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Abstract. In this paper we study the finiteness of global Gorenstein AC-homological dimensions for rings,
and answer the questions posed by Becerril, Mendoza, Pérez and Santiago. As an application, we show that
any left (or right) coherent and left Gorenstein ring has a projective and injective stable homotopy category,
which improves the known result by Beligiannis.
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1. Introduction

Throughout this work, all rings are assumed to be associative. Let R be a ring; we adopt the
convention that an R-module is a left R-module, and we refer to right R-modules as modules
over the opposite ring R◦.

Building from Auslander and Bridger’s work [1] on modules of finite G-dimension, Enochs,
Jenda and Torrecillas [15, 16] introduced and studied Gorenstein projective, Gorenstein injec-
tive and Gorenstein flat modules, and developed “Gorenstein homological algebra”. Such a rel-
ative homological algebra theory has been developed rapidly during the past several years and
becomes a rich theory; we refer the reader to, for example, [6, 7, 14–16, 23, 33] for related works.
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For a quasi-Frobenius ring R, the category Mod of R-modules is a Frobenius category with
projective-injective objects all projective (or injective) R-modules. So the stable category Mod
modulo projectives is a triangulated category. Furthermore, it is compactly generated; see
Krause [28, Sec. 1.5]. It is well known that over an arbitrary ring R the subcategory GP (resp.,
GI) of Gorenstein projective (resp., Gorenstein injective) R-modules is a Frobenius category with
projective-injective objects projective (resp. injective) R-modules. Also, from a theorem by Chris-
tensen, Estrada and Thompson [12, Thm. 4.5] the subcategory GF∩Cot of Gorenstein flat and
cotorsion R-modules is a Frobenius category with projective-injective objects all flat and cotor-
sion R-modules. Hence, the stable categories GP, GI and GF∩Cot are triangulated categories. It
is a natural question when these stable categories are compactly generated. It follows from Beli-
giannis [4, Lem. 6.6 and thm. 6.7] that if R is a right coherent and left perfect or left Morita ring
with GgldimR < ∞ then GP ' GI are compactly generated. The same conclusion holds if R is
Iwanaga–Gorenstein; see Hovey [26, Thm. 9.4] or Chen [11, Thm. 4.1]. One of the main results in
this paper is the next improved result; see Corollaries 34 and 38.

Theorem 1. Let R be a ring with GgldimR <∞.

(a) If R is right coherent, then GP'GI'GF∩Cot are compactly generated.
(b) If R is left coherent, then GP'GI are compactly generated.

Here GgldimR is the global Gorenstein dimension, which is defined as GgldimR =
sup{GpdR M |M is an R-module}. We notice that R satisfies GgldimR < ∞ if and only if R is
left Gorenstein1 ; see §8. So as an immediate consequence of Theorem 1, by using [4, Lem. 6.6],
we get the next result that improves [4, Thm. 6.7] by removing the assumption that the ring R
should be left perfect or left Morita.

Corollary 2. Any left (or right) coherent and left Gorenstein ring has a projective and injective
stable homotopy category.

We refer the reader to [4, Def. 6.2] for the definition of projective/injective stable homotopy
category.

An example is given to show that coherent rings of finite global Gorenstein dimension (or
equivalently, left Gorenstein) may not be Iwanaga–Gorenstein nor perfect nor Morita; see Ex-
ample 39.

According to [3, Thm. 6.9] and [14, Thm. 4.1], the finiteness of GgldimR can be characterized
by the existence of the triangulated equivalences GP'Db(R)/Kb(Prj) and/or GI'Db(R)/Kb(Inj),
where Db(R) denotes the bounded derived category of R, and Kb(Prj) (resp., Kb(Inj)) denotes the
bounded homotopy category of projective (resp., injective) R-modules. The Verdier quotient tri-
angulated category Db(R)/Kb(Prj) was first studied by Buchweitz [10] under the name of “stable
derived category”; it is named by “singularity category” to emphasize certain homological singu-
larity of the ring R reflected by this quotient category (see Orlov [31] and Chen [11]). As another
immediate consequence of Theorem 1, we see that the singularity categories Db(R)/Kb(Prj) '
Db(R)/Kb(Inj) are compactly generated over left (or right) coherent rings of finite global Goren-
stein dimension (or equivalently, left Gorenstein); see Corollaries 34 and 38.

We prove Theorem 1 above by using the finiteness of global Gorenstein AC-homological
dimensions.

Gorenstein AC-projective (resp., Gorenstein AC-injective) dimension is defined in terms of res-
olutions by Gorenstein AC-projective (resp., Gorenstein AC-injective) modules that were initially

1From Beligiannis [3], a ring R is called left Gorenstein if any projective R-module has finite injective dimension and
any injective R-module has finite projective dimension.
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introduced by Bravo, Gillespie and Hovey [9] as a natural way to extend the notion of Goren-
stein projective (resp., Gorenstein injective) modules. We let GPac-gldimR and GIac-gldimR
denote the global Gorenstein AC-projective and global Gorenstein AC-injective dimension of
R, respectively. That is, GPac-gldimR = {Gac-pdR M |M is an R-module} and GIac-gldimR =
{Gac-idR M |M is an R-module}. Recently, Becerril, Mendoza, Pérez and Santiago [2, 6.15] asked
under which conditions on R the following statements are true:

• All R-modules have finite Gorenstein AC-projective dimension.
• Any R-module has finite Gorenstein AC-projective dimension if and only if it has finite

Gorenstein AC-injective dimension.

In Section 3 we focus on the above two questions. Our main results in this section are the next
two theorems, where the first one is used in the proof of Theorem 1.

Theorem 3. Let R be a ring with GgldimR <∞.

(a) If R is right coherent, then GPac-gldimR <∞.
(b) If R is left coherent, then GIac-gldimR <∞.

This result is proved in Theorem 25. The converses of the above statements are not true in
general; see Example 27.

Theorem 4. If R is a commutative ring, then GIac-gldimR =GPac-gldimR.

This result is proved in Corollary 19. However, to the best of our knowledge, we don’t know
whether the equality GIac-gldimR =GPac-gldimR holds for an arbitrary ring R.

2. Preliminaries

We begin with some notation and terminology for use throughout this paper.

5. By an R-complex M we mean a complex of R-modules as follows:

· · · −→ Mi+1
∂M

i+1−−−→ Mi
∂M

i−−→ Mi−1 −→ ·· · .

We frequently (and without warning) identify R-modules with R-complexes concentrated in
degree 0. For an R-complex M , we set sup M = sup{i ∈ Z |Mi 6= 0} and inf M = inf{i ∈ Z |Mi 6= 0}.
An R-complex M is called bounded if sup M < ∞ and inf M > −∞. The symbol Hn(M) denotes
the nth homology of M , i.e., Ker∂M

n /Im∂M
n+1. An R-complex M is called homology bounded

if supH(M) < ∞ and infH(M) > −∞. For an R-complex M , the symbol M≤n denotes the
subcomplex of M with (M≤n)i = Mi for i ≤ n and (M≤n)i = 0 for i > n, and the symbol M≥n

denotes the quotient complex of M with (M≥n)i = Mi for i ≥ n and (M≥n)i = 0 for i < n.
We denote by Db(R) the bounded derived category of R-modules, by Prj (resp., Inj, Flat, and

Cot) the subcategory of projective (resp., injective, flat, and cotorsion) R-modules, and by Kb(Prj)
(resp., Kb(Inj), and Kb(FlatCot)) the bounded homotopy category of projective (resp., injective,
and flat and cotorsion) R-modules.

6. An R-module M is called Gorenstein projective [15] if there exists an exact sequence · · ·→ P1 →
P0 → P−1 →··· of projective R-modules such that M ∼= Coker(P1 → P0), and it remains exact after
applying the functor HomR (−,P ) for each projective R-module P . Dually, one has the definition
of Gorenstein injective R-modules. An R-module M is called Gorenstein flat [16] if there exists
an exact sequence · · · → F1 → F0 → F−1 → ··· of flat R-modules such that M ∼= Coker(F1 → F0),
and it remains exact after applying the functor I ⊗R − for each injective R◦-module I . We let GP
(resp., GI, and GF) denote the subcategory of Gorenstein projective (resp., Gorenstein injective,
and Gorenstein flat) R-modules.

C. R. Mathématique, 2020, 358, n 3, 379-392
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The Gorenstein projective dimension of an R-module M , GpdR M , is defined by declaring that
GpdR M ≤ n if and only if M has a Gorenstein projective resolution of length n, that is, there is an
exact sequence 0 →Gn →···→G0 → M → 0 with each Gi Gorenstein projective. The definition of
Gorenstein injective dimension, GidR M , can be defined dually. We let GgldimR denote the global
Gorenstein projective dimension of R, that is, GgldimR = sup{GpdR M |M is an R-module}. The
next result is proved by Bennis and Mahdou [7, Thm. 1.1], which is used frequently in the paper.

Lemma 7. For any ring R, GgldimR = sup{GidR M |M is an R-module}.

8. Let silpR denote the supremum of the injective lengths of projective R-modules, and spliR
the supremum of the projective lengths of injective R-modules. Since an arbitrary direct sum
of projective R-modules is projective, the invariant silpR is finite if and only if every projective
R-module has finite injective dimension. It follows from Beligiannis and Reiten [5, Thm. VII. 2.2]
that every injective R-module has finite projective dimension and silpR is finite if and only if both
spliR and silpR are finite. Thus by Emmanouil [14, Thm. 4.1] one gets that the global Gorenstein
projective dimension GgldimR is finite if and only if R is left Gorenstein.

9. Recall from [9] that an R-module F is type FP∞ if F has a degree-wise finitely generated
projective resolution. An R-module A is called absolutely clean if Ext1

R (F, A) = 0 for all R-modules
F of type FP∞, and an R◦-module L is called level if TorR

1 (L,F ) = 0 for all R-modules F of type
FP∞.

Recall from [9] that an R-module M is Gorenstein AC-projective if there exists an exact se-
quence · · · → P1 → P0 → P−1 → ··· of projective R-modules such that M ∼= Coker(P1 → P0), and it
remains exact after applying the functor HomR ( · ,L) for each level R-module L.

Dually, an R-module M is called Gorenstein AC-injective if there exists an exact sequence
· · · → I1 → I0 → I−1 → ··· of injective R-modules such that M ∼= Coker(I1 → I0), and it remains
exact after applying the functor HomR (A, · ) for each absolutely clean R-module A.

Recall from [8] that an R-module M is Gorenstein AC-flat if there exists an exact sequence
· · · → F1 → F0 → F−1 → ··· of flat R-modules such that M ∼= Coker(F1 → F0), and it remains exact
after applying the functor A⊗R − for each absolutely clean R◦-module A.

The symbol GPac (resp., GIac, and GFac) denotes the subcategory of Gorenstein AC-projective
(resp., Gorenstein AC-injective, and Gorenstein AC-flat) R-modules. It is easy to see that GPac ⊆
GP and GIac⊆GI.

From [9, Thm. A.6], one has the next lemma.

Lemma 10. All Gorenstein AC-projective R-modules are Gorenstein AC-flat. That is, GPac⊆GFac.

11. The Gorenstein AC-projective dimension of R-module M , Gac-pdR M , is defined by declar-
ing that Gac-pdR M ≤ n if and only if M has a Gorenstein AC-projective resolution of length n,
that is, there is an exact sequence 0 → Gn → ··· → G0 → M → 0 with each Gi Gorenstein AC-
projective. The Gorenstein AC-injective and Gorenstein AC-flat dimensions are defined similarly,
which are denoted Gac-idR M and Gac-fdR M , respectively.

Let GPac-gldimR (resp., GIac-gldimR, and GFac-gldimR) denote the global Gorenstein AC-
projective (resp., global Gorenstein AC-injective, and global Gorenstein AC-flat) dimension of R.
For example,

GPac-gldimR = {Gac-pdR M |M is an R-module}.

By Lemma 7, one has

GgldimR ≤ min{GPac-gldimR,GIac-gldimR} . (1)

12. A pair (X,Y) of subcategories of R-modules is called a cotorsion pair if X⊥ = Y and Y = ⊥X.
Here X⊥ = {A | Ext1

R (X , A) = 0 for all X ∈ X}, and similarly one can define ⊥X. A cotorsion pair

C. R. Mathématique, 2020, 358, n 3, 379-392
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(X,Y) is said to be hereditary if Extn
R (X ,Y ) = 0 for all X ∈ X, Y ∈ Y and n ≥ 1, or equivalently, if

Y is injectively coresolving (that is, whenever 0 → L′ → L → L′′ → 0 is exact with L′,L ∈ Y then
L′′ is also in Y). A cotorsion pair (X,Y) is called complete if for any R-module A, there exist exact
sequences 0 → Y → X → A → 0 and/or 0 → A → Y ′ → X ′ → 0 with X , X ′ ∈X and Y ,Y ′ ∈Y.

3. Global Gorenstein AC-homological dimensions

In this section we focus on the global Gorenstein AC-projective/injective dimension. We let
silacR = sup{idR M |M is an absolutely clean R-module}.

Lemma 13. Let R be a ring. Then there exists an equality

max{GgldimR, silacR} =GIac-gldimR.

Proof. For the inequality “≥”, we let max{GgldimR, silacR} = m <∞. Then all absolutely clean R-
module have finite injective dimension. This implies that GIac=GI. Thus we have GIac-gldimR =
GgldimR ≤ m.

For the inequality “≤”, we let GIac-gldimR = n < ∞. It is easy to see that GgldimR ≤
GIac-gldimR = n. Next we prove that silacR ≤ n. Let A be an absolutely clean R-module. For each
R-module M , one has GIac-idR M ≤ n. So there is an exact sequence 0 → M →G0 →···→Gn → 0
with each G i Gorenstein AC-injective. Thus Extn+1

R (A, M) ∼= Ext1
R (A,Gn) = 0. This yields that A has

finite projective dimension at most n. So A has finite injective dimension at most n by [7, Cor. 2.7],
as GgldimR ≤GIac-gldimR = n; see (1). Thus one has silacR ≤ n. �

The next result is immediate by Lemma 13.

Lemma 14. Let R be a ring with GIac-gldimR finite. Then all absolutely clean R-modules have
finite injective dimension at most GIac-gldimR. Hence, all Gorenstein injective R-modules are
Gorenstein AC-injective.

The following two results are proved dually, where we let

spllR = sup{pdR M |M is a level R-module}.

Lemma 15. Let R be a ring. Then there exists an equality

max{GgldimR, spllR} =GPac-gldimR.

Lemma 16. Let R be a ring with GPac-gldimR finite. Then all level R-modules have finite projec-
tive dimension at most GPac-gldimR. Hence, all Gorenstein projective R-modules are Gorenstein
AC-projective.

Theorem 17. The following statements hold:

(a) If GIac-gldimR <∞, then there is an inequality GIac-gldimR ≤GPac-gldimR.
(b) If GIac-gldimR◦ <∞, then there is an inequality GPac-gldimR ≤GIac-gldimR.

Proof. (a). By Lemma 14 all Gorenstein injective R-modules are Gorenstein AC-injective, so one
has GIac-gldimR = GgldimR ≤GPac-gldimR.

(b). We may assume that GIac-gldimR is finite. By Lemma 14 all absolutely clean R◦-modules
have finite injective dimension, as GIac-gldimR◦ < ∞. Let L be a level R-module. Then by [9,
Thm. 2.12] L+ is a absolutely clean R◦-module, and so fdR L = idR L+ < ∞. Thus pdR L < ∞
by [7, Cor. 2.7] as GgldimR <∞. Hence, one has GP=GPac; see Lemma 16. Thus GPac-gldimR =
GgldimR ≤GIac-gldimR; see 11. �

The next result is proved dually.

C. R. Mathématique, 2020, 358, n 3, 379-392
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Theorem 18. The following statements hold:

(a) If GPac-gldimR <∞, then there is an inequality GPac-gldimR ≤GIac-gldimR.
(b) If GPac-gldimR◦ <∞, then there is an inequality GIac-gldimR ≤GPac-gldimR.

The next corollary advertised in the introduction is immediate by Theorems 17 and 18.

Corollary 19. If R is a commutative ring, then GIac-gldimR =GPac-gldimR.

Lemma 20. Let M be an R-module and n a nonnegative integer. Then the following conditions
are equivalent.

(i) GFac-pdR M ≤ n.
(ii) There is an exact sequence 0 → M → F → N → 0 of R-modules with fdR F ≤ n and

N ∈GPac.

Proof. (i) =⇒ (ii). We prove the result by induction on n. The case where n = 0 holds by
Proposition 40. Now let n > 0. Consider an exact sequence 0 → K → H → M → 0 of R-modules
with H flat. Then one has GFac-pdR K ≤ n − 1, and so by induction, there is an exact sequence
0 → K → H ′ → G → 0 of R-modules with fdR H ′ ≤ n − 1 and G ∈ GPac. Consider the following
pushout diagram

0

��

0

��
0 // K //

��

H //

��

M // 0

0 // H ′ //

��

H ′′ //

��

M // 0.

G

��

G

��
0 0

In the middle columnn, by Lemma 10 both H and G are in GFac, so is H ′′. Whence, by Propo-
sition 40, there is an exact sequence 0 → H ′′ → L → N → 0 of R-modules with L ∈ Flat and
N ∈GPac. Now we obtain another pushout diagram

0

��

0

��
0 // H ′ // H ′′ //

��

M //

��

0

0 // H ′ // L //

��

F //

��

0.

N

��

N

��
0 0

Since, in the middle row, L ∈ Flat and fdR H ′ ≤ n −1, it follows that fdR F ≤ n. So the condition (ii)
holds by the rightmost non-zero column.
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(ii) =⇒ (i). Assume that there is an exact sequence 0 → M → F → N → 0 of R-modules with
fdR F ≤ n and N ∈ GPac. Since (GPac,GPac⊥) is a hereditary complete cotorsion pair by Gille-
spie [21, fact. 10.2], there is an exact sequence 0 → E → L → F → 0 of R-modules with L ∈ GPac
and E ∈GPac⊥. Consider the next pullback diagram

0

��

0

��
E

��

E

��
0 // Q //

��

L //

��

N // 0

0 // M //

��

F //

��

N // 0.

0 0

By the middle column one gets GFac-pdR E ≤ n −1 since GFac-pdR F ≤ fdR F ≤ n and L ∈GPac⊆
GFac; see Lemma 10. By the middle row one gets that Q is in GPac ⊆ GFac since N and L are in
GPac. Thus, by the first non-zero column one has GFac-pdR M ≤ n. �

Proposition 21. Let R be a ring with GFac-gldimR <∞. Then all Gorenstein flat R-modules are
Gorenstein AC-flat.

Proof. We assume that GFac-gldimR = n <∞. Let M be a Gorenstein flat R-module. Then one
has GFac-pdR M ≤ n, and so by Lemma 20 there is an exact sequence 0 → M → F → N → 0 of R-
modules with fdR F ≤ n and N ∈GPac⊆GFac. Since M and N are Gorenstein flat, a recent result
by Šaroch and Št’ovíček [32, Thm. 3.11] yields that F is Gorenstein flat. Thus F is flat, and hence
M is Gorenstein AC-flat by Proposition 40. �

22. The cotorsion dimension of R-module M , Cot- idR M , is defined by declaring that
Cot- idR M ≤ n if and only if M has a cotorsion coresolution of length n, that is, there is
an exact sequence 0 → M → C 0 · · · → C n → 0 with each C i cotorsion. We let Cot-gldimR =
sup{Cot- idR M |M is an R-module}.

The next result was proved by Mao and Ding in [30, Thm. 19.2.14].

Lemma 23. For each R-module M there exists an inequality

pdR M ≤ fdR M +Cot-gldimR.

The next result is used in the proofs of Corollaries 33 and 34.

Theorem 24. Let R be a ring. Then there exist inequalities

max{GFac-gldimR,Cot-gldimR} ≤GPac-gldimR ≤GFac-gldimR +Cot-gldimR.

In particular, GPac-gldimR is finite if and only if GFac-gldimR and Cot-gldimR are finite.

Proof. For the first inequality one let GPac-gldimR = n < ∞. We notice that all Gorenstein
AC-projective modules are Gorenstein AC-flat. So one has GFac-gldimR ≤ n. Let F be an flat
R-module. Since GgldimR ≤ GPac-gldimR = n, one has pdR F ≤ n by [7, Cor. 2.7]. Thus [30,
Cor. 7.2.6] yields Cot-gldimR ≤ n.

For the second inequality we let GFac-gldimR = n <∞ and Cot-gldimR = m <∞. Let M be an
R-module. Then GFac-pdR M ≤ n. By Lemma 20, one gets an exact sequence 0 → M → F → N → 0
of R-modules with fdR F ≤ n and N ∈GPac. So pdR H ≤ n+m; see Lemma 23. Similar to the proof
of (ii) =⇒ (i) in Lemma 20 one gets GPac-pdR M ≤ n +m. Thus GPac-gldimR ≤ n +m. �

C. R. Mathématique, 2020, 358, n 3, 379-392
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Next we give some rings that have finite global Gorenstein AC-projective/injective dimension.

Theorem 25. For a ring R with GgldimR <∞, the following statements hold:

(a) If R is left coherent, then GIac-gldimR <∞.
(b) If R is right coherent, then GPac-gldimR <∞.

Proof. (a). By Lemma 13, it is suffices to show that silacR <∞. Let A be an absolutely clean R-
module, and let GgldimR = n <∞. Then [9, Cor. 2.9] yields that A is FP-injective since R is left
coherent. Hence, there is a pure exact sequence 0 → A → I →C → 0 of R-modules with I injective.
By [7, Cor. 2.7], one has fdR I ≤ n. It follows that fdR A ≤ fdR I ≤ n, and hence one has idR A ≤ n
again by [7, Cor. 2.7]. This gives that silacR ≤ n <∞.

(b). By Lemma 15, it is suffices to show that spllR < ∞. Let L be a level R-module, and let
GgldimR = n < ∞. Then [9, Cor. 2.11] yields that L is flat since R is right coherent. Hence one
has pdR L ≤ n by [7, Cor. 2.7]. This gives that spllR ≤ n <∞. �

In the followin we give an example to show that the converses of the statements in Theorem 25
are not true in general. Before that we give some facts.

26. Let R = ∏n
i=1 Ri be a direct product of rings. If Mi is an Ri -module for i = 1,2, · · · ,n then

M = M1 ⊕M2 ⊕ ·· · ⊕ Mn is an R-module. Conversely, if M is an R-module then it is of the form
M = M1 ⊕ M2 ⊕ ·· · ⊕ Mn , where Mi is an Ri -module for i = 1,2, · · · ,n. It is easy to see that the
following equalities hold

GPac-pdR M = sup{GPac-pdRi
Mi | i = 1, . . . ,n}

and
GIac-idR M = sup{GIac-idRi Mi | i = 1, . . . ,n},

which are parallel to the well-known ones about projective and injective dimension, respectively.
So one gets that R is of finite global Gorenstein AC-projective/injective dimension if and only if
each Ri is so; the same conclusion holds for global dimension. On the other hand, it is known
that R is left/right coherent if and only if each Ri is so.

Example 27. Let R = D + (x1, x2)K [x1, x2], where D is a Dedekind domain and K its quotient
field. According to Kirkman and Kuzmanovich [27, Example in p. 128], R is a commutative
non-coherent ring of finite global dimension. On the other hand, there exists a commutative
Iwanaga–Gorenstein ring S of infinite global dimension; see Bennis [6, p. 857]. So S has finite
global Gorenstein AC-projective dimension and finite global Gorenstein AC-injective dimension;
see Theorem 25. Hence, R × S has finite global Gorenstein AC-projective dimension and finite
global Gorenstein AC-injective dimension. However, R × S is neither of finite global dimension
nor coherent.

4. Compactly generatedness of singularity categories

We now turn to study the compactly generatedness of singularity categories and stable categories
with respect to Gorenstein AC-homological modules, and prove Theorem 1 advertised in the
introduction. We open this section with the following terminology.

28. Let (A,B) be a cotorsion pair in Mod(R), and let X be an R-complex. From Yang and Ding [34],
the A-projective dimension of X , A-pdR X , is defined as

A-pdR X = inf{sup A |X ' A in D(R) with A ∈ dgA}.

The B-injective dimension of X , B- idR X , is defined as

B- idR X = inf{− infB |X ' B in D(R) with B ∈ dgB}.
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Here dgA and dgB denote the subcategories of dg-A complexes and dg-B complexes, respec-
tively; see Gillespie [20].

It is known that (Flat,Cot) is a complete hereditary cotorsion pair, and by [9] and Proposi-
tion 41 (GPac,GPac⊥), (⊥GIac,GIac) and (GFac, (GPac)⊥∩Cot) are complete hereditary cotorsion
pairs. So for an R-complex X we have the definitions of GPac-pdR X , GFac-pdR X , GIac- idR X
and Cot- idR X . We let Db(R)�GPac (resp., Db(R)�GFac∩Ĉot, and Db(R)�GIac) denote the triangulated
subcategory of Db(R) consisting of all homology bounded complexes X with GPac-pdR X < ∞
(resp, GFac-pdR X <∞ and Cot- idR X <∞, and GIac- idR X <∞). It is easy to see that for an R-
module M (viewed as an R-complex concentrated in degree 0), the definitions of GPac-pdR M ,
GFac-pdR M , GIac- idR M and Cot- idR M are the same as in §11 and §22.

Lemma 29. The subcategory GPac (resp., GFac∩Cot, and GIac) together with all short exact
sequences in GPac (resp., GFac ∩ Cot, and GIac) forms a Frobenius category with projective-
injective objects all projective (resp., flat-cotorsion, and injective) R-modules.

Proof. We give a straight proof for the case GIac; see §42 for the other ones.
The subcategory GIac, together with all short exact sequences in GIac, forms an exact category,

as GIac is closed under extensions by [9, Lem. 5.6].
For I ∈ Inj and G ∈GIac, one gets that Ext1

R (G , I ) = 0 = Ext1
R (I ,G), which yields that all injective

R-modules are both projectives and injectives in GIac. Conversely, let M (resp., N ) be a injective
(resp., projective) object in GIac. Then there exist split exact sequences 0 → M → I → M ′ → 0
and 0 → N ′ → H → N → 0 with I , H ∈ Inj and M ′, N ′ ∈ GIac. So both M and N are in Inj. Thus
projectives and injectives in GPac are exactly injective R-modules.

Finally, for every G ∈ GIac there exist exact sequences 0 → G → I ′ → G ′ → 0 and 0 → G ′′ →
I ′′ →G → 0 with I ′, I ′′ ∈ Inj and G ′,G ′′ ∈ GIac, so the subcategory GIac has enough injectives and
enough projectives. �

30. By Lemma 29, the stable category GPac (resp., GFac∩Cot, and GIac) modulo projectives
(resp., flat-cotorsions, and injectives) is a triangulated category.

Theorem 31. The following conditions are equivalent.

(i) GPac-gldimR <∞.
(ii) There is an equality Db(R)�GPac =Db(R).

(iii) The natural functor F : GPac→Db(R)/Kb(Prj) induced by the compositions

GPac ,→Db(R)�GPac →Db(R)�GPac/Kb(Prj) ,→Db(R)/Kb(Prj)

is a triangulated equivalence.

Proof. (i) =⇒ (ii). Fix P ∈ Db(R). It suffices to show that GPac-pdR P < ∞. Without loss of
generality, we may assume that P is bounded as follows:

P = 0 → Pk → Pk−1 →···→ P1 → P0 → 0 .

Consider the exact sequence 0 → P0 → P → P≥1 → 0 of R-complexes. Since P0 and P≥1 have finite
Gorenstein AC-projective dimension by (i) and induction on k, respectively, so does P .

(ii) =⇒ (i). Each R-module M , viewed as an R-complex concentrated in degree 0, is in Db(R).
Thus M ∈ Db(R)�GPac, and so GPac-pdR M < ∞; see §28. Note that (GPac,GPac⊥) is a complete
hereditary cotorsion pair. It is a standard way to see that for any family (Mi )i∈Λ of R-modules
there is an equality

GPac-pdR (⊕i∈ΛMi ) = sup{GPac-pdR Mi | i ∈Λ}.

Thus it is easy to verify that the condition (i) holds.
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(ii) =⇒ (iii). From a result by Di, Liu, Yang and Zhang [13, Cor. 5.9], the induced natural func-
tor F : GPac → Db(R)�GPac/Kb(Prj) is a triangulated equivalence, so the statement (iii) follows
from (ii).

(iii) =⇒ (ii). It is clear that Db(R)�GPac ⊆ Db(R). Conversely, we let X ∈ Db(R) (X is also an object
of Db(R)/Kb(Prj)). By (iii) and [13, Cor. 5.9], the functor

Db(R)�GPac/Kb(Prj) ,→Db(R)/Kb(Prj)
is a triangulated equivalence. We notice that each triangulated equivalence is dense. So X is
isomorphic to an R-complex in Db(R)�GPac/Kb(Prj). It follows that X is in Db(R)�GPac. �

Theorem 32. The following conditions are equivalent.

(i) GFac-gldimR <∞ and Cot-gldimR <∞.
(ii) There is an equality Db(R)�GFac∩Ĉot =Db(R).

(iii) There is a triangulated equivalence

GFac∩Cot'Db(R)/Kb(FlatCot).

(iv) The natural functor F : GFac∩Cot → Db(R)/Kb(FlatCot) induced by the compositions
GFac∩Cot ,→ Db(R)�GFac∩Ĉot → Db(R)�GFac∩Ĉot/Kb(FlatCot) ,→ Db(R)/Kb(FlatCot) is a
triangulated equivalence.

Proof. Analogous to the proof of Theorem 31, using Corollary 44 instead of [13, Cor. 5.9]. �

Corollary 33. Let R be a ring with GPac-gldimR finite. Then

Db(R)/Kb(Inj) 'Db(R)/Kb(Prj) 'GPac'GFac∩Cot'Db(R)/Kb(FlatCot)

are compactly generated.

Proof. The first equivalence in the statement holds by [3, Thm. 6.9] since GgldimR is finite;
see (1). The second equivalence follows from Theorem 31, the third one holds by Corollary 43, and
the last one follows from Theorems 24 and 32. By a careful reading of the proof of Gillespie [25,
Thm. 6.2], one gets that GPac is compactly generated. �

It is from [4, lem. 6.6 and thm. 6.7] that if R is a right coherent and left perfect or left Morita
ring with GgldimR <∞ then GP'GI are compactly generated. The same conclusion holds if R is
Iwanaga–Gorenstein; see [26, Thm. 9.4] or [11, Thm. 4.1]. We have the next improved result.

Corollary 34. Let R be a right coherent ring with GgldimR <∞. Then

Db(R)/Kb(Inj) 'Db(R)/Kb(Prj) 'GP'GI'GF∩Cot'Db(R)/Kb(FlatCot)

are compactly generated.

Proof. By Theorem 25 one has GPac-gldimR finite. We notice that GP ' GI by [3, Thm. 6.9] as
GgldimR <∞. On the other hand, by Lemma 16 one has GPac=GP, and the equality GFac=GF
holds by Proposition 21 and Theorem 24. So the desired result in the statement follows from
Corollary 33. �

Dual to the proof of Theorem 31, we have the following result.

Theorem 35. The following conditions are equivalent.

(i) GIac-gldimR <∞.
(ii) There is an equality Db(R)�GIac =Db(R)

(iii) The natural functor F : GIac→Db(R)/Kb(Inj) induced by the compositions

GIac ,→Db(R)�GIac →Db(R)�GIac/Kb(Inj) ,→Db(R)/Kb(Inj)
is a triangulated equivalence.
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From Gillespie [24, Def. 5.1], a complex I of injective R-modules is called AC-injective if each
chain map into I from an acyclic complex with each cycle absolutely clean is null homotopic.

Proposition 36. Let R be a ring with GIac-gldimR finite. Then all complexes of injective R-
modules are AC-injective.

Proof. We let dwĨnj denote the subcategory of complexes of injective R-modules. Let I ∈ dwĨnj,
and let α : X → I be an homomorphisms of R-complexes with X acyclic and each cycle Zi (X )
absolutely clean. Next we prove that α is null homotopic. Set n = GIac-gldimR < ∞. Then
by Lemma 14 each cycle Zi (X ) has finite injective dimension ≤ n, and hence has finite flat
dimension ≤ n as GgldimR ≤ n. On the other hand, by [21, Prop. 7.2] the pair (⊥dwĨnj,dwĨnj)
is an injective cotorsion pair in Ch(R). Then it follows from Gillespie [23, Cor. 3.3] that X is
in ⊥dwĨnj, and so is ΣX. Thus one has Ext1

Ch(R)(ΣX , I ) = 0. This yields that the exact sequence
0 → I → Coneα → ΣX → 0 is split. So α is null homotopic; see Enochs, Jenda and Xu [17,
Lem. 3.2]. �

Corollary 37. Let R be a ring with GIac-gldimR finite. Then

GIac'Db(R)/Kb(Inj) 'Db(R)/Kb(Prj)

are compactly generated.

Proof. The first equivalence in the statement holds by Theorem 35, and the second one follows
from [3, Thm. 6.9] as GgldimR <∞. Next we prove that GIac is compactly generated. Let S(ACInj)
denote the homotopy category of all acyclic AC-injective R-complexes, and let Kac(Inj) (resp.,
Ktac(Inj)) denote the homotopy category of acyclic (resp., totally acyclic) complexes of injective
R-modules. Consider the following equivalences:

GIac=GI'Ktac(Inj) =Kac(Inj) = S(ACInj) .

Here the first equality holds by Lemma 14. Since GgldimR is finite by (1), all R-module have finite
Gorenstein injective dimension by Lemma 7. It follows that every acyclic complex of injective R-
modules has Gorenstein injective cycles and so it is totally acyclic. This yields that the second
equality holds. The last equality follows from Lemma 36; while the equivalence holds by Krause
[29, Prop. 7.2]. Finally, from [24, Thm. 5.8 and 4.6] that S(ACInj) is compactly generated. �

Let R be a ring with GIac-gldimR finite. Then one has GP'GI by [3, Thm. 6.9] as GgldimR <∞;
see §11. On the other hand, by Lemma 14, the equality GIac = GI holds. So the next result is
immediate by Theorem 25 and Corollary 37.

Corollary 38. Let R be a left coherent ring with GgldimR <∞. Then

Db(R)/Kb(Inj) 'Db(R)/Kb(Prj) 'GP'GI

are compactly generated.

We close this section with the following example; it shows that coherent rings of finite global
Gorenstein dimension may not be Iwanaga–Gorenstein nor perfect nor Morita2. Let R =∏n

i=1 Ri

be a direct product of rings (see §26). It is easy to see that R is Iwanaga–Gorenstein (resp., left
perfect and left Morita) if and only if each Ri is Iwanaga–Gorenstein (resp., left perfect and left
Morita).

2See [4] for the definition of Morita rings. It is known that a ring R is left Morita if and only if R is left Artinian and
Mod(R) has a finitely generated injective cogenerator.
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Example 39. Let R = Z and S =
(
Q R
0 Q

)
. Then R is a commutative Iwanaga–Gorenstein ring

that is neither perfect nor Artin; hence R is commutative coherent with GgldimR < ∞. Ac-
cording to Wang [33, Exa. 3.4] S is a commutative perfect coherent (non-noetherian) ring with
GgldimS <∞. Then the direct product R×S is a commutative coherent ring with Ggldim(R×S) =
sup{GgldimR,GgldimS} <∞, which is neither Iwanaga–Gorenstein nor perfect nor Morita.

Appendix. Gorenstein AC-flat modules

In this section we give some properties of Gorenstein AC-flat modules. We notice that all Goren-
stein AC-projective R-modules are Gorenstein AC-flat. Actually, by [9, Thm. A.6], an R-module M
is Gorenstein AC-projective if and only if there exists an exact sequence · · ·→ P1 → P0 → P−1 →···
of projective R-modules such that M ∼= Coker(P1 → P0), and it remains exact after applying the
functor A ⊗R − for each absolutely clean R◦-module A. The next two results are from Estrada,
Iacob and Pérez [19, Thm. 2.12] and [19, Exa. 2.17(2)].

Proposition 40. The following conditions are equivalent for an R-module M.

(i) M is Gorenstein AC-flat.
(ii) There is a short exact sequence 0 → K → L → M → 0 of R-modules with K ∈ Flat and L ∈

GPac, and it remains exact after applying the functor HomR (−,C ) for any (flat) cotorsion
R-module C .

(iii) Ext1
R (M ,C ) = 0 holds for all cotorsion R-modules C ∈ (GPac)⊥.

(iv) There is a short exact sequence 0 → M → F → N → 0 of R-modules with F ∈ Flat and
N ∈GPac.

Proposition 41. The pair (GFac, (GPac)⊥∩Cot) is a complete and hereditary cotorsion pair with
the equality GFac∩ (GPac)⊥ =Flat.

Recall that a triple (Q,W,R) of classes of R-modules is Hovey triple if W is thick and (Q∩W,R)
and (Q,W∩R) are complete cotorsion pairs. If furthermore the above two cotorsion pairs are
hereditary then the Hovey triple (Q,W,R) is called hereditary. From Hovey [26, Thm. 2.2], an
abelian model structure on Mod(R) is equivalent to a Hovey triple. This fact is known as “Hovey
correspondence” in the literature. We hence always denote an abelian model structure M as a
Hovey triple M = (Q,W,R).

For an abelian model structure M = (Q,W,R), we denote by Ho(M ) the homotopy category
of M . By Gillespie [22, Sec. 4 and 5], for any hereditary Hovey triple M = (Q,W,R), there is a
Frobenius exact category Q∩R whose projective-injective objects are precisely those in Q∩R∩W.
Furthermore, the stable category Q∩R is triangulated equivalent to Ho(M ). This triangulated
equivalence is known as the fundamental theorem of model categories in the literature.

42. By [9], the triple M = (GPac,GPac⊥,Mod(R)) is a hereditary Hovey triple. As an immediate
consequence of Proposition 41 one gets that the triple M ′ = (GFac,GPac⊥,Cot) is a hereditary
Hovey triple, which can also be found in [19, Cor. 4.3]. Thus the category GPac (resp., GFac∩Cot)
is a Frobenius category with projective-injective objects all projective (resp., flat-cotorsion) R-
modules. By the fundamental theorem of model categories, GPac (resp., GFac∩Cot) is triangu-
lated equivalent to Ho(M ) (resp., Ho(M ′)).

It follows from Estrada and Gillespie [18, Lem. 5.4] that if two hereditary Hovey triples M =
(Q,W,R) and M ′ = (Q′,W,R′) on Mod(R) have the same class W of trivial objects and if Q ⊆ Q′

(or equivalently, R′ ⊆R), then there is a triangulated equivalence Ho(M ) ' Ho(M ′). Applying this
fact to the hereditary Hovey triples M = (GPac,GPac⊥,Mod(R)) and M ′ = (GFac,GPac⊥,Cot) (in
view of 42) we get
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Corollary 43. There exits a triangulated equivalence GPac'GFac∩Cot.

Note that the pairs (Flat,Cot) and (GFac, (GPac)⊥ ∩Cot) are complete hereditary cotorsion
pairs with GFac∩(GPac)⊥∩Cot=Flat∩Cot; see Proposition 41. The following result is immediate
by [13, Thm. 4.5].

Corollary 44. There exists a triangle equivalence

GFac∩Cot'Db(R)�GFac∩Ĉot/Kb(FlatCot).
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