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For any subset A of natural numbers setN, let A(x) = |A∩ [1, x]|. In 2008, Chen communicated
to the authors of [3] and made the following two conjectures therein.

Conjecture 1. Let A and B be two sets of positive integers. If there exists a constant c > 0 such
that A (log x/log2)B(x) > cx for all sufficiently large x, then the set {2a +b : a ∈ A , b ∈ B} has
positive lower asymptotic density.

Conjecture 2. Let A and B be two sets of positive integers. If there exists a constant c > 0 such
that A (log x/log2)B(x) > cx for infinitely many x, then the set {2a +b : a ∈A , b ∈B} has positive
upper asymptotic density.

Romanov’s theorem [6] offers a positive answer to Chen’s conjectures when B is the set
of primes. However, it will not be the case in general. We construct a counterexample which
disproves simultaneously Chen’s conjectures.

Let pi be the i th odd prime and dt = p1p2 · · ·pt for t ∈Z+. For any t ∈Z+, define

Bt = {n : n ∈N, dt |n}∩
[

22t2

,22(t+1)2
)

, B =
∞⋃

t=1
Bt

and

A =N, C = 2A +B = {
2a +b : a ∈A , b ∈B

}
.
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Let x be a large number and j be the number such that

22 j 2

≤ x < 22( j+1)2

, (1)

which means that √
loglog x < j ≤ 2√

log2

√
loglog x. (2)

From the Chebyshev estimate, we have

d j = exp

( ∑
2<p ≤p j

log p

)
≤ exp

(
2 j log j

)
≤ exp

(
3
√

loglog x logloglog x
)

.

(3)

In view of equation (1), we know 22( j−1)2

<p
x. So by the construction of B and equation (3), we

have

B(x) ≥ x −22 j 2

d j
+ 22 j 2

−22( j−1)2

d j−1
−2

≥ x −22( j−1)2

d j
−2

À x

exp
(
3
√

loglog x logloglog x
) .

(4)

It follows that

A
(
log x/log2

)
B(x) À x log x

exp
(
3
√

loglog x logloglog x
) > x.

It remains to prove C (x) = o(x) as x →∞. It is clear that

C (x) = #
{
c ≤ x : c = 2a +b, a ∈A ,b ∈B

}≤ S1(x)+S2(x), (5)

where

S1(x) = #
{
c ≤ x : c = 2a +b, a ∈A ,b ∈B j

}
and

S2(x) = #
{
c ≤ x : c = 2a +b, a ∈A ,b ∉B j

}
.

Note that if c = 2a +b for some b ∈B j , then pi - c for any 1 ≤ i ≤ j . This fact leads to the following
bound

S1(x) ≤ ∑
c ≤x(

c,
∏

p ≤p j
p

)
=1

1

= ∑
`|∏p ≤p j

p
µ(`)

⌊ x

`

⌋
≤ x

∏
p ≤p j

(
1− 1

p

)
+2 j .

(6)

The same observation yields the following estimate

S2(x) ≤ #
{
c ≤ x : c = 2a +b, a ∈A ,b ∈B j−1

}+22( j−1)2 log x

log2

¿ x
∏

p ≤p j−1

(
1− 1

p

)
+p

x log x +2 j .
(7)
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It can be seen that
2 j ¿ exp

(
3
√

loglog x
)
¿p

x

from equation (2). Therefore, combing equations (5), (6) and (7) we have

C (x) ¿ x
∏

p ≤p j−1

(
1− 1

p

)
+p

x log x

¿ x
(
log p j−1

)−1 +p
x log x

¿ x
(
logloglog x

)−1 ,

where the last but one step follows from the Mertens estimate, which is surely more to expectation
than our requirement.

We remark that the Romanov type problems start from the remarkable paper [6], where it is
proved that there is a positive lower asymptotic density of odd numbers which can be represented
by the sum of a prime and a power of 2. In the opposite direction, van der Corput [1] showed
that there is a positive lower asymptotic density of odd numbers none of whose members can
be represented by the sum of a prime and a power of 2. Subsequently, Erdős [2] constructed an
arithmetic progression of odd numbers having the same property required in the paper of van
der Corput. The results of van der Corput and Erdős give a negative answer to an old conjecture
of de Polignac [4, 5].

At present, the author of this note has no answer to the following question. Let B be a set of
positive integers satisfying B(x) =O(x/log x), then is it true that

limsup
x→∞

C (x)

B(x)
=∞,

where

C = 2N+B =
{

2k +b : k ∈N, b ∈B
}

.
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