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Abstract. Given a probability measure P on an Alexandrov space S with curvature bounded below, we prove
that the support of the pushforward of P on the tangent cone T}« S at its (exponential) barycenter b* is a
subset of a Hilbert space, without separability of the tangent cone.

Résumé. Ftant donné une mesure de probabilité P sur un espace d’Alexandrov S avec courbure minorée,
nous prouvons que le support de la mesure poussée de P sur le cone tangent TjxS a son barycentre
(exponentiel) b* est un sous-ensemble d'un espace de Hilbert, sans condition de séparabilité du cone
tangent.
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1. Introduction

Barycenter of a probability measure P (a.k.a. Fréchet means) provides an extension of expectation
on Euclidean space to arbitrary metric spaces. We present here a useful tool for the study of
barycenters on Alexandrov spaces with curvature bounded below: the support of log, . #P in the
tangent cone at the barycenter is included in a Hilbert space. This rigidity result has been stated
in [9] as Theorem 45, however the proof is not written. Moreover, there is an extra assumption
of support of log,« #P being separable, which does not even seem to be a consequence of the
support of P being separable. As pointed out by [7], it is not clear if even S being proper ensures
that the tangent cone is separable. This paper presents a proof of this rigidity result, without this
extra separable assumption on the tangent cone. For measurability purposes (see Lemma 6), we
suppose however that S is separable. The proof is essentially the one of Theorem 45 of [9], with
needed approximations dealt with a bit differently.
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2. Setting and main result

We use a classical notion of curvature bounded below for geodesic spaces, referred to as Alexan-
drov curvature. We recall several notions whose formal definitions can be found for instance in [3]
or in the work in progress [2].

For a metric space (S, d), we denote by &2, (S) the set of probability measures on S with finite
moment of order 1 (i.e. such that there exists x € S such that [ d(x, y)dP(y) < oco). The support of
a measure P will be denoted by suppP. We use both notation  fdP and Pf for the integral of f
w.r.t. P.

A geodesic space is a metric space (S, d) such that every two points x,y € S at distance is
connected by a curve of length d(x, y). Such shortest curves are called geodesics. For x € R, the
model space (My, dy) denotes the 2-dimensional simply connected complete surface of constant
Gauss curvature x. A geodesic space (S, d) is an Alexandrov space with curvature bounded below
by x € R if for every triangle (3-uple) (xp,x;1,y) € S, and a constant speed geodesic (x;)e0:1]
there exists an isometric triangle (Xo,x1,¥) € My, such that the geodesic (X;)se[o;1) satisfies for
all € [0;1],

ay,x) = di(¥,%y).

For such spaces, angles between two unit-speed geodesics v, starting at the same point p € S
can be defined as follows:

d*(y1(1), p) + d*(y2(1), p) — d?(y1 (1), 72 (1))

2d(p,y1()d(p,y2(1)

where angle Z,(y1,72) € [0;]. Denote by I';, the set of all unit-speed geodesics emanating from
p. Using angles, we can define the fangent cone T, S at p € S as follows. First define TI/HS as the
(quotient) set I', x R*, equipped with the (pseudo-)metric defined by

cosZp(y1,y2) =lim

)

1, 0= (2, N5 = 8° + 17 = 25.6C08 £y (y1,72).

Then, the tangent cone T,S is defined as the completion of T;,S equipped with the metric || - | .
We will use the notation for u, v e TS,

p

We will often identify a point y(¢) € S with (y, t) € T),S. Although such y might not be unique, we
will assume a choice of a map log,,: S — T}, called logarithmic map, such that forall x € S, there
exists a unit-speed geodesic y emanating from p such that, for some ¢ >0, y(f) = x and

1
(v = S Uuly + vl = lu=vlp),

logp(x) =(y, 0.
This map can be chosen to be Gg-measurable, where G denotes the o-algebra generated by
open balls on the tangent cone T, S (see Lemma 6) and this weak measurability is enough for our
results to hold and will be assumed for the rest of the paper. Then the pushforward of P by log,
will be denoted by log , #P.

The tangent cone is not necessarily a geodesic space (see [4]), however, it is included in a
geodesic space, namely the ultratangent space (see for instance Theorem 14.4.2 and 14.4.1 in [2])
that is an Alexandrov space with curvature bounded below by 0.

The tangent cone T,S contains the subspace Lin, of all points with an opposite, formally
defined as follows. A point u belongs to Lin, < T}, S if and only if there exists v € T),S such that
luly=llviy, and

(u,v)p = —lul.
Our main result is based on the following Theorem.

Theorem (Theorem 14.5.4 in [2]). The set Lin, equipped with the induced metric of T,S is a
Hilbert space.
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A point b* € S is a barycenter of the probability measure P € 2 (S) if forall be S
0= f d*(x,b) - d*(x,b*) dP(x).
Such barycenter might not be unique, neither exists. However, when they exist, they satisfy
f %, y) - dP & P(x, ) = 0. 1)

A point b* € S satisfying (1) is called an exponential barycenter of P.
We can now state our main result.

Theorem 1. Let (S,d) be an Alexandrov space with curvature bounded below by some x € R and
P e P\ (S). Ifb* € S is an exponential barycenter of P, then supplog,« #P c Lin,« S. In particular,
supplog,« #P is included in a Hilbert space.

This result allows to prove the following Corollary, that has been implicitly used in [1].

Corollary 2 (Linearity). Letb € Ty~ S. Then, the map (-, by~ : Liny~ — R is continuous and linear.
In particular, if b* is an exponential barycenter of P, then

f (x, by« dP(x) = 0.

3. Proofs

Recall that we always identify a point in S and its image in the tangent cone T}, S by the log,, map.

Proof of Corollary 2. Linearity is obvious from the definition of (-, b),~. We check that x —
(x, by~ is a convex and concave function in Ling,« S. Let t € (0,1), xp,x; in Liny« S, and set
x; = (1 - f)xp + tx;. Since the tangent cone is included in an Alexandrov space with curvature
bounded below by 0 on one hand, and Lin,~ is a Hilbert space on the other hand,

1
o, Dy = 5 (Ixe 12, + 1515, = llx: = bI?)

< % (A= Uxol5, = llxo = b5 + tlllx1 13, — x1 = BI*) + 1B1154)
= (1 - ){x0, b) p* + t{x1, D) p*.
The same lines applied to —x( and —x; gives the converse inequality
(=X, DY px < (1 — £){—Xg, D) p* + t{—X1, D) p*.

The second statement follows from the fact that b* is a Pettis integral of the pushforward of P
onto Linyx < Ty« S, as a direct consequence of Theorem 1. g

Proof of Theorem 1. Let Lc {x€ S| f(x, -)p+dP = 0} be a measurable set such that P(L) = 1 given
by Lemma 3. Let x € L. For U = {x}, use Lemma 5 with Q = P and By a ball of radius ¢ around x in
Ty+ S, to get a sequence (y5)n < Ty« S such that,

limsupcos Z(1% Tyg)—lirnsu M
P b T = AR G r d b,y
= L limsup({x, y !
TR, DY i,y
1 fBg(x,y)b*dP(x) P(Bs)

<
= 2"
db*, x) P(Bs) (st fB§<x,y)b*dP®P(x,y))l
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Then, since [(x, y) b* dP(y) =0, letting § — 0, one gets

f (x, ) prdP(y) = f (x, ) prdP(y) — —d?(b*, x).

P(Bs)  P(By)
and
1/2
(Vi, J3, & ) prdP O P, )
— d(b*,x)
P(Bs)
Thus,

lim limnsupcosé(Ti*, TZ‘i) =-1
One can thus choose (7™), a sequence in (y§),,s such that cos Z(17,, TZZ) — —1. Since T)»Sis a

subspace of an Alexandrov space of curvature bounded below by 0, we also have

=n =k
ATy s 2m— (T 15 = 20510
-0,
as n,k — oo. Thus (™), corresponds to a Cauchy sequence in the space of direction, and
thus admits a limit in Ty S, since its “norm” also admits a limit d(b*, x). Its limit y satisfies
cosZ(1%,, Ty ) = —1, and therefore, it is the opposite j = —x.

Finally, by definition of the support, for x € supp(log;« P), every ball centered at x have a
positive probability, and thus there exists a sequence (x,),>1 < L such that x,, — x. We conclude
with the completeness of Lingx. g

Lemma 3 (Proposition 1.7 of [8] for non separable metric space). Suppose (S,d) is an Alexan-
drov space with curvature bounded below. Then, for any probability measure Q € 27, (S), and any
b*esS,

f(x, Mp+dQe®Q(x,y) =0.

Moreover, if b* is an exponential barycenter of Q, then for Q-almost all x € S,
f(x, .V>b* dQ(y) =0

Proof. For brevity, we will adopt the notation Qg for [ gdQ.

The result for Q finitely supported is the Lang-Schroeder inequality (Proposition 3.2 in [5]).
Thus, we just need to approximate Q ® Q(-,-);,* by some Q;, ® Q,(-,-),* for some finitely sup-
ported Q.

To approximate Q®Q(-, - )+, draw two independent sequences ofi.i.d. random variables (X 1) i
and (Xz), of common law Q, and denote Q), and Q? the corresponding empirical measures. In
partlcular QL ®Q? and Q% ®Q!, are both empirical measures of Q®Q. Since S is not separable, we
can not apply the fundamental theorem of statistics that ensures almost sure weak convergence
of Q, ® Q}, to Q ® Q. However, for a measurable function f: S x S — R, such that Q® Qf < oo, the
law of large number ensures that almost surely

Q,®Q;,f—~QeQf
and

Q,®Q,f —~Q®Qf.
Since the sequence (XI,X2 X1 X2 X1 X2 .) is also an i.i.d. sequence of random variables of
common law Q, the subsequence of the assomated empirical measures (Q )n defined by

Qn = E(Qn + Qn)
also satisfies the almost sure convergence

Q eQ)f—QeQf.
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Now, since
1
QeQ,=7Q0Q;+Q,0Q,+Q;2Q, +Q; 2 Q)),
we proved that almost surely

Q,®Q,f+Q52Q%f —2QeQf.

And since (Q}Z)n and (Q%)n are independent and with same law, it implies that both Q}l ® Q}1 f
and Q% ® Q2 f converge to Q ® Qf almost surely. In particular, since Q}, is supported on n
points, there exists a sequence of finitely supported measures (that we rename (Q;),) such that
Q,2Q,f — Q®Qf. We thus proved the first result applying f = (-, ) p=.

Now, for any x € S, applying this first result to the measure Q; := LQ+ 1—;5 x» We get

T+e
0=(1+6)Qe®Qc(-, ) p*
=Q&Q(:, ) pr +26Q(x, ) + €71 XI5
Letting € — 0%, we get
Q(x,-)px = 0.

Then equality follows from the hypothesis Q ® Q(-,-);» = 0 meaning that b* is an exponential
barycenter. 0

Lemma 4 (Subadditivity, Lemma A.6 of [5]). Let (S,d) be an Alexandrov space with curvature
bounded below. Take b* € S. Let x1,...,X, € TI;*S and U < Ty S finite. Then, for all € > 0, there
exists y € Ty« S such that forallue U,

n
(Y, Wpr < Z(xi,u)b* +¢&,
i=1

and
n
1< 3 (xix)pe +e.
i,j=1
Lemma 5 (Approximation). Let U c T, S finite. Take B c S measurable and a probability

measure P € 2, (S) such that P®P(-,-),x = 0 and P(B) > 0. Then, there exists a sequence (y"),,
such that forallue U

1 . )
P(B) fgcw’x)h*dpm 2 limsup(u, ") - @

and 1
P(B)? UB“’ Ve dPeP(x, y) =lima*(b*,y"). 3

Proof. Using the same arguments as in Lemma 3, we see that the empirical measures (P,),
satisfy
P,oP,f—-PgPf,

almost surely, for any f : SxS — R € L'(Sx S, P®P). In particular, taking f(x,y) =
(x,¥)p* 13x5(x, y), the following convergence holds in L? (P®>),

ff(';')b*dpn®Pn_’ff(';')b*dp@P; 4@
BJB BJB

and similarly for B€. Also, the law of large number ensures that almost surely, for all u € U,

f(')l'wb*dpn_’f(')u)b*dpv (5)
B B

and again, the same for B€. Thus, there exists a subsequence (of a deterministic realization of) P,,
(that we rename P;,) such that (4) and (5) both hold for all u € U.
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Then, applying Lemma 4 to finite sum

P(B) f Gt dPy,

shows that there exists a sequence (y"), € Tl’]* S such that (2) holds and for a sequence (g,) s.t.

n—0,
n)2
1712, < P(B)2 f f (1) AP © P+,
Then, applying the same Lemma 4 again shows that there exists a sequence (z"), c Tl’]* S, such
that

P(B)2 ff(x Mp<dP, P, (x,y)

= P(B)z (LL-}-LC[C-FZLLC)(x,y)b*dpnﬁbpn(x,y)

2 12" 15, + 1Y 150 + 240", 2" pr — €. 6)

Letting n — oo, one obtains

. 2 2
0 =lim [ 2”17 +2¢y", 2" px + 17" 5
. 2 2
= lim | 2", =20y 1p* 12" > + 1y 15
. 2
=Hm(lIz" = ly"llp=)" 2 0.

and which shows limy, || y"| = lim, ||z"|| and also that (6) becomes an equality at the limit and
therefore

. 2
hrrzn ||zn||h* — P(B)Z f f (x,)pxdP®P(x, ) O

This Lemma appears in a remark of [6].

Lemma 6 (Measurability of the log map). Let (S,d) be a separable Alexandrov space. Let p € S.
Thenlog,,: S — TpS can be chosen to be & g-measurable.

Proof. Denote G, the space of all constant speed geodesics emanating from p equipped with
the sup distance || - [lco. Then (Gp, |l - o) is separable and complete too. Using Kuratowski and
Ryll-Nardzewski measurable selection theorem, one can choose a Borel map g : S — G, such
that g maps x to a geodesic from p to x. Then, using the (proof of) Lemma 4.2 of [7], the map
l: Gp — TS is measurable TS is equipped with the o-algebra & generated by open balls.
Therefore, log), := I o g is S p-measurable. 0
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