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Abstract. Let MX denote the moduli space of rank one logarithmic connections singular over a finite subset
S of a compact Riemann surface X with fixed residues. We study the rational functions into MX . We prove
that there is a natural compactification of MX and the Picard group of MX is isomorphic to the Picard group
of Picd (X ).
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1. Introduction

The moduli space of logarithmic connection has been constructed in [4]. Let X be a compact Rie-
mann surface. In [1], several properties, like Picard group, algebraic functions and compactifica-
tion have been studied for the moduli space of logarithmic connections in a holomorphic vector
bundle over X with singularity exactly over one point. Let S be a finite subset of X and MX denote
the moduli space of rank one logarithmic connection singular over S with fixed residues. In [6], it
has been proved that there is a natural symplectic structure on MX and there are no nonconstant
algebraic functions on MX . In the present article, we reconsider the moduli space MX and try to
study the biholomorphic class of the MX , see Section 3. We prove that any rational map from a
normal variety to MX is defined on the whole of the normal variety, see Section 4. Also, we show,
by explicit manipulation that there is a natural compactification of MX and compute the Picard
group of MX , see Section 5.

2. Preliminaries

Let X be a compact connected Riemann surface and S = {x1, . . . , xm} be a finite subset consisting
of distinct points of X . The set S will be fixed throughout this article. We denote by S = x1 +
·· ·+ xm the reduced effective divisor on X associated to the finite set S. Let Ω1

X (logS) denote the
sheaf of logarithmic differential 1-forms along S, see [5]. Notion of logarithmic connection was

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.41
mailto:anoopsingh@hri.res.in
https://comptes-rendus.academie-sciences.fr/mathematique/


298 Anoop Singh

introduced by P. Deligne in [2]. Let L be a holomorphic line bundle over X . We will denote the
fibre of L over any point x ∈ X by L(x). A logarithmic connection on L singular over S is a C-linear
map

D : L →Ω1
X (logS)⊗L (1)

which satisfies the Leibniz identity

D( f s) = f D(s)+d f ⊗ s, (2)

where, f is a local section of OX and s is a local section of L.
Let Res(D, xβ) denote the residue of the logarithmic connection D at point xβ ∈ S (see [2] for

the details). If D and D ′ are two logarithmic connections on L singular over S with

Res(D, xβ) = Res(D ′, xβ), (3)

then D ′ = D +θ, where θ ∈ H0(X ,Ω1
X ). Thus, the space of all logarithmic connections on a given

holomorphic line bundle L, singular over S, and satisfying (3) is an affine space for H0(X ,Ω1
X ).

3. Biholomorphic class of the moduli space

In this section, we will assume that genus(X ) = g ≥ 2. For each point x j ∈ S, fix a complex number
r j ∈ C, for j = 1, . . . ,m. Let d be a fix integer which denotes the degree of a line bundle over X . By
a pair (L,D) over X , we mean that L is a line bundle over X of degree d and D is a logarithmic
connection in L singular over S with residues to be given complex numbers r j ∈ C for each x j ∈ S.

Let MX denote the moduli space of pairs (L,D) over X (see [4]).
Let X0 = X \ S and fix a point x0 ∈ X0. Now, consider the fundamental group

π1(X0, x0) =
{

a1,b1, . . . , ag ,bg ,γ1, . . . ,γm

∣∣∣∣∣ g∏
i=1

[ai ,bi ]γ1 . . .γm = 1

}

of X0 at x0, where ai ,bi for i = 1, . . . , g are generators of fundamental group of genus g compact
Riemann surface X and γ j are the homotopy class of loops at x0 around x j ’s. Let Bg = {ρ :
π1(X0, x0) → C∗| ρ(γ j ) = exp(2π

p−1r j )}. Now, the representation space Hom(π1(X0, x0),C∗) is
complex algebraic variety in a natural way and Bg is a closed subvariety of representation space.
Moreover, Bg is smooth, because the representations are irreducible. The space Bg does not
depend on the point x0 of X0.

We have a map

Φ : MX →Bg (4)

sending any pair (L,D) ∈ MX to its monodromy representation ρ : π1(X0, x0) → C∗ such that
ρ(γ j ) = exp(2π

p−1r j ). Note that both the spaces MX and Bg have underlying structure of
complex manifold.

Therefore, we have

Proposition 1. The map Φ : MX → Bg defined in (4) is a biholomorphism. Further, if (Y ,T =
{y1, . . . , ym}) is another compact connected Riemann surface of genus g ≥ 2, with finite subset T
consisting of m elements and MY is the correspoding moduli space of logarithmic connections
singular over T with same set of residues, then the two complex manifolds MX and MY are
biholomorphic.
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4. Rational functions into the moduli space

Let MX be the moduli space described in Section 3. Let

p : MX → Picd (X ) (5)

be the projection defined by sending any pair (L,D) to L, where Picd (X ) is a Picard variety of
line bundles of degree d . Fix a pair (L0,D0) ∈ MX . Let L∗

0 be the dual line bundle of L0 and
D∗

0 denote the logarithmic connection in L∗
0 , induced from D0. Then D∗

0 is sigular over S with
Res(D∗

0 , x j ) =−r j for all j = 1, . . . ,m.
Now, for any (L,D) ∈ MX , L∗

0 ⊗L is a holomorphic line bundle with holomorphic connection
∇= D∗

0 ⊗1L +1L∗
0
⊗D . Note that Res(∇, x j ) = 0, for all j = 1, . . . ,m.

Let M h
X denote the moduli space of pairs (L,D), where L is a holomorphic line bundle of

degree 0, and D is a holomorphic connection in L. Then we have a map

Ψ(L0,D0) : MX →M h
X (6)

sending (L,D) to (L∗
0 ⊗L,D∗

0 ⊗1L +1L∗
0
⊗D), which is an isomorphism. Therefore, the structure

theory for both the moduli spaces are same. Note that the moduli space MX is an algebraic group.
We have an extension of group schemes

0 → H0(X ,Ω1
X ) →MX → J (X ) → 0 (7)

From the above extension (7) of J (X ) by H0(X ,Ω1
X ), it is clear that there are no rational curves

on MX . Now, we have following Theorem, which can be proved either using Hartogs’ Theorem
or [3, Theorem 9.4, p. 103].

Theorem 2. Let f : Z 99KMX be a rational map from a normal variety Z to the moduli space
MX . Suppose that f is defined in a complement of a subvariety of Z of codimension ≥ 2. Then f is
defined on whole of Z .

Proof. From Proposition 1, MX is biholomorphic to the affine variety Bg . So, we get f : Z 99K
Bg . By hypothesis, f is defined in a complement of a subvariety of Z of codimension ≥ 2, so the
conclusion follows from Hartogs’ Theorem. �

Remark 3. Alternatively, given a rational map f : Z 99KMX , defines a rational map Z 99KMX →
J (X ) by composition. Now, using [3, Theorem 9.4, p. 103], which says that any rational map from
a normal variety to an abelian variety is defined on whole of the domain, and hence we are done.

Corollary 4. Every rational map f : CPn 99KMX from projective space to MX is constant.

Proof. As CPn is a normal variety, from Theorem 2 f is defined on whole of CPn . Moreover, CPn

is CP1 connected and MX does not contain any rational curve, which is equivalent to the fact that
any rational map from CP1 to MX is constant. Thus f is constant. �

5. Compactification and the Picard group of moduli space

The following proposition can be proved in more general context of any extension of an abelian
variety by an additive group scheme using similar technique. Here, we restrict ourselves to the
moduli space MX .

Proposition 5. There exists an algebraic vector bundle π : E → Picd (X ) such that MX is embedded
in P(E) with P(E) \MX as the hyperplane at infinity.
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Proof. Let p : MX → Picd (X ) be the map as defined in (5). Then for any L ∈ Picd (X ), the
fiber p−1(L) is an affine space modelled on H0(X ,Ω1

X ). In fact, p : MX → Picd (X ) is a Ω1
Picd (X )

-

torsor. Since the dual of an affine space is a vector space, so the dual p−1(L)∨ = {ϕ : p−1(L) →
C | ϕ is an affine linear map} is a vector space over C. Define a sheaf E on Picd (X ) as follows;

For every Zariski open subset U of Picd (X ), sections of E over U is the following set

E(U ) =
{

f : p−1(U ) → C is a regular function : f |p−1(L) ∈ p−1(L)∨
}

.

Clearly, E is an OPicd (X )-module. Moreover E is a locally free sheaf over Picd (X ), and hence we get
an algebraic vector bundle π : E → Picd (X )

Let (L,D) ∈ MX , and define a map Φ(L,D) : p−1(L)∨ → C, by Φ(L,D)(ϕ) = ϕ[(L,D)], which is
nothing but the evaluation map. Now, the kernel Ker(Φ(L,D)) defines a hyperplane in p−1(L)∨

denoted by H(L,D). Let P(E) be the projective bundle defined by hyperplanes in the fiber of π.
Then, we have natural projection

π̃ : P(E) → Picd (X ) (8)

induced from π. Define a map

ι : MX → P(E) (9)

by sending (L,D) to the hyperplane H(L,D), which is clearly an open embedding. Set Y = P(E) \
MX . Then π̃−1(L)∩Y is a linear hyperplane in π̃−1(L) for every L ∈ Picd (X ), and hence Y is a
hyperplane at infinity. This completes the proof. �

Thus, from the Proposition 5, P(E) is the natural compactification of the moduli space MX .
Further, p defined in (5), induces a homomorphism of Picards groups

p∗ : Pic(Picd (X )) → Pic(MX ) (10)

that sends a line bundle ξ over Picd (X ) to a line bundle p∗ξ over MX . We have

Theorem 6. The homomorphism p∗ : Pic(Picd (X )) → Pic(MX ) defined in (10) is an isomorphism.

Proof. First we show that p∗ in (10) is injective. Let Ξ→ Picd (X ) be a line bundle such that p∗Ξ
is a trivial line bundle over MX . Giving a trivialization of p∗Ξ is equivalent to giving a nowhere
vanishing section of p∗Ξ over MX . Fix ζ ∈ H0(MX , p∗Ξ) a nowhere vanishing section. Take any
point z ∈ Picd (X ). Then,

ζ|p−1(z) : p−1(z) →Ξ(z)

is a nowhere vanishing map. Notice that p−1(z) ∼= Cg and Ξ(z) ∼= C. Now, any nowhere vanishing
algebraic function on an affine space Cg is a constant function, that is, ζ|p−1(z) is a constant
function and hence corresponds to a non-zero vector αz ∈Ξ(z). Since ζ is constant on each fiber
of p, the trivialization ζ of p∗Ξ descends to a trivialization of the line bundle Ξ over Picd (X ), and
hence giving a nowhere vanishing section of Ξ over Picd (X ). Thus, Ξ is a trivial line bundle over
Picd (X ). It remains to show that p∗ is surjective.

Let Θ→ MX be an algebraic line bundle. Since MX ,→ P(E) follows from (9), in the proof of
above Proposition 5, we can extend Θ to a line bundle Θ′ over P(E). Further, from the morphism
π̃ : P(E) → Picd (X ) in (8) in the above Proposition 5 we have

Pic(P(E)) ∼= π̃∗ Pic(Picd (X ))⊕ZOP(E)(1). (11)

Therefore,

Θ′ = π̃∗L⊗OP(E)(l ) (12)

where L is a line bundle over Picd (X ) and l ∈ Z. Since Y = P(E) \MX is the hyperplane at infinity,
again from (11) the line bundle OP(E)(Y ) associated to the divisor Y can be expressed as

OP(E)(Y ) = π̃∗L1 ⊗OP(E)(1) (13)
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for some line bundle L1 over Picd (X ). Now, from (12) and (13), we get

Θ′ = π̃∗(L⊗ (L∨
1 )⊗l )⊗OP(E)(l Y ). (14)

Since, the restriction of the line bundle OP(E)(Y ) to the compliment P(E) \ Y = MX is the trivial
line bundle and restriction of π̃ to MX is the map p defined in (5), therefore, we have

Θ= p∗(L⊗ (L∨
1 )⊗l ). (15)

This completes the proof. �

Corollary 7. The homomorphism p∗ : J (Picd (X )) → J (MX ) is an isomorphism of Jacobians.
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