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Abstract. The ring of symmetric functions has a basis of dual Grothendieck polynomials that are inhomoge-
neous K-theoretic deformations of Schur polynomials. We prove that dual Grothendieck polynomials deter-
mine column distributions for a directed last-passage percolation model.

Résumé. Lanneau de fonctions symétriques a une base de polynémes de Grothendieck duales qui sont des
déformations K-théoriques non homogénes des polyndémes de Schur. Nous prouvons que les polyndmes
de Grothendieck duales déterminent distributions des colonnes pour un modele de percolation dirigée de
dernier passage.
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1. Introduction

In this note we show a surprising connection between (i) the dual Grothendieck polynomials
that are deformations of Schur polynomials arising in K-theoretic Schubert calculus, and (ii) a
directed last-passage percolation model (which can also be viewed as the corner growth model
or a totally asymmetric simple exclusion process).

1.1. Dual Grothendieck polynomials

The ring of symmetric functions has an inhomogeneous basis {g,} called the dual Grothendieck
polynomials. The symmetric polynomials gj(x,...,X,) can be defined via the following combi-

natorial formula .
i ()
gL xn) = Yy [[x",

m:sh(m)=Ai=1
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where the sum runs over plane partitions n of shape A with largest entry at most n and c; ()
is the number of columns of 7 containing i. It is easy to see that gy = sj +lower degree terms,
where s, is the Schur polynomial. This basis was explicitly introduced and studied in [7] (and
earlier implicitly in [3, 8]) in relation to the K-theory of Grassmannians. More properties of these
functions can also be found in [13,16].

1.2. Directed last-passage percolation

Let W = (w;j);,j=1 be a random matrix with independent entries w;; that have geometric
distribution with parameters g; € (0, 1), i.e.

Prob(w;; =k)=(1-gq;) q}c, keN.
A lattice path IT with vertices in N? is called a directed path if it uses only steps of the form
(i, j) — (i+1,])),(, j+1). Define the last-passage times G(m, n) as follows:

G(m,n) = Wij,

max
IM:(1,1)—(m,n) (i,j)€l_[

where the maximum is over directed paths I1 from (1, 1) to (m, n). The function G presents certain
random growth. This probabilistic model, which can also be viewed as the corner growth model
or a totally asymmetric simple exclusion process (TASEP), was studied intensively (especially
in the i.i.d. case gq; = ¢), see [1, 4, 6, 10, 11] and references therein. Let us call the matrix G =
(G(m, n)) m,n=1 as the percolation matrix.

1.3. Column distributions of the percolation matrix

Our main result is the formula showing that joint distribution of elements along any column in

the percolation matrix G is proportional to evaluations of dual Grothendieck polynomials. Let
Py=A=A,.. A eN": L1 =2---21,,=20}

be the set of integer partitions with at most m parts.

Theorem 1. Let A= (Ay,...,A) € Py,. The following formula holds
n
Prob(G(m,n) = Ay,...,G(,n) = Ay) = g1(q1,.--,qn) H(l —g)™
i=1

On one hand, this formula can be viewed as a natural probabilistic interpretation of dual
Grothendieck polynomials. On the other hand, it can also be used for computing distribution
formulas in the percolation matrix. We prove Theorem 1 combinatorially, using certain bijection
between plane partitions and integer matrices. We then give some applications. For example, we
present new generating function identities for dual Grothendieck polynomials and determinantal
formulas for distributions of the percolation matrix.

2. Proof of the main theorem
2.1. Plane partitions and N-matrices

An N-matrix is a matrix of nonnegative integers with only finitely many nonzero elements. A
plane partition is an N-matrix 7 = (7;);,j=1 such that
WijZRiv1j, Wij=Mij+1, L jzl

The shape of 7 is defined as sh(r) := {(i, j) : w;; > 0}.
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Given a plane partition 7, define the descent level sets
Dig:={j:mij=€>miu1j}

i.e. Djy is the set of column indices of the entry ¢ in ith row of & that are strictly larger than the
entry below. Let d;¢ := |Dj¢l and D := (d;¢); ¢>1-
Define the map @ : {plane partitions} — {N-matrices} by setting

®(m) = D.
For example,
414|2 0101
®:14(2|1|—|1001
212 0200

In fact, @ is a bijection; we can uniquely reconstruct r given the matrix D. We refer to [14, 15]
for more on this bijection. Denote by PP(m, n) the set of plane partitions with at most m rows and
largest entry at most n. In particular, if 7 € PP(m, n), then sh(r) € 22, and D = ®(r) has at most
m rows and n columns that are nonzero.

Lemma 2. Let W = (wig);”l;':’l be an m x n matrix, where w;, are independent geometrically

distributed random variables with parameters qy. Let m € PP(m, n). Then

n
Prob(W =®(n)) = H (1- W)mq;[(ﬂ)
/=1

where cy () is the number of columns of m containing ¢.

Proof. Let (d;¢) = ®(n),i.e.djg ={j:7w;j =€ >m;1j}l for i € [1,m], £ € [1, n]. Since the entries of
W are independent we obtain that

m n m n n
Prob(W = ®(m) = [ | [[ Probwir =di) = [[ [[(1- g0 )" = [[Q-gn™ g™
i=14=1 i=1¢=1 =1

as ) ;dis = cy(m), as needed. O

Lemma3. Letn € PP(m,n) and ®(n) =D = (d;s). Let A = sh(n) be the shape of ©. We have for all
kell,m]

A=  max die, (1)
H:(k,l)—»(m,n)(i'%‘én '

where the maximum is over directed paths1l from (k,1) to (m, n).

Proof. Take an arbitrary directed path IT from (k, 1) to (m, n). Then the descent level sets D;, for
(i,¢) € I1 are pairwisely disjoint. Using this property and since i = k for all (i, ¢) € I, we obtain

Y dig=) Wjimij=0>mipj} < Ag. 2)

(i,0)ell (i,9)
On the other hand, suppose the k-th row of 7= has entries (/; = --- = ¢; > 0) where s = 1.
Assume the entries ¢4,...,¢s end in rows i = --- = i of 7. Then there is a directed path II from
(k,1) to (m,n) containing all points (i, ¥s),..., (i1,¢1). The weight of any such path is at least
Y d,-j (;zs= Ak. Combining this with the inequality (2) we obtain (1). O

Proof of Theorem 1. As we are interested only in joint distribution of the last-passage times
(G(m,n),G(m - 1,n),...,G(1,n)) we can restrict the source random matrix W to the first m
rows and n columns. Consider w;; as geometric with parameter g,-j+1. By rotation sym-
metry it is obvious that the corresponding last-passage times produced from the matrix
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W' = (Wm—i+1,n- j+1);njlzl have the same distributions. Now, by definition of g, and using
Lemma 2 we obtain that

n n
[a-a0" g cgn= Y [la-a0"q™
/=1 mePP(n,m),sh(m)=1¢=1

= > Prob(W' = ® (1))

nePP(n,m),sh(m)=A
By Lemma 3 if W' = ®(xr) and sh(x) = A, we have G(m, n) = A4,...,G(1, n) = A,,. Therefore,

> Prob(W' = ® (1)) = Prob(G(m, n) = Ay,...,G(1,n) = Ap,)
nePP(n,m),sh(mr)=A

and hence the result is proved. U

Next we discuss some applications.

3. Last-passage time distributions
3.1. Parameter symmetry

Since the polynomials g, are symmetric we obtain
Corollary 4. The distribution
Prob(G(m,n) =Aq,...,G(1,n) = )

is invariant under permutations of the parameters (qu, ..., qn).

3.2. Formulas for last-passage distributions

First, using branching formulas for g,, we easily obtain the following distribution formula as well.

Corollary 5. We have

n
Prob(G(m, n) < A1,...,G(L ) < Ap) = [ [ = 4™ g2 (L, 1, -, ).
i=1

Proof. Theorem 1 combined with the branching relation
Z gl,t(qurqn) = gﬂ(qul)-“rqn)
uci
easily imply the given formula. g

Using Jacobi-Trudi-type determinantal identities for g, (see [13]) we get the next formulas.

Corollary 6. The following formulas hold !

n !
Prob(G(m,n) = Aq,...,G(L,n) = Ay) = 1_[ (1-g;)™det [e,l;_,-ﬂ(l’li_l, qi,---qn)
i=1

n . m
=[a-g)™det|[my, ;0 qriqn)]
i=1 hi=l

)

M
ij=1

Corollary 7 (Single point distributions via Schur polynomials). We have

n
Prob(G(m,n) < a) = [[1-g)" s@m 1™, q1,...,qn)
i=1

1Here e, is the elementary symmetric polynomials, ki is the complete homogeneous symmetric polynomials,
1™ =(1,...,1) repeated m times, and A’ is the conjugate partition of A.

C. R. Mathématique, 2020, 358, n° 4, 497-503
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Proof. From Corollary 5 and the first determinantal formula in Corollary 6 which coincides with
the Jacobi-Trudi determinant for s, (1™, q1,..., q,) we have

n

n
Prob(G(m,n)<a)=[[(1-g)" gam/(L q1,....q0) = [ [A = g™ sy (1™, q1,..., qn)
i=1 i=1

as neeeded. O

Remark 8. From this formula, via the Jacobi-Trudi identity one can also obtain Toeplitz as well
as Fredholm determinantal expressions using the Borodin-Okounkov formula [2].

Remark 9. These distribution formulas were presented in the special i.i.d. case g; = g in [15].

Remark 10. We should also note that there are alternative methods for computing the discussed
distributions. There is a well-known connection between last-passage percolation and Schur
polynomials, see [4, 6]. Such formulas for the distribution of G(m, n) were first obtained in [4]
and used for their asymptotic analysis, see also [6]. In addition, it can be observed that the
column distributions (G(m, n),...,G(1, n)) correspond to distributions of first rows of partitions
in appropriately specialized Schur processes [9], see also [6]. Here one relies on the Robinson—
Schensted-Knuth (RSK) correspondence. The symmetry from Corollary 4 can be seen that way,
as well as similar formulas for last-passage time distributions can be derived.

4. Generating series identities for g
By Theorem 1 we can define the probability distribution P, , on the set of integer partitions 22,
by setting
n
Pm,n(/l)5=H(l_qi)mgﬂt(qun-;chz); AE‘@m'

i=1
In particular, since Y jeg, P n(A) = 1 we immediately obtain the following identity for dual
Grothendieck polynomials (it can also be found in [14, 15]).

Corollary 11. The following identity holds
Y. &ulq....qn) = ﬁ(l —-q)™".
AP, i=1
Next, observe that we have the following marginal distributions for the parts Ax:
Pmn(Ax < a) =Prob(Gim—-k+1,n) < a)
which give a shift invariance property
PunAp<a) =Py pi1,n(A1 < a)

In particular, the last part A,, has distribution as Y7, W; for independent W; geometrically
distributed with parameter g;.
We now present a new more general identity for dual Grothendieck polynomials.

Theorem 12. Let k € [1,m] and a € N. The following identity holds

n

Yoo gageq)=]]0a- gnN'* S(am—k+1)(lm_k+l, Gi,eeor Gn).
AP, Ap=a i=1
Proof. Recall that we have the marginal distributions

Pmn(Ak < a) =Prob(Gim—-k+1,n) < a)

C. R. Mathématique, 2020, 358, n° 4, 497-503
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Using Corollary 7, we have
n
Prob(G(m—k+1,m) < a)=[[(1—g)™ s gmi, A" g1, qn).
i=1
On the other hand, by definition of the distribution P, ,, above, we get

n
PonAe<sa)=[]A-g)™ Y,  gqu....qn)
i=1 ﬂ.&@m,/lkﬁa

Combining the last two identities we obtain the needed. 0

Corollary 13. For k = m we obtain the following identity

n
Yo g an) =10 =a)" " halan,..., qn)
AEPy, Am=a i=1

Proof. For k = m we have
n

Y g@engn) =[]10=g)" " ha(L, qu, .., Gn).
APy, Am=<a i=1

Now the following recurrence relation for the polynomials #,

ha(lyCIl;---an) - h(l—l(lyqlr---)qn) = h(l(qu---rqn)
then gives the needed identity. 0

Remark 14. There is one more connection of dual Grothendieck polynomials with the corner
growth model via positive specializations of {g)}, presented in [17]. The distribution P, , can
also be extended for any positive specialization as we discuss it for a special example in the next
section.

5. Plancherel limit and longest increasing subsequences

Consider the specialization g; =y/n forall i € [1, n], y > 0 and let n — co. We obtain
(my)"

Jl{gopm,n(l) =e ™ r}i—{gogll (7/ n,... )Y/ n=e " ; ngl,m,n(l) T,
n times
where Pgp) () is a probability distribution on the set of partitions A = (n™), defined below.
To define it, we need a generalization of standard Young tableaux. A plane partition 7 is called
a strict tableau (ST) if for some n, each entry i € [n] := {1,..., n} appears in exactly one column of
7. We then say that [n] is a content of . Let ST(A, n) be the set of ST of shape A with content [rn]

and fj(n) =|ST(A, n)|.

Lemma 15 (see [14]). We have

(n)
ngl,m,n(/l) = f:n_n

is a well-defined probability measure on the set of integer partitions A < (n™).
Let W, ;» be the set of words of length 7 in the alphabet [m]. For aword w = wy -+~ wy, € Wiy,
a weakly increasing subsequence is a sequence of the form
wi <--=wjp, l1sijp<--<ig=n,

where k is its length. Let L; (w) be the length of the longest weakly increasing subsequence of w
using the letters {m —i+1,..., m}. In particular, L, (w) is just the number of m’s in w and L, (w)
is the length of the longest weakly increasing subsequence of w.

Consider the uniform probability measure on W, ,,. Then we have the following analogue of
Theorem 1 in this Plancherel limit regime.

C. R. Mathématique, 2020, 358, n° 4, 497-503
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Theorem 16. We have
Prob(Lp, = A1,..., Ly = Apm) = Pgpi,m,n(A).

A combinatorial version of this result (an analogue of Green’s theorem for RSK), which can
be turned into this statement, is proved in [14]. The distribution of L, was studied in [12] from
which we obtain that for fixed m the limiting distribution of the first row A, satisfies

i M —nlm _
nl_{lgopgpl,m,n W =tf|= PGUE(,)n Amax = 1),

where the r.h.s. is the distribution of the largest eigenvalue in m x m traceless Gaussian unitary
ensemble (GUE). In addition, note that A,;, has binomial distribution with parameters n and 1/m
and hence after proper scaling it converges to normal distribution. Now, what is limiting joint
distribution of the properly scaled shape A when m is fixed? This would compare to the results
in [5] on limiting distribution of the shape for a random word under the RSK correspondence,
which converges to the spectrum of traceless GUE.
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