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Abstract. Let (X ,L) be a quasi-polarized canonical Calabi–Yau threefold. In this note, we show that |mL| is
basepoint free for m ≥ 4. Moreover, if the morphism Φ|4L| is not birational onto its image and h0(X ,L) ≥ 2,
then L3 = 1. As an application, if Y is an n-dimensional Fano manifold such that −KY = (n −3)H for some
ample divisor H , then |mH | is basepoint free for m ≥ 4 and if the morphism Φ|4H | is not birational onto its
image, then either Y is a weighted hypersurface of degree 10 in the weighted projective space P(1, . . . ,1,2,5)
or h0(Y , H) = n −2.
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1. Introduction

A normal projective complex threefold X is called a canonical Calabi–Yau threefold if OX (KX ) ∼=
OX , h1(X ,OX ) = 0 and X has only canonical singularities. We say that X is a minimal Calabi–
Yau threefold, if, in addition, X has only Q-factorial terminal singularities. A pair of a normal
projective variety X and a line bundle L is called a polarized variety if the line bundle L is ample,
and a quasi-polarized variety if the line bundle L is nef and big. For a given quasi-polarized
canonical Calabi–Yau threefold (X ,L), the following questions naturally arise.

Question 1.

(1) When isΦ|mL| (the rational map defined by |mL|) birational onto its image?
(2) When is |mL| basepoint free?

These two questions have already been investigated by several mathematicians in various
different settings [6, 13, 14] etc. Our first result in this note can be viewed as a generalization
of [13, Theorem 1.1] and [14, Theorem 1].

Theorem 2. Let (X ,L) be a quasi-polarized canonical Calabi–Yau threefold. Then |mL| is base-
point free for m ≥ 4. Moreover, if Φ|4L| is not birational onto its image, then either L3 = 1 or
h0(X ,L) = 1.
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The estimate is sharp as showed by a general weighted hypersurface of degree 10 in the
weighted projective space P(1,1,1,2,5). We remark also that we have always h0(X ,L) ≥ 1 by [8,
Proposition 4.1] and the morphism Φ|5L| is always birational onto its image by [6, Theorem 1.7].
The basepoint freeness of |4H | is an easy consequence of [12, Theorem 24] and the existence
of semi-log canonical member in |H | (cf. [8, Proposition 4.2]), and for the second part of the
theorem, our proof basically goes along the line of [14, Theorem 1]. As the first application of
Theorem 2, we generalize our previous result in [11, Theorem 1.7].

Corollary 3. Let X be a weak Fano fourfold with at worst Gorenstein canonical singularities. Then

(1) the complete linear system |−mKX | is basepoint free for m ≥ 4;
(2) the morphismΦ|−mKX | is birational onto its image for m ≥ 5.

As before, the estimates in Corollary 3 are both optimal as showed by a general weighted hy-
persurface of degree 10 in the weighted projective space P(1,1,1,1,2,5). As the second applica-
tion, in higher dimension, using the existence of good ladder on Fano manifolds with coindex
four proved in [11] and the work of Fujita on polarized projective manifold with small ∆-genus
and sectional genus (cf. [4]), we derive the following theorem which can also be viewed as a gen-
eralization of [13, Theorem 1.1] in higher dimension.

Theorem 4. Let X be an n-dimensional Fano manifold such that −KX = (n−3)H for some ample
divisor H. Then

(1) the complete linear system |mH | is basepoint free when m ≥ 4;
(2) the morphismΦ|mH | is birational onto its image when m ≥ 5.

Moreover, if the morphismΦ|4H | is not birational onto its image, then one of the following holds.

(i) X is a weighted hypersurface of degree 10 in the weighted projective space P(1, . . . ,1,2,5).
(ii) h0(X , H) = n −2.

As in dimension four, the example given in Theorem 4(i) guarantees that the estimates given
in Theorem 4 are best possible. On the other hand, we have always h0(X , H) ≥ n−2 in Theorem 4
(cf. [11, Theorem 1.2]), and if X is a general weighted complete intersection of type (6,6) in the
weighted projective space P(1, . . . ,1,2,2,3,3) and H ∈ |OX (1)|, then X is a n-dimensional Fano
manifold such that −KX = (n−3)H and h0(X , H) = n−1. This leads us to ask the following natural
question.

Question 5 (see [4, 2.14], [10, Problems 2.4]). Is there an example of Fano n-fold X such that
−KX = (n −3)H for some ample divisor H and h0(X , H) = n −2?
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2. Proof of the main results

Throughout the present paper, we work over the complex numbers and we adopt the standard
notation in Kollár–Mori [9], and will freely use them. We start by selecting some results in minimal
model program, and we shall use them in the sequel.
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Lemma 6. Let (X ,L) be a quasi-polarized projective variety with at most canonical singularities.

(1) There exists a projective variety Y with onlyQ-factorial terminal singularities and a proper
surjective birational morphism ν : Y → X such that KY = ν∗KX . Moreover, in this case,
M : = ν∗L gives a quasi-polarization on Y .

(2) Assume moreover that aL −KX is nef and big for some positive integer a. Then |mL| is
basepoint free for any large m and gives a proper surjective birational morphismµ : X → Z
such that L =µ∗H for some ample line bundle H on Z .

Proof. The assertion (1) is a consequence of [2, Corollary 1.4.4], and Y is called a terminal
modification of X . The statement (2) is an easy corollary of the Basepoint-free theorem. In fact,
applying Basepoint-free theorem (cf. [9, Theorem 3.3]), |mL| is basepoint free for all large m and
we define µ : X → Z to be the Stein factorization of the morphismΦ|mL|. Clearly µ is independent
of the choice of m. In particular, there exists two ample line bundles H1 and H2 on Z such that
mL =µ∗H1 and (m +1)L =µ∗H2. Set H = H2 −H1. It follows that L =µ∗H . �

Definition 7. Let X be a reduced equi-dimensional algebraic scheme and B an effective R-divisor
on X . The pair (X ,B) is said to be SLC (semi-log canonical) if the following conditions are satisfied.

(1) X satisfies the Serre condition S2, and has only normal crossing singularities in codimen-
sion one.

(2) The singular locus of X does not contain any irreducible component of B.
(3) KX +B is an R-Cartier divisor.
(4) For any birational morphism µ : Y → X from a normal variety, if we write KY + BY =

µ∗(KX +B), then all the coefficients of BY are at most 1.

Moreover, (X ,B) is called a stable log pair if in addition

(5) KX +B is ample.

A stable variety is a stable log pair (X ,B) with B = 0, and we will abbreviate it as X .

Definition 8. Let (X ,L) be an n-dimensional quasi-polarized projective manifold.

(1) The ∆-genus ∆(X ,L) of (X ,L) is defined to be n +Ln −h0(X ,L).
(2) The sectional genus g (X ,L) of (X ,L) is defined to be

(
KX ·Ln−1 + (n −1)Ln

)
/2+1.

Now we give the proof of Theorem 2.

Proof of Theorem 2. Recall that canonical singularities are normal rational Cohen–Macaulay
singularities. By Lemma 6(2), there exists a proper surjective birational morphismµ : X → Z such
that L = µ∗H for some ample line bundle H on Z . Moreover, as µ∗KX = KZ , we have OZ (KZ ) =
OZ . In particular, Z has only canonical singularities. Thus, Z has only rational singularities
and R iµ∗OX = 0 for i > 0. This implies h1(Z ,OZ ) = h1(X ,OX ) = 0. Hence (Z , H) is actually a
polarized canonical Calabi–Yau threefold. On the other hand, using the projection formula, we
getµ∗OX (mL) =OZ (mH) and R iµ∗OX (mL) = 0 for i > 0. This implies that the induced morphism
µ∗ : H 0(Z ,mH) → H 0(X ,mL) is an isomorphism for all m. In particular, |mL| is basepoint free if
and only if |mH | is basepoint free and Φ|mL| is birational onto its image if and only if Φ|mH | is
birational onto its image. According to [8, Proposition 4.2], there exists a member S ∈ |H | such
that S is a stable surface with KS = H |S . Clearly the base locus of |mH | is contained in S for any
m ≥ 1. By Kawamata–Viehweg vanishing theorem and our assumption, the natural restriction

H 0(Z ,mH) −→ H 0(S,mH |S )

is surjective for all m ∈ Z. Thanks to [12, Theorem 24], |mKS | is basepoint free for all m ≥ 4.
Consequently, |mH | is also basepoint free for all m ≥ 4.

C. R. Mathématique, 2020, 358, n 4, 415-420
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Next we consider the case where Φ|4L| is not birational onto its image. By Lemma 6(1), there
exists a terminal modification ν : Y → X such that (Y , M) is a quasi-polarized minimal Calabi–
Yau threefold where M = ν∗L. As above, we see that L3 = M 3 and the induced morphism
ν∗ : H 0(X ,mL) → H 0(Y ,mM) is an isomorphism for all m. In particular, Φ|mL| is birational onto
its image if and only ifΦ|mM | is birational onto its image. Thus, after replacing (X ,L) by (Y , M), we
may assume that (X ,L) itself is a quasi-polarized minimal Calabi–Yau threefold. In particular,
X is actually factorial by [7, Lemma 5.1]. As mentioned in the introduction, we have always
h0(X ,L) ≥ 1 by [8, Proposition 4.1]. Thus, to prove Theorem 2, we may assume that h0(X ,L) ≥ 2
and we distinguish two cases according to whether dimΦ|L|(X ) = 1.

1st case. dimΦ|L|(X ) ≥ 2. By Hironaka’s resolution theorem, there exists a smooth projective
threefold Y and a proper surjective birational morphism π : Y → X and a decomposition

|π∗L| = |F |+B

such that |F | is basepoint free. Let T ∈ |F | be a general smooth member. By the proof of [14,
Theorem 1],Φ|(m+1)L| is birational onto its image ifΦ|π∗mL|T +KT | is birational onto its image. Thus,
if (π∗L|T )2 ≥ 2, by [16, Theorem 1(ii)], the complete linear system |π∗mL|T +KT | is birational onto
its image for m ≥ 3. If (π∗L|T )2 = 1, by the projection formula, we get L2 ·π∗T = 1 since T is a
general member in the movable family |F |. Thanks to [14, Lemma 1.1(4)], we see that L3 = 1.

2nd case. dimΦ|L|(X ) = 1. Since h1(X ,OX ) = 0, then |L| is composed with a rational pencil of
surfaces. Moreover, there exists a smooth projective threefold Y and a proper surjective birational
morphism µ : Y → X and a decomposition

|µ∗L| = n|F |+B

such that |F | is a free pencil. Let T be a general smooth element in |F |. Again by the proof of [14,
Theorem 1],Φ|(m+1)L| is birational onto its image ifΦ|π∗mL|T +KT | is birational onto its image. Using
the same argument as in the 1st case, we obtain L3 = 1 ifΦ|4L| is not birational onto its image. �

Corollary 3 is an immediate consequence of Theorem 2 and the existence of good divisor on
weak Fano fourfolds established in [8, Theorem 5.2].

Proof of Corollary 3. The statement (2) was proved in [11, Theorem 1.7]. By Lemma 6(2), there
exists a surjective proper birational map µ : X → Z and an ample line bundle H on Z such that
µ∗H =−KX . Moreover, as µ∗KX = KZ , it follows that −KZ = H and µ∗KZ = KX . In particular, Z is
a Fano foufold with at worst Gorenstein canonical singularities. According to [8, Theorem 5.2],
there exists a member Y ∈ | − KZ | such that Y has only Gorenstein canonical singularities.
Hence (Y ,−KZ |Y ) is a polarized canonical Calabi–Yau threefold. Thanks to Kawamata–Viehweg
vanishing theorem, the natural restriction map

H 0(Z ,−mKZ ) −→ H 0(Y ,−mKZ |Y )

is surjective for all m ∈ Z. Then, by Theorem 2, we see that | −mKZ | is basepoint free for m ≥ 4.
On the other hand, it is easy to see that the induced morphism

µ∗ : H 0(Z ,−mKZ ) → H 0(X ,−mKX )

is an isomorphism for all m. Hence, |−mKX | is basepoint free for all m ≥ 4. �

Finally we give the proof of Theorem 4.

Proof of Theorem 4. By [11, Theorem 1.2] and [3, Theorem 1.1], there exists a descending se-
quence of subvarieties of X

X = Xn ) Xn−1 ) · · ·) X3
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such that Xi+1 ∈ |H |Xi | and Xi has only Gorenstein canonical singularities. Moreover, it is easy
to see that (X3, H |X3 ) is a polarized canonical Calabi–Yau threefold and the base locus of |H |
is contained in X3. Thanks to Theorem 2, |mH |Xn−3 | is basepoint free if m ≥ 4. By Kawamata–
Viehweg vanishing theorem, it is easy to see that the natural restriction

H 0(X ,mH) −→ H 0(X3,mH |X3 )

is surjective for all m ∈Z. Thus |mH | is basepoint free for m ≥ 4. On the other hand, ifΦ|4H | is not
birational onto its image, then we may assume thatΦ|4H |X3 | is not birational onto its image since
we can choose all Xi to be general (cf. [14, Lemma 1.3]). If h0(X , H) 6= n −2, by [11, Theorem 1.2],
we get h0(X , H) ≥ n −1. As a consequence, we obtain

h0(X3, H |X3 ) = h0(X , H)− (n −3) ≥ 2.

Then Theorem 2 implies H n = (H |X3 )3 = 1. Then, by definition, we have

g (X , H) : = (KX ·H n−1 + (n −1)H n)/2+1 = H n +1 = 2,

and
∆(X , H) : = H n +n −h0(X , H) ≤ 1+n − (n −1) = 2.

On the other hand, it is well-known that we have ∆(X , H) ≥ 0 with equality if and only if
g (X , H) = 0 (cf. [5, Theorem 12.1]). This implies that ∆(X , H) = 1 or 2 in our situation. According
to [4, Proposition 2.3 and 2.4], X is isomorphic to either a weighted hypersurface of degree 10
in the weighted projective space P(1, . . . ,1,2,5) or a weighted complete intersection of type
(6,6) in the weighted projective space P(1, . . . ,1,2,2,3,3). However, if X is a weighted complete
intersection of type (6,6) in the weighted projective space P(1, . . . ,1,2,2,3,3), then the group
H 0(X ,mH) (m ≥ 3) contains the monomials

{ x1xm−1
0 , . . . , xn−2xm−1

0 , xn−1xm−2
0 , xn xm−2

0 , xn+1xm−3
0 , xn+2xm−3

0 },

where xi are the weighted homogeneous coordinates of P(1, . . . ,1,2,2,3,3) in order. This shows
that Φ|mH | (m ≥ 3) is one-to-one on the non-empty Zariski open subset {x0 6= 0} ∩ X and is
therefore birational, excluding this case. �

3. Further discussions

Let (X ,L) be a quasi-polarized canonical Calabi–Yau threefold such that h0(X ,L) = 1. Let (Y , M)
be a terminal modification of (X ,L). Then Y is smooth in codimensioin two. Since canonical
singularities are rational, by the Riemann–Roch formula and the projection formula, we obtain

χ(X , tL) =χ(Y , t M) = M 3

6
t 3 + M · c2(Y )

12
t +χ(Y ,OY ).

By Serre duality, we have χ(Y ,OY ) = 0. Thus, using Kawamata–Viehweg vanishing theorem, we
obtain

1 = h0(X ,L) = h0(Y , M) =χ(Y , M) = 1

6
M 3 + 1

12
M · c2(Y ).

Moreover, thanks to [15, Thereom 0.5], we have M · c2(X ) ≥ 0. It follows that

1 ≤ L3 = M 3 ≤ 6.

On the other hand, a smooth ample divisor S on a 3-dimensional projective manifold X with
OX (KX ) ∼= OX is a minimal surface of general type. This simple observation yields a bridge
between two important classes of algebraic varieties. In particular, the smooth ample divisor S is
called a rigid ample surface if h0(X ,OX (S)) = 1. In this case, the geometric genus pg (S) := h0(S,KS )
is zero and, by the Lefschetz theorem, the natural map π1(S) → π1(X ) is an isomorphism. Thus,
according to Theorem 2, it may be interesting to ask the following question.
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Question 9. Is there a smooth Calabi–Yau threefold X containing a rigid ample surface S?

We remark that if we do not require the simple connectedness of X , such an example of (X ,S)
with the quaternion group of order 8 as its fundamental group, i.e. π1(X ) = H8, was constructed
by Beauville in [1].
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