

Comptes Rendus Mathématique

Jie Liu

Note on quasi-polarized canonical Calabi-Yau threefolds

Volume 358, issue 4 (2020), p. 415-420

Published online: 28 July 2020

https://doi.org/10.5802/crmath.55

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2020, 358, no 4, p. 415-420 https://doi.org/10.5802/crmath.55

Algebraic Geometry / Géométrie algébrique

Note on quasi-polarized canonical Calabi–Yau threefolds

Iie Liu^a

^a Morningside Center of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
E-mail: jliu@amss.ac.cn.

Abstract. Let (X,L) be a quasi-polarized canonical Calabi–Yau threefold. In this note, we show that |mL| is basepoint free for $m \ge 4$. Moreover, if the morphism $\Phi_{|4L|}$ is not birational onto its image and $h^0(X,L) \ge 2$, then $L^3 = 1$. As an application, if Y is an n-dimensional Fano manifold such that $-K_Y = (n-3)H$ for some ample divisor H, then |mH| is basepoint free for $m \ge 4$ and if the morphism $\Phi_{|4H|}$ is not birational onto its image, then either Y is a weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,\ldots,1,2,5)$ or $h^0(Y,H) = n-2$.

Keywords. birationality, Calabi–Yau threefolds, Fano manifolds, freeness. **2020 Mathematics Subject Classification.** 14E05, 14J30, 14J32, 14J45.

Manuscript received 15th October 2019, revised 17th April 2020, accepted 22nd April 2020.

1. Introduction

A normal projective complex threefold X is called a *canonical Calabi–Yau threefold* if $\mathcal{O}_X(K_X) \cong \mathcal{O}_X$, $h^1(X,\mathcal{O}_X) = 0$ and X has only canonical singularities. We say that X is a *minimal Calabi–Yau threefold*, if, in addition, X has only \mathbb{Q} -factorial terminal singularities. A pair of a normal projective variety X and a line bundle X is called a *polarized variety* if the line bundle X is ample, and a *quasi-polarized variety* if the line bundle X is nef and big. For a given quasi-polarized canonical Calabi–Yau threefold X, X, the following questions naturally arise.

Question 1.

- (1) When is $\Phi_{|mL|}$ (the rational map defined by |mL|) birational onto its image?
- (2) When is |mL| basepoint free?

These two questions have already been investigated by several mathematicians in various different settings [6, 13, 14] etc. Our first result in this note can be viewed as a generalization of [13, Theorem 1.1] and [14, Theorem 1].

Theorem 2. Let (X, L) be a quasi-polarized canonical Calabi–Yau threefold. Then |mL| is base-point free for $m \ge 4$. Moreover, if $\Phi_{|4L|}$ is not birational onto its image, then either $L^3 = 1$ or $h^0(X, L) = 1$.

The estimate is sharp as showed by a general weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,1,1,2,5)$. We remark also that we have always $h^0(X,L) \geq 1$ by [8, Proposition 4.1] and the morphism $\Phi_{|5L|}$ is always birational onto its image by [6, Theorem 1.7]. The basepoint freeness of |4H| is an easy consequence of [12, Theorem 24] and the existence of semi-log canonical member in |H| (cf. [8, Proposition 4.2]), and for the second part of the theorem, our proof basically goes along the line of [14, Theorem 1]. As the first application of Theorem 2, we generalize our previous result in [11, Theorem 1.7].

Corollary 3. Let X be a weak Fano fourfold with at worst Gorenstein canonical singularities. Then

- (1) the complete linear system $|-mK_X|$ is basepoint free for $m \ge 4$;
- (2) the morphism $\Phi_{|-mK_X|}$ is birational onto its image for $m \ge 5$.

As before, the estimates in Corollary 3 are both optimal as showed by a general weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,1,1,1,2,5)$. As the second application, in higher dimension, using the existence of good ladder on Fano manifolds with coindex four proved in [11] and the work of Fujita on polarized projective manifold with small Δ -genus and sectional genus (cf. [4]), we derive the following theorem which can also be viewed as a generalization of [13, Theorem 1.1] in higher dimension.

Theorem 4. Let X be an n-dimensional Fano manifold such that $-K_X = (n-3)H$ for some ample divisor H. Then

- (1) the complete linear system |mH| is basepoint free when $m \ge 4$;
- (2) the morphism $\Phi_{|mH|}$ is birational onto its image when $m \ge 5$.

Moreover, if the morphism $\Phi_{|4H|}$ is not birational onto its image, then one of the following holds.

- (i) X is a weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,\ldots,1,2,5)$.
- (ii) $h^0(X, H) = n 2$.

As in dimension four, the example given in Theorem 4 (i) guarantees that the estimates given in Theorem 4 are best possible. On the other hand, we have always $h^0(X, H) \ge n - 2$ in Theorem 4 (cf. [11, Theorem 1.2]), and if X is a general weighted complete intersection of type (6,6) in the weighted projective space $\mathbb{P}(1,\ldots,1,2,2,3,3)$ and $H \in |\mathcal{O}_X(1)|$, then X is a n-dimensional Fano manifold such that $-K_X = (n-3)H$ and $h^0(X,H) = n-1$. This leads us to ask the following natural question.

Question 5 (see [4, 2.14], [10, Problems 2.4]). *Is there an example of Fano n-fold X such that* $-K_X = (n-3)H$ *for some ample divisor H and* $h^0(X, H) = n-2$?

Acknowledgements

I want to thank A. Höring and C. Mourougane for their constant encouragements and supports. Special thanks are owed to Sönke Rollensk for his interest and helpful comments. I am very grateful to the anonymous referee for his detailed report which helps me to improve the presentation. This work is supported by China Postdoctoral Science Foundation (2019M650873).

2. Proof of the main results

Throughout the present paper, we work over the complex numbers and we adopt the standard notation in Kollár–Mori [9], and will freely use them. We start by selecting some results in minimal model program, and we shall use them in the sequel.

Lemma 6. Let (X, L) be a quasi-polarized projective variety with at most canonical singularities.

- (1) There exists a projective variety Y with only \mathbb{Q} -factorial terminal singularities and a proper surjective birational morphism $v: Y \to X$ such that $K_Y = v^*K_X$. Moreover, in this case, $M: = v^*L$ gives a quasi-polarization on Y.
- (2) Assume moreover that $aL K_X$ is nef and big for some positive integer a. Then |mL| is basepoint free for any large m and gives a proper surjective birational morphism $\mu \colon X \to Z$ such that $L = \mu^* H$ for some ample line bundle H on Z.

Proof. The assertion (1) is a consequence of [2, Corollary 1.4.4], and Y is called a terminal modification of X. The statement (2) is an easy corollary of the Basepoint-free theorem. In fact, applying Basepoint-free theorem (cf. [9, Theorem 3.3]), |mL| is basepoint free for all large m and we define $\mu: X \to Z$ to be the Stein factorization of the morphism $\Phi_{|mL|}$. Clearly μ is independent of the choice of m. In particular, there exists two ample line bundles H_1 and H_2 on H_2 such that $H_2 = \mu^* H_1$ and $H_3 = \mu^* H_2$. Set $H_3 = \mu^* H_3$. It follows that $H_3 = \mu^* H_3$.

Definition 7. Let X be a reduced equi-dimensional algebraic scheme and B an effective \mathbb{R} -divisor on X. The pair (X,B) is said to be SLC (semi-log canonical) if the following conditions are satisfied.

- (1) X satisfies the Serre condition S₂, and has only normal crossing singularities in codimension one.
- (2) The singular locus of X does not contain any irreducible component of B.
- (3) $K_X + B$ is an \mathbb{R} -Cartier divisor.
- (4) For any birational morphism $\mu: Y \to X$ from a normal variety, if we write $K_Y + B_Y = \mu^*(K_X + B)$, then all the coefficients of B_Y are at most 1.

Moreover, (X, B) is called a stable log pair if in addition

(5) $K_X + B$ is ample.

A stable variety is a stable log pair (X, B) with B = 0, and we will abbreviate it as X.

Definition 8. Let (X, L) be an n-dimensional quasi-polarized projective manifold.

- (1) The Δ -genus $\Delta(X, L)$ of (X, L) is defined to be $n + L^n h^0(X, L)$.
- (2) The sectional genus g(X, L) of (X, L) is defined to be $(K_X \cdot L^{n-1} + (n-1)L^n)/2 + 1$.

Now we give the proof of Theorem 2.

Proof of Theorem 2. Recall that canonical singularities are normal rational Cohen–Macaulay singularities. By Lemma 6 (2), there exists a proper surjective birational morphism $\mu\colon X\to Z$ such that $L=\mu^*H$ for some ample line bundle H on Z. Moreover, as $\mu_*K_X=K_Z$, we have $\mathscr{O}_Z(K_Z)=\mathscr{O}_Z$. In particular, Z has only canonical singularities. Thus, Z has only rational singularities and $R^i\mu_*\mathscr{O}_X=0$ for i>0. This implies $h^1(Z,\mathscr{O}_Z)=h^1(X,\mathscr{O}_X)=0$. Hence (Z,H) is actually a polarized canonical Calabi–Yau threefold. On the other hand, using the projection formula, we get $\mu_*\mathscr{O}_X(mL)=\mathscr{O}_Z(mH)$ and $R^i\mu_*\mathscr{O}_X(mL)=0$ for i>0. This implies that the induced morphism $\mu^*\colon H^0(Z,mH)\to H^0(X,mL)$ is an isomorphism for all m. In particular, |mL| is basepoint free if and only if |mH| is basepoint free and $\Phi_{|mL|}$ is birational onto its image if and only if $\Phi_{|mH|}$ is birational onto its image. According to [8, Proposition 4.2], there exists a member $S\in |H|$ such that S is a stable surface with $K_S=H|_S$. Clearly the base locus of |mH| is contained in S for any $m\geq 1$. By Kawamata–Viehweg vanishing theorem and our assumption, the natural restriction

$$H^0(Z, mH) \longrightarrow H^0(S, mH|_S)$$

is surjective for all $m \in \mathbb{Z}$. Thanks to [12, Theorem 24], $|mK_S|$ is basepoint free for all $m \ge 4$. Consequently, |mH| is also basepoint free for all $m \ge 4$.

Next we consider the case where $\Phi_{|4L|}$ is not birational onto its image. By Lemma 6(1), there exists a terminal modification $v\colon Y\to X$ such that (Y,M) is a quasi-polarized minimal Calabi-Yau threefold where $M=v^*L$. As above, we see that $L^3=M^3$ and the induced morphism $v^*\colon H^0(X,mL)\to H^0(Y,mM)$ is an isomorphism for all m. In particular, $\Phi_{|mL|}$ is birational onto its image if and only if $\Phi_{|mM|}$ is birational onto its image. Thus, after replacing (X,L) by (Y,M), we may assume that (X,L) itself is a quasi-polarized minimal Calabi-Yau threefold. In particular, X is actually factorial by [7, Lemma 5.1]. As mentioned in the introduction, we have always $h^0(X,L)\geq 1$ by [8, Proposition 4.1]. Thus, to prove Theorem 2, we may assume that $h^0(X,L)\geq 2$ and we distinguish two cases according to whether dim $\Phi_{|L|}(X)=1$.

1st case. dim $\Phi_{|L|}(X) \ge 2$. By Hironaka's resolution theorem, there exists a smooth projective threefold Y and a proper surjective birational morphism $\pi \colon Y \to X$ and a decomposition

$$|\pi^*L| = |F| + B$$

such that |F| is basepoint free. Let $T \in |F|$ be a general smooth member. By the proof of [14, Theorem 1], $\Phi_{\lfloor (m+1)L \rfloor}$ is birational onto its image if $\Phi_{\lfloor \pi^* mL \rfloor_T + K_T \rfloor}$ is birational onto its image. Thus, if $(\pi^* L|_T)^2 \ge 2$, by [16, Theorem 1 (ii)], the complete linear system $|\pi^* mL|_T + K_T|$ is birational onto its image for $m \ge 3$. If $(\pi^* L|_T)^2 = 1$, by the projection formula, we get $L^2 \cdot \pi_* T = 1$ since T is a general member in the movable family |F|. Thanks to [14, Lemma 1.1 (4)], we see that $L^3 = 1$.

2nd case. dim $\Phi_{|L|}(X) = 1$. Since $h^1(X, \mathcal{O}_X) = 0$, then |L| is composed with a rational pencil of surfaces. Moreover, there exists a smooth projective threefold Y and a proper surjective birational morphism $\mu \colon Y \to X$ and a decomposition

$$|\mu^* L| = n|F| + B$$

such that |F| is a free pencil. Let T be a general smooth element in |F|. Again by the proof of [14, Theorem 1], $\Phi_{|(m+1)L|}$ is birational onto its image if $\Phi_{|\pi^*mL|_T+K_T|}$ is birational onto its image. Using the same argument as in the 1st case, we obtain $L^3=1$ if $\Phi_{|4L|}$ is not birational onto its image. \square

Corollary 3 is an immediate consequence of Theorem 2 and the existence of good divisor on weak Fano fourfolds established in [8, Theorem 5.2].

Proof of Corollary 3. The statement (2) was proved in [11, Theorem 1.7]. By Lemma 6 (2), there exists a surjective proper birational map $\mu\colon X\to Z$ and an ample line bundle H on Z such that $\mu^*H=-K_X$. Moreover, as $\mu_*K_X=K_Z$, it follows that $-K_Z=H$ and $\mu^*K_Z=K_X$. In particular, Z is a Fano foufold with at worst Gorenstein canonical singularities. According to [8, Theorem 5.2], there exists a member $Y\in |-K_Z|$ such that Y has only Gorenstein canonical singularities. Hence $(Y,-K_Z|_Y)$ is a polarized canonical Calabi–Yau threefold. Thanks to Kawamata–Viehweg vanishing theorem, the natural restriction map

$$H^0(Z, -mK_Z) \longrightarrow H^0(Y, -mK_Z|_Y)$$

is surjective for all $m \in \mathbb{Z}$. Then, by Theorem 2, we see that $|-mK_Z|$ is basepoint free for $m \ge 4$. On the other hand, it is easy to see that the induced morphism

$$\mu^*: H^0(Z, -mK_Z) \to H^0(X, -mK_X)$$

is an isomorphism for all m. Hence, $|-mK_X|$ is basepoint free for all $m \ge 4$.

Finally we give the proof of Theorem 4.

Proof of Theorem 4. By [11, Theorem 1.2] and [3, Theorem 1.1], there exists a descending sequence of subvarieties of X

$$X = X_n \supseteq X_{n-1} \supseteq \cdots \supseteq X_3$$

such that $X_{i+1} \in |H|_{X_i}|$ and X_i has only Gorenstein canonical singularities. Moreover, it is easy to see that $(X_3, H|_{X_3})$ is a polarized canonical Calabi–Yau threefold and the base locus of |H| is contained in X_3 . Thanks to Theorem 2, $|mH|_{X_{n-3}}|$ is basepoint free if $m \ge 4$. By Kawamata–Viehweg vanishing theorem, it is easy to see that the natural restriction

$$H^0(X, mH) \longrightarrow H^0(X_3, mH|_{X_3})$$

is surjective for all $m \in \mathbb{Z}$. Thus |mH| is basepoint free for $m \ge 4$. On the other hand, if $\Phi_{|4H|}$ is not birational onto its image, then we may assume that $\Phi_{|4H|_{X_3}|}$ is not birational onto its image since we can choose all X_i to be general (cf. [14, Lemma 1.3]). If $h^0(X, H) \ne n-2$, by [11, Theorem 1.2], we get $h^0(X, H) \ge n-1$. As a consequence, we obtain

$$h^0(X_3, H|_{X_3}) = h^0(X, H) - (n-3) \ge 2.$$

Then Theorem 2 implies $H^n = (H|_{X_3})^3 = 1$. Then, by definition, we have

$$g(X, H)$$
: = $(K_X \cdot H^{n-1} + (n-1)H^n)/2 + 1 = H^n + 1 = 2$,

and

$$\Delta(X, H)$$
: = $H^n + n - h^0(X, H) \le 1 + n - (n - 1) = 2$.

On the other hand, it is well-known that we have $\Delta(X, H) \geq 0$ with equality if and only if g(X, H) = 0 (cf. [5, Theorem 12.1]). This implies that $\Delta(X, H) = 1$ or 2 in our situation. According to [4, Proposition 2.3 and 2.4], X is isomorphic to either a weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1, \dots, 1, 2, 5)$ or a weighted complete intersection of type (6,6) in the weighted projective space $\mathbb{P}(1, \dots, 1, 2, 2, 3, 3)$. However, if X is a weighted complete intersection of type (6,6) in the weighted projective space $\mathbb{P}(1, \dots, 1, 2, 2, 3, 3)$, then the group $H^0(X, mH)$ ($m \geq 3$) contains the monomials

$$\{x_1x_0^{m-1}, \dots, x_{n-2}x_0^{m-1}, x_{n-1}x_0^{m-2}, x_nx_0^{m-2}, x_{n+1}x_0^{m-3}, x_{n+2}x_0^{m-3}\},$$

where x_i are the weighted homogeneous coordinates of $\mathbb{P}(1,...,1,2,2,3,3)$ in order. This shows that $\Phi_{|mH|}$ $(m \ge 3)$ is one-to-one on the non-empty Zariski open subset $\{x_0 \ne 0\} \cap X$ and is therefore birational, excluding this case.

3. Further discussions

Let (X, L) be a quasi-polarized canonical Calabi–Yau threefold such that $h^0(X, L) = 1$. Let (Y, M) be a terminal modification of (X, L). Then Y is smooth in codimension two. Since canonical singularities are rational, by the Riemann–Roch formula and the projection formula, we obtain

$$\chi(X,tL)=\chi(Y,tM)=\frac{M^3}{6}\,t^3+\frac{M\cdot c_2(Y)}{12}\,t+\chi(Y,\mathcal{O}_Y).$$

By Serre duality, we have $\chi(Y, \mathcal{O}_Y) = 0$. Thus, using Kawamata–Viehweg vanishing theorem, we obtain

$$1 = h^0(X,L) = h^0(Y,M) = \chi(Y,M) = \frac{1}{6}M^3 + \frac{1}{12}M \cdot c_2(Y).$$

Moreover, thanks to [15, Thereom 0.5], we have $M \cdot c_2(X) \ge 0$. It follows that

$$1 \le L^3 = M^3 \le 6.$$

On the other hand, a smooth ample divisor S on a 3-dimensional projective manifold X with $\mathcal{O}_X(K_X)\cong\mathcal{O}_X$ is a minimal surface of general type. This simple observation yields a bridge between two important classes of algebraic varieties. In particular, the smooth ample divisor S is called a *rigid ample surface* if $h^0(X,\mathcal{O}_X(S))=1$. In this case, the geometric genus $p_g(S):=h^0(S,K_S)$ is zero and, by the Lefschetz theorem, the natural map $\pi_1(S)\to\pi_1(X)$ is an isomorphism. Thus, according to Theorem 2, it may be interesting to ask the following question.

Question 9. Is there a smooth Calabi–Yau threefold X containing a rigid ample surface S?

We remark that if we do not require the simple connectedness of X, such an example of (X, S) with the quaternion group of order 8 as its fundamental group, i.e. $\pi_1(X) = H_8$, was constructed by Beauville in [1].

References

- [1] A. Beauville, "A Calabi–Yau threefold with non-abelian fundamental group", in *New trends in algebraic geometry (Warwick, 1996)*, London Mathematical Society Lecture Note Series, vol. 264, Cambridge University Press, 1999, p. 13-17.
- [2] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, "Existence of minimal models for varieties of log general type", *J. Am. Math. Soc.* 23 (2010), no. 2, p. 405-468.
- [3] E. Floris, "Fundamental divisors on Fano varieties of index n-3", Geom. Dedicata 162 (2013), p. 1-7.
- [4] T. Fujita, "Classification of polarized manifolds of sectional genus two", in *Algebraic geometry and commutative algebra*, Vol. I, Kinokuniya, 1988, p. 73-98.
- [5] ———, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, 1990, xiv+205 pages.
- [6] C. Jiang, "On birational geometry of minimal threefolds with numerically trivial canonical divisors", *Math. Ann.* **365** (2016), no. 1-2, p. 49-76.
- [7] Y. Kawamata, "Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces.", Ann. Math. 127 (1988), no. 1, p. 93-163.
- [8] ——, "On effective non-vanishing and base-point-freeness", Asian J. Math. 4 (2000), no. 1, p. 173-181, Kodaira's issue.
- [9] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, 1998, viii+254 pages.
- [10] O. Küchle, "Some remarks and problems concerning the geography of Fano 4-folds of index and Picard number one", *Quaest. Math.* **20** (1997), no. 1, p. 45-60.
- [11] J. Liu, "Second Chern class of Fano manifolds and anti-canonical geometry", Math. Ann. 375 (2019), no. 1-2, p. 655-669.
- [12] W. Liu, S. Rollenske, "Pluricanonical maps of stable log surfaces.", Adv. Math. 258 (2014), p. 69-126.
- [13] K. Oguiso, "On polarized Calabi-Yau 3-folds", J. Fac. Sci., Univ. Tokyo, Sect. 1A 38 (1991), no. 2, p. 395-429.
- [14] K. Oguiso, T. Peternell, "On polarized canonical Calabi-Yau threefolds", Math. Ann. 301 (1995), no. 2, p. 237-248.
- [15] W. Ou, "On generic nefness of tangent sheaves", https://arxiv.org/abs/1703.03175v1, 2017.
- [16] I. Reider, "Vector bundles of rank 2 and linear systems on algebraic surfaces", Ann. Math. 127 (1988), no. 2, p. 309-316.