
Comptes Rendus

Mathématique

Thibaut Le Gouic

A note on flatness of non separable tangent cone at a barycenter

Volume 358, issue 4 (2020), p. 489-495

Published online: 28 July 2020

https://doi.org/10.5802/crmath.66

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.66
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2020, 358, n 4, p. 489-495
https://doi.org/10.5802/crmath.66

Geometry, Probability Theory / Géométrie, Probabilité

A note on flatness of non separable tangent

cone at a barycenter

Une note sur la platitude du cône tangeant à un

barycentre

Thibaut Le Gouic a

a Massachusetts Institute of Technology, Department of Mathematics and Centrale
Marseille, I2M, UMR 7373, CNRS, Aix-Marseille univ., Marseille, 13453, France.

E-mail: thibaut.le_gouic@math.cnrs.fr.

Abstract. Given a probability measure P on an Alexandrov space S with curvature bounded below, we prove
that the support of the pushforward of P on the tangent cone Tb?S at its (exponential) barycenter b? is a
subset of a Hilbert space, without separability of the tangent cone.

Résumé. Étant donné une mesure de probabilité P sur un espace d’Alexandrov S avec courbure minorée,
nous prouvons que le support de la mesure poussée de P sur le cône tangent Tb?S à son barycentre
(exponentiel) b? est un sous-ensemble d’un espace de Hilbert, sans condition de séparabilité du cône
tangent.
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1. Introduction

Barycenter of a probability measure P (a.k.a. Fréchet means) provides an extension of expectation
on Euclidean space to arbitrary metric spaces. We present here a useful tool for the study of
barycenters on Alexandrov spaces with curvature bounded below: the support of logb? #P in the
tangent cone at the barycenter is included in a Hilbert space. This rigidity result has been stated
in [9] as Theorem 45, however the proof is not written. Moreover, there is an extra assumption
of support of logb? #P being separable, which does not even seem to be a consequence of the
support of P being separable. As pointed out by [7], it is not clear if even S being proper ensures
that the tangent cone is separable. This paper presents a proof of this rigidity result, without this
extra separable assumption on the tangent cone. For measurability purposes (see Lemma 6), we
suppose however that S is separable. The proof is essentially the one of Theorem 45 of [9], with
needed approximations dealt with a bit differently.
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2. Setting and main result

We use a classical notion of curvature bounded below for geodesic spaces, referred to as Alexan-
drov curvature. We recall several notions whose formal definitions can be found for instance in [3]
or in the work in progress [2].

For a metric space (S,d), we denote by P1(S) the set of probability measures on S with finite
moment of order 1 (i.e. such that there exists x ∈ S such that

∫
d(x, y)dP(y) <∞). The support of

a measure P will be denoted by suppP. We use both notation
∫

f dP and P f for the integral of f
w.r.t. P.

A geodesic space is a metric space (S,d) such that every two points x, y ∈ S at distance is
connected by a curve of length d(x, y). Such shortest curves are called geodesics. For κ ∈ R, the
model space (Mκ,dκ) denotes the 2-dimensional simply connected complete surface of constant
Gauss curvature κ. A geodesic space (S,d) is an Alexandrov space with curvature bounded below
by κ ∈ R if for every triangle (3-uple) (x0, x1, y) ∈ S, and a constant speed geodesic (xt )t∈[0;1]

there exists an isometric triangle (x̃0, x̃1, ỹ) ∈ Mκ, such that the geodesic (x̃ t )t∈[0;1] satisfies for
all t ∈ [0;1],

d(y, xt ) ≥ dκ(ỹ , x̃ t ).

For such spaces, angles between two unit-speed geodesics γ1,γ2 starting at the same point p ∈ S
can be defined as follows:

cos∠p (γ1,γ2) = lim
t→0

d 2(γ1(t ), p)+d 2(γ2(t ), p)−d 2(γ1(t ),γ2(t ))

2d(p,γ1(t ))d(p,γ2(t ))
,

where angle ∠p (γ1,γ2) ∈ [0;π]. Denote by Γp the set of all unit-speed geodesics emanating from
p. Using angles, we can define the tangent cone Tp S at p ∈ S as follows. First define T ′

p S as the
(quotient) set Γp ×R+, equipped with the (pseudo-)metric defined by

‖(γ1, t )− (γ2, s)‖2
p := s2 + t 2 −2s.t cos∠p (γ1,γ2).

Then, the tangent cone Tp S is defined as the completion of T ′
p S equipped with the metric ‖ · ‖p .

We will use the notation for u, v ∈ Tp S,

〈u, v〉p := 1

2
(‖u‖2

p +‖v‖2
p −‖u − v‖2

p ),

We will often identify a point γ(t ) ∈ S with (γ, t ) ∈ Tp S. Although such γ might not be unique, we
will assume a choice of a map logp : S → Tp S, called logarithmic map, such that for all x ∈ S, there
exists a unit-speed geodesic γ emanating from p such that, for some t > 0, γ(t ) = x and

logp (x) = (γ, t ).

This map can be chosen to be SB -measurable, where SB denotes the σ-algebra generated by
open balls on the tangent cone Tp S (see Lemma 6) and this weak measurability is enough for our
results to hold and will be assumed for the rest of the paper. Then the pushforward of P by logp
will be denoted by logp #P.

The tangent cone is not necessarily a geodesic space (see [4]), however, it is included in a
geodesic space, namely the ultratangent space (see for instance Theorem 14.4.2 and 14.4.1 in [2])
that is an Alexandrov space with curvature bounded below by 0.

The tangent cone Tp S contains the subspace Linp of all points with an opposite, formally
defined as follows. A point u belongs to Linp ⊂ Tp S if and only if there exists v ∈ Tp S such that
‖u‖p = ‖v‖p and

〈u, v〉p =−‖u‖2
p .

Our main result is based on the following Theorem.

Theorem (Theorem 14.5.4 in [2]). The set Linp equipped with the induced metric of Tp S is a
Hilbert space.
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A point b? ∈ S is a barycenter of the probability measure P ∈P1(S) if for all b ∈ S

0 ≤
∫

d 2(x,b)−d 2(x,b?)dP(x).

Such barycenter might not be unique, neither exists. However, when they exist, they satisfy∫
〈x, y〉b?dP⊗P(x, y) = 0. (1)

A point b? ∈ S satisfying (1) is called an exponential barycenter of P.
We can now state our main result.

Theorem 1. Let (S,d) be an Alexandrov space with curvature bounded below by some κ ∈ R and
P ∈ P1(S). If b? ∈ S is an exponential barycenter of P, then supplogb? #P ⊂ Linb? S. In particular,
supplogb? #P is included in a Hilbert space.

This result allows to prove the following Corollary, that has been implicitly used in [1].

Corollary 2 (Linearity). Let b ∈ Tb?S. Then, the map 〈 · ,b〉b? : Linb? → R is continuous and linear.
In particular, if b? is an exponential barycenter of P, then∫

〈x,b〉b?dP(x) = 0.

3. Proofs

Recall that we always identify a point in S and its image in the tangent cone Tp S by the logp map.

Proof of Corollary 2. Linearity is obvious from the definition of 〈 · ,b〉b? . We check that x 7→
〈x,b〉b? is a convex and concave function in Linb? S. Let t ∈ (0,1), x0, x1 in Linb? S, and set
xt = (1− t )x0 + t x1. Since the tangent cone is included in an Alexandrov space with curvature
bounded below by 0 on one hand, and Linb? is a Hilbert space on the other hand,

〈xt ,b〉b? = 1

2

(‖xt‖2
b? +‖b‖2

b? −‖xt −b‖2)
≤ 1

2

(
(1− t )(‖x0‖2

b? −‖x0 −b‖2
b? )+ t (‖x1‖2

b? −‖x1 −b‖2)+‖b‖2
b?

)
= (1− t )〈x0,b〉b? + t〈x1,b〉b? .

The same lines applied to −x0 and −x1 gives the converse inequality

〈−xt ,b〉b? ≤ (1− t )〈−x0,b〉b? + t〈−x1,b〉b? .

The second statement follows from the fact that b? is a Pettis integral of the pushforward of P
onto Linb? ⊂ Tb?S, as a direct consequence of Theorem 1. �

Proof of Theorem 1. Let L ⊂ {x ∈ S|∫ 〈x, · 〉b?dP = 0} be a measurable set such that P(L) = 1 given
by Lemma 3. Let x ∈ L. For U = {x}, use Lemma 5 with Q = P and Bδ a ball of radius δ around x in
Tb?S, to get a sequence (yn

δ
)n ⊂ Tb?S such that,

limsup
n

cos∠(↑x
b? ,↑yn

δ

b?
) = limsup

n

〈x, yn
δ
〉b?

d(b?, x)d(b?, yn
δ

)

= 1

d(b?, x)
limsup

n
〈x, yn

δ 〉b?
1

limn d(b?, yn
δ

)

≤ 1

d(b?, x)

∫
B c
δ
〈x, y〉b?dP(x)

P(Bδ)

P(Bδ)(∫
Bδ

∫
Bδ
〈x, y〉b?dP⊗P(x, y)

)1/2
.
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Then, since
∫ 〈x, y〉b?dP(y) = 0, letting δ→ 0, one gets

1

P(Bδ)

∫
B c
δ

〈x, y〉b?dP(y) =− 1

P(Bδ)

∫
Bδ
〈x, y〉b?dP(y) →−d 2(b?, x).

and (∫
Bδ

∫
Bδ
〈x, y〉b?dP⊗P(x, y)

)1/2

P(Bδ)
→ d(b?, x)

Thus,

lim
δ→0+

limsup
n

cos∠(↑x
b? ,↑yn

δ

b?
) =−1

One can thus choose (ȳn)n a sequence in (yn
δ

)n,δ such that cos∠(↑x
b?

,↑ȳn

b?
) →−1. Since Tb?S is a

subspace of an Alexandrov space of curvature bounded below by 0, we also have

∠(↑ȳn

b?
,↑ȳk

b?
) ≤ 2π−∠(↑ȳn

b?
,↑x

b? )−∠(↑x
b? ,↑ȳk

b?
)

→ 0,

as n,k → ∞. Thus (ȳn)n corresponds to a Cauchy sequence in the space of direction, and
thus admits a limit in Tb?S, since its “norm” also admits a limit d(b?, x). Its limit ȳ satisfies
cos∠(↑x

b?
,↑ȳ

b?
) =−1, and therefore, it is the opposite ȳ =−x.

Finally, by definition of the support, for x ∈ supp(logb? P), every ball centered at x have a
positive probability, and thus there exists a sequence (xn)n≥1 ⊂ L such that xn → x. We conclude
with the completeness of Linb? . �

Lemma 3 (Proposition 1.7 of [8] for non separable metric space). Suppose (S,d) is an Alexan-
drov space with curvature bounded below. Then, for any probability measure Q ∈ P1(S), and any
b? ∈ S, ∫

〈x, y〉b?dQ⊗Q(x, y) ≥ 0.

Moreover, if b? is an exponential barycenter of Q, then for Q-almost all x ∈ S,∫
〈x, y〉b?dQ(y) = 0.

Proof. For brevity, we will adopt the notation Qg for
∫

g dQ.
The result for Q finitely supported is the Lang–Schroeder inequality (Proposition 3.2 in [5]).

Thus, we just need to approximate Q⊗Q〈 · , · 〉b? by some Qn ⊗Qn〈 · , · 〉b? for some finitely sup-
ported Qn .

To approximate Q⊗Q〈 · , · 〉b? , draw two independent sequences of i.i.d. random variables (X 1
i )i

and (X 2
i )i of common law Q, and denote Q1

n and Q2
n the corresponding empirical measures. In

particular, Q1
n⊗Q2

n and Q2
n⊗Q1

n are both empirical measures of Q⊗Q. Since S is not separable, we
can not apply the fundamental theorem of statistics that ensures almost sure weak convergence
of Q1

n ⊗Q1
n to Q⊗Q. However, for a measurable function f : S ×S → R, such that Q⊗Q f <∞, the

law of large number ensures that almost surely

Q1
n ⊗Q2

n f → Q⊗Q f

and
Q2

n ⊗Q1
n f → Q⊗Q f .

Since the sequence (X 1
1 , X 2

1 , X 1
2 , X 2

2 , X 1
3 , X 2

3 , . . . ) is also an i.i.d. sequence of random variables of
common law Q, the subsequence of the associated empirical measures (Q3

n)n defined by

Q3
n := 1

2
(Q1

n +Q2
n)

also satisfies the almost sure convergence

Q3
n ⊗Q3

n f → Q⊗Q f .
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Now, since

Q3
n ⊗Q3

n = 1

4
(Q1

n ⊗Q2
n +Q1

n ⊗Q1
n +Q2

n ⊗Q1
n +Q2

n ⊗Q2
n),

we proved that almost surely

Q1
n ⊗Q1

n f +Q2
n ⊗Q2

n f → 2Q⊗Q f .

And since (Q1
n)n and (Q2

n)n are independent and with same law, it implies that both Q1
n ⊗Q1

n f
and Q2

n ⊗ Q2
n f converge to Q ⊗ Q f almost surely. In particular, since Q1

n is supported on n
points, there exists a sequence of finitely supported measures (that we rename (Qn)n) such that
Qn ⊗Qn f → Q⊗Q f . We thus proved the first result applying f = 〈· , · 〉b? .

Now, for any x ∈ S, applying this first result to the measure Qε := 1
1+εQ+ ε

1+εδx , we get

0 ≤ (1+ε)Qε⊗Qε〈 · , · 〉b?

= Q⊗Q〈 · , · 〉b? +2εQ〈x, .〉b? +ε2‖x‖2
b? .

Letting ε→ 0+, we get

Q〈x, · 〉b? ≥ 0.

Then equality follows from the hypothesis Q⊗Q〈 · , · 〉b? = 0 meaning that b? is an exponential
barycenter. �

Lemma 4 (Subadditivity, Lemma A.6 of [5]). Let (S,d) be an Alexandrov space with curvature
bounded below. Take b? ∈ S. Let x1, . . . , xn ∈ T ′

b?S and U ⊂ Tb?S finite. Then, for all ε > 0, there
exists y ∈ Tb?S such that for all u ∈U ,

〈y,u〉b? ≤
n∑

i=1
〈xi ,u〉b? +ε,

and

‖y‖2 ≤
n∑

i , j=1
〈xi , x j 〉b? +ε.

Lemma 5 (Approximation). Let U ⊂ Tb?S finite. Take B ⊂ S measurable and a probability
measure P ∈ P1(S) such that P⊗P〈 · , · 〉b? = 0 and P(B) > 0. Then, there exists a sequence (yn)n

such that for all u ∈U
1

P(B)

∫
B c
〈u, x〉b?dP(x) ≥ limsup

n
〈u, yn〉b? (2)

and
1

P(B)2

∫
B

∫
B
〈x, y〉b?dP⊗P(x, y) = lim

n
d 2(b?, yn). (3)

Proof. Using the same arguments as in Lemma 3, we see that the empirical measures (Pn)n

satisfy

Pn ⊗Pn f → P⊗P f ,

almost surely, for any f : S × S → R ∈ L1(S × S, P ⊗ P). In particular, taking f (x, y) =
〈x, y〉b?1B×B (x, y), the following convergence holds in L2(P⊗∞),∫

B

∫
B
〈 · , · 〉b?dPn ⊗Pn →

∫
B

∫
B
〈 · , · 〉b?dP⊗P, (4)

and similarly for B c . Also, the law of large number ensures that almost surely, for all u ∈U ,∫
B
〈 · ,u〉b?dPn →

∫
B
〈 · ,u〉b?dP, (5)

and again, the same for B c . Thus, there exists a subsequence (of a deterministic realization of) Pn

(that we rename Pn) such that (4) and (5) both hold for all u ∈U .
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Then, applying Lemma 4 to finite sum
1

P(B)

∫
B c
〈 · ,u〉b?dPn ,

shows that there exists a sequence (yn)n ∈ T ′
b?S such that (2) holds and for a sequence (εn)n s.t.

εn → 0,

‖yn‖2
b? ≤ 1

P(B)2

∫
B c

∫
B c
〈 · , · 〉b?dPn ⊗Pn +εn .

Then, applying the same Lemma 4 again shows that there exists a sequence (zn)n ⊂ T ′
b?S, such

that

0 ← 1

P(B)2

∫ ∫
〈x, y〉b?dPn ⊗Pn(x, y)

= 1

P(B)2

(∫
B

∫
B
+

∫
B c

∫
B c

+2
∫

B

∫
B c

)
〈x, y〉b?dPn ⊗Pn(x, y)

≥ ‖zn‖2
b? +‖yn‖2

b? +2〈yn , zn〉b? −εn . (6)

Letting n →∞, one obtains

0 ≥ lim
n

‖zn‖2
b? +2〈yn , zn〉b? +‖yn‖2

b?

≥ lim
n

‖zn‖2
b? −2‖yn‖b?‖zn‖b? +‖yn‖2

b?

= lim
n

(‖zn‖b? −‖yn‖b? )2 ≥ 0.

and which shows limn ‖yn‖ = limn ‖zn‖ and also that (6) becomes an equality at the limit and
therefore

lim
n

‖zn‖2
b? = 1

P(B)2

∫
B

∫
B
〈x, y〉b?dP⊗P(x, y) �

This Lemma appears in a remark of [6].

Lemma 6 (Measurability of the log map). Let (S,d) be a separable Alexandrov space. Let p ∈ S.
Then logp : S → Tp S can be chosen to be SB -measurable.

Proof. Denote Gp the space of all constant speed geodesics emanating from p equipped with
the sup distance ‖ · ‖∞. Then (Gp ,‖ · ‖∞) is separable and complete too. Using Kuratowski and
Ryll-Nardzewski measurable selection theorem, one can choose a Borel map g : S → Gp such
that g maps x to a geodesic from p to x. Then, using the (proof of) Lemma 4.2 of [7], the map
l : Gp → Tp S is measurable Tp S is equipped with the σ-algebra S generated by open balls.
Therefore, logp := l ◦ g is SB -measurable. �
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