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Abstract. We recall a variation of a construction due to Laakso [3], also used by Lang and Plaut [3] of a
doubling metric space X that cannot be embedded into any Hilbert space. We give a more concrete version
of this construction and motivated by the results of Olson & Robinson [6], we consider the Kuratowski
embeddingΦ(X ) of X into L∞(X ) and prove thatΦ(X )−Φ(X ) is not doubling.
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1. Introduction

We say that a metric space (X ,d) is doubling, with doubling constant K , if for every given x ∈ X
and r > 0, there exist y1, . . . , yK in X such that

B(x,r ) ⊂
K⋃

i=1
B(yi ,r /2).

We say that a metric space (X ,d) embeds into a normed space (Y ,‖ ·‖) in a bi-Lipschitz way if
there exists f : X → Y and some constant L > 0, such that for all x, y ∈ X

d(x, y)
1

L
≤ ‖ f (x)− f (y)‖ ≤ L d(x, y).

We know that when a metric space embeds into an Euclidean space in a bi-Lipschitz way then it
must be doubling, but there are examples due to Laakso [3], Lang & Plaut [4] and Semmes [9] that
show that this condition is not sufficient.

In 1983, Assouad [1] proved that any doubling metric space X can be embedded into an
Euclidean space in a bi–Hölder way, i.e. for any 0 <α< 1, there exists some k ∈N and aφ : X →Rk

such that
1

L
d(x, y)α ≤ |φ(x)−φ(y)| ≤ Ld(x, y)α,

for all x, y ∈ X .
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We also want to recall the notion of a homogeneous metric space. A subset A of a metric space
(X ,d) is said to be (M , s)-homogeneous if for every x ∈ A and r > ρ > 0

N (A∩B(x,r ),ρ) ≤ M

(
r

ρ

)s

,

where N (A ∩ B(x,r ),ρ) denotes the minimum number of balls of radius ρ required to cover
A∩B(x,r ). It can be easily shown that a metric space is homogeneous if and only if it is doubling
(see Chapter 9 in the book of Robinson [7]). In 2010, Olson and Robinson [6] used Assouad’s
construction [1] and proved that if X is homogeneous then it can be also embedded in an almost
bi-Lipschitz way into a Hilbert space H , i.e. for any γ> 1

2 , there exists a map f : (X ,d) → H such
that for some positive constant L

1

L

d(x, y)

|logd(x, y)|γ ≤ ‖ f (x)− f (y)‖ ≤ L d(x, y).

Moreover, in 2014, Robinson [8] generalised the above result and and proved the following
embedding theorem for subsets of Banach spaces.

Theorem 1. Suppose X is a compact subset of a real Banach space B such that the set X − X =
{x − y : x, y ∈ X } is homogeneous. Then for any γ> 1, there exists a natural number N and a dense
set of linear maps L : B → RN , that are injective on X and γ-almost bi-Lipschitz, i.e. for some
constant cL

1

cL

‖x − y‖
|log‖x − y‖|γ ≤ |L(x)−L(y)| ≤ cL ‖x − y‖,

for all x, y ∈ X .

The above theorem can be used to provide embeddings of subsets of compact metric spaces,
using the isometric embedding Φ : (X ,d) → L∞(X ), given by x 7→ d(x, · ), due to Kuratowski (see
the notes from Heinonen [2] for a detailed proof). In particular, we can define “X − X ” in this
context to mean

X −X ≡Φ(X )−Φ(X ) = { f ∈ L∞(X ) : f = d(x, · )−d(y, · ), for x, y in X }.

It is an open problem whether we can prove there exist almost bi-Lipschitz embeddings into
Euclidean spaces under a weaker condition than the one in Theorem 1. It is also a question
whether we can prove “better” embeddings than almost bi-Lipschitz when X − X is homoge-
neous. There are known examples of homogeneous subsets of Banach spaces for which the set
of differences is not homogeneous (see for example Chapter 9 in the book of Robinson [7]) but
there is no information on the embedding properties of these sets.

In this paper, we consider a variation of the construction due to Laakso [3], which was used
by Lang & Plaut [4] to construct a doubling metric space X that cannot be embedded in a bi-
Lipschitz way into any Hilbert space. We prove that Φ(X ) −Φ(X ) is not doubling as a subset
of L∞(X ), thus giving motivation towards the direction of studying the set of differences more
closely. In this way, we also rule out the possibility of using Theorem 1 to prove the existence of
almost bi-Lipschitz maps into a Euclidean space for this set.

2. The Laakso graphs

We first recall the definition of the Gromov–Hausdorff distance of compact metric spaces.

Definition 2. Suppose X ,Y are compact metric spaces. Then

dG H (X ,Y ) = infmax{dist( f (X ), g (Y )),dist(g (Y ), f (X ))},

where the infimum is taken over all metric spaces M and all possible isometric embeddings
f : X → M and g : Y → M.
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It is easy to check that dG H (X ,Y ) = 0 if and only if X is isometric to Y (see the lecture notes
from Heinonen [2] for a proof), proving that the set of all isometry classes of compact metric
spaces equipped with dG H forms a metric space, which is compact (see Heinonen [2] again).

We now recall the construction due to Lang and Plaut [4] of a metric space that is homoge-
neous but does not embed in a bi-Lipschitz way into any Hilbert space. Here we use a construc-
tion that is somewhat more concrete than that of Lang and Plaut [4]. We define the limiting metric
space explicitly and then prove that it coincides with the one defined by Lang and Plaut.

Let X0 be a single edge of length 1. To construct Xi+1 from Xi , we take six copies of Xi and
rescale them by the factor of 1

4 as in the following Figure.

Figure 1. The first stages of the construction. At each step i the dotted subset is isomorphic
to Xi−1.

We define a metric %i (x, y) on each of the Xi to be the geodesic distance, i.e. the shortest path
that we need to travel on the graph to get from x to y . We note that each Xi has diameter 1, has
two endpoints, and comprises of 6i edges of length 4−i each. Every Xi , for i > 0 also includes
6i−1 “squares”, which we call “edge cycles” for the rest of the paper. For any j > i , we construct an
isometric embedding of Xi into X j , by identifying vertices in Xi with vertices in X j and endpoints
with endpoints. The image of Xi into X j is represented with the dotted lines in the above figure.

It is also easy to see that dG H (Xi , X j ) < ( 1
4

)i
, and so {(Xi ,%i )}∞i=1 forms a Cauchy sequence in the

Gromov–Hausdorff metric and it follows that it converges to a limiting metric space X , which is
used by Lang and Plaut in their argument. We now construct this space X explicitly using the
following procedure

C. R. Mathématique, 2020, 358, n 4, 515-521
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Let (Xi ,%i ) be as above for any j > i let hi→ j denote an isometric embedding of Xi into X j .
Then, we take X ∗ =∪∞

i=1Xi and define the following function on X ∗×X ∗, by setting

%∗(x, y) =
{
%i (x, y) if x, y ∈ Xi .

% j (hi→ j (x), y) if x ∈ Xi , y ∈ X j and i < j .

We note that the above function is a pseudometric on X ∗ as long as we choose the embeddings
hi→ j such that

hi→ j ◦h j→k = hi→k , ∀ i < j < k. (1)

We now define a new metric space X , by identifying points in Xi with their respective images in
all X j for j > i . For all x, y ∈ X ∗, we define the following equivalence relation

x ∼ y ⇐⇒ %∗(x, y) = 0,

and we set X =∪∞
i=1[Xi ]. Then, for any [x], [y] ∈ X , we define

%([x], [y]) = %∗(x, y).

This definition of X does not depend on the embedding hi→i+1 we choose at each step, as long
as (1) is satisfied. If we consider another embedding we end up with an isometric metric space.

Using the above construction, it is easy to check that

dG H (X , Xi ) → 0.

Indeed, let π : Xi → X be such that for any x ∈ Xi ,

π(x) = [x].

It is immediate that π is an isometry from Xi onto [Xi ]. Therefore,

dG H (X , Xi ) = dG H (X , [Xi ]) ≤ dX (X , [Xi ]).

Let x ∈ X \ [Xi ]. Then, there exists k > i such that x ∈ [Xk ]. Then,

dX (x, [Xi ]) = dXk (x,hi→k (Xi )) ≤
(

1

4

)i+1
i→∞−−−→ 0,

which proves that X coincides with the metric space defined by Lang and Plaut. For the rest of
the argument when we mention a point x ∈ Xi we refer to the class [x] with respect to the above
equivalence relation.

Lang & Plaut [4] showed that X is doubling with doubling constant 6. Using the above
construction, their proof becomes somewhat more transparent. For a proof see [5].

Now, we recall the Kuratowski embedding

Φ : X → L∞(X ) (2)

x 7→ %(x, · ).

and we define

X −X = {%(x, · )−%(y, · ) : x, y ∈ X }.

We now prove that X −X is not doubling.

Theorem 3. If X is the metric space defined above and Φ : X → L∞(X ) is the Kuratowski embed-
ding defined in (2) then,Φ(X )−Φ(X ) is not doubling.

Proof. We assume thatΦ(X )−Φ(X ) is doubling.
Let r = ( 1

4

)i
, for some i ∈ N and take the ball BX−X (0,2r ). Suppose that there exist M and

g j ∈ X −X that satisfy

BX−X (0,2r ) ⊂∪M
j=1BX−X (g j ,r ).

C. R. Mathématique, 2020, 358, n 4, 515-521
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Now, let f ∈ BX−X (0,2r ). Then, there exist x, y ∈ X such that

f (z) = %(x, z)−%(y, z), ∀ z ∈ X .

We can easily check that ‖ f ‖∞ = %(x, y) < 2r. Similarly, let t j , s j ∈ X such that

g j (z) = %(t j , z)−%(s j , z), ∀ z ∈ X .

Any time we choose x, y ∈ X such that %(x, y) < 2r , we obtain an element of BX−X (0,2r ). Let
[Xk ] ⊂ X such that

t j , s j ∈ [Xk ],

for all j ≤ M . We now have two cases:
If k ≤ i , we show that for any edge cycle in Xi , there exist copies of some t j or s j that belong to

this edge cycle. Suppose that there exist a cycle in Xi that does not contain any images of t j , s j .
Then, we choose x, y ∈ Xi as in the Figure 2, where we zoom in at that specific cycle. Then, x, y ∈ X
satisfy

%(t j , x) > r, ∀ j ≤ M

%(s j , x) > r, ∀ j ≤ M

%(s j , y) > 0, ∀ j ≤ M

r < %(x, y) < 2r.

Figure 2. The edge cycle in Xi , which does not contain any t j , s j .

Since f ∈ BX−X (0,2r ), there exist j ≤ M such that

‖ f − g j ‖∞ < r ⇐⇒‖%(x, z)−%(y, z)−%(t j , z)+%(s j , z)‖∞ < r,

for some j ≤ M . Choosing z as in the above figure, depending on the position of t j , s j we have

‖%(x, z)−%(y, z)−%(t j , z)+%(s j , z)‖∞ = %(t j , x)+%(s j , y) > r

or

‖%(x, z)−%(y, z)−%(t j , z)+%(s j , z)‖∞ = %(x, y)+%(s j , t j ) > r,

a contradiction.
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We conclude that any edge cycle in Xi contains one of the ti , si and since there are 6i−1 edge
cycles contained in Xi , we deduce that

M ≥ 6i−1,

a contradiction.
If k > i , we consider the endpoints vi j ,ui j that enclose an edge cycle in Xi . We rescale the

cycle by the appropriate factor to create an edge cycle in Xk , with the same endpoints in Xk

(with respect to the equivalence relation we have). Since distances are preserved, we only need
to repeat the above argument for all these cycles in Xk (see also Figure 3). �

Figure 3. The case k > i .

3. Conclusion

The above result gives us an indication that we might expect better embedding properties, if we
impose some condition on the set of differences. Moreover, following the results due to Olson and
Robinson [6], which are mentioned in the introduction, we arrive to the following open problems

(1) If X is as in Theorem 3, is there an almost bi-Lipschitz embedding f : X →Rk ?
(2) Does every doubling metric space admit an almost bi-Lipschitz embedding into an

Euclidean space? (A positive answer would yield a positive answer to the first question.)
(3) If the set of differences X − X is homogeneous, can we obtain “better” embedding

properties than almost bi-Lipschitz?
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