [4] implies that B € P(X) is as required.

(c). Let2? :={Ac X: Aintersects all the orbits of X}. We check if 27, is a positive family on X. By
Theorem 2.3 in [14], 2 < P(X) c [X]%, so (P1) holds.

(P2) If 22, 3 A c B c X, then B intersects all the orbits of X. So B € Z;.

(P3) Let A€ 27|, F € [X]<%, and let O be an orbit of X. Since X satisfies SAP, Theorem 3 implies
|[ANO|=w.So (A\F)NnO# ®,and A\ F € 2.

(P4) follows from [14, Theorem 3.2].

By the maximality of 22,4, as proved in (a), we have 22, c P,x. So we still have to prove
Prax © Py. Take any A € Ppay, any F € [X]<%, and any x € X \ F. We will find y € Anorbg(x),
which proves that A € 22,. Definition of &5 implies that A; := AUFU{x} € P(X). Since X satisfies
SAP, by Theorem 2.15 in [2, p. 37] applied to the structure A; we know that the orbit of x over F in
A is infinite. Hence there is y € A; \ (FuU{x}), and g € Aut(A;) such that g [ F = idr and g(x) = y.
Let ¢ := g | (FuU {x}). Since X is ultrahomogeneous, there is f € Aut(X) such that ¢ < f. Hence,
f I F=idr and f(x) = y. Thus y € orbp(x). Since y € A} \ (F U {x}) we have y € Anorbg(x) as
required.

(d). It follows from (c) and Theorem 3. O

Example 6. Following the terminology of Fraissé, a relational structure X is called constant iff
Aut(X) = Sym(X). Since each isomorphism between finite substructures of X can be extended
to a bijection, X is ultrahomogeneous. In addition, for a finite F ¢ X and x € X \ F we have
orbr(x) = X \ F. So each countable constant relational structure X is ultrahomogeneous and
satisfies SAP. Moreover, since each injection from X to X is an embedding, X has the following
extreme property: Pmax = P(X) = [X]'X]. It is easy to see that X is constant iff each of its relations
is definable by a (quantifier-free) first order formula whose unique non-logical symbol is the
equality. For example, there are four countable binary constant structures: (w, @), (w, W%y, (w,Ay)
and (w,w?\ A,) and the last one is defined by the formula -y = v;. As another example, the
formula ¢ := vy = v1 V v1 = V2 V 7112 = v3 defines a quaternary constant relation.

Example 7. For the rational line, (Q, <), the orbits are open intervals. Thus
Pmax = Dense(Q):={AcQ:Vp,geQ (p<g=>An(p,q)g # D)}

This means that the fact that the rational line can be split into countably many disjoint dense
sets is a special case of Theorem 3.2 in [14], while the fact that there is a continuum-sized almost
disjoint family of dense subsets of the rational line is a special case of Theorem 4.1 in [14].
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3. Boolean maximal chains of copies

Here we prove Theorem 1 and present some applications. Let X be a countable ultrahomoge-
neous relational structure satisfying SAP. As already mentioned .#x < %R is known (for exam-
ple, take a look at [13, Theorem 2.2]). The remaining part of the statement follows from the next
proposition.

Theorem 8. If X is a countable ultrahomogeneous relational structure satisfying SAER then
Br < M.

Proof. Suppose that L is such that otp(L) € %Bg. Let L’ = L U {—oo} where {—oo} is the minimum of
[". By Theorem 3 in [11], L’ is isomorphic to an R-embeddable complete linear order whose min-
imum is non-isolated. Since X satisfies SAP, by Theorem 5(d) 22 = {A < X : Ais a large copy of X}
is a positive family contained in P(X). Theorem 3.2 in [14] guaranties that N = ¢. Hence, The-
orem 3.6(a) in [12] implies that there is a maximal chain £ in (P(X), <) isomorphic to L. Thus
gBR C ./ﬂx. O

Example9. Countable ultrahomogeneous digraphs have been classified by Cherlin [3]. Referring
to the list given in [1] and [15], we mention some structures satisfying SAP i.e. structures to which
Theorem 1 can be applied.

¢ All countable ultrahomogeneous partial orders except the posets (C,, <), for2 < n < w,
where C, = Q x nand {(q1, k1) <, (g2, k2) © q1 <g g2 (thus, C,, is a Q-chain of antichains
of size n).

¢ All countable ultrahomogeneous tournaments: the rational line @; the random tourna-
ment T; and the local order (S(2), —), where S(2) is a countable dense subset of the unit
circle, such that no two of its points are antipodal, and x — y iff the counterclockwise
angle between x and y is less than 7.

« All Henson’s digraphs with forbidden sets of tournaments;

o The digraphs I'y,, for n > 1, where T';, is the Fraissé limit of the amalgamation class of all
finite digraphs not embedding the empty digraph of size n.

» Two “sporadic” primitive digraphs S(3) and 22(3). The digraph S(3) is defined as the local
order S(2), but with angle 27/3. The digraph £2(3) has a more complicated definition; it
is precisely defined in [3, p. 76].

o The imprimitive digraphs n * I, for 2 < n < w. The digraph n * I, is obtained from a
countable complete n-partite graph by randomly orienting its edges.

o The digraph which is a semigeneric variant of w * I, with a parity constraint, i.e. it
is a countable ultrahomogeneous digraph in which non-relatedness is an equivalence
relation and for any two pairs A;, A, taken from distinct equivalence classes, the number
of edges from A to A, is even.
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