
Comptes Rendus

Mathématique

Bamdad Hosseini and Stefan Steinerberger

Intrinsic Sparsity of Kantorovich solutions

Volume 360 (2022), p. 1173-1175

https://doi.org/10.5802/crmath.392

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.392
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2022, Vol. 360, p. 1173-1175
https://doi.org/10.5802/crmath.392

Control theory / Théorie du contrôle

Intrinsic Sparsity of Kantorovich solutions

Parcité intrinsèque des solutions de Kantorovich
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Abstract. Let X ,Y be two finite sets of points having #X = m and #Y = n points withµ= (1/m)(δx1 +·· ·+δxm )
and ν= (1/n)(δy1 +·· ·+δyn ) being the associated uniform probability measures. A result of Birkhoff implies
that if m = n, then the Kantorovich problem has a solution which also solves the Monge problem: optimal
transport can be realized with a bijection π : X → Y . This is impossible when m 6= n. We observe that when
m 6= n, there exists a solution of the Kantorovich problem such that the mass of each point in X is moved to
at most n/gcd(m,n) different points in Y and that, conversely, each point in Y receives mass from at most
m/gcd(m,n) points in X .

Résumé. Soient X et Y deux ensembles de points de cardinaux respectifs m et n; et µ,ν les mesures de
probabilité associées. Quand m = n, un résultat de Birkhoff assure que le problème de Kantorovitch a une
solution qui résout aussi le problème de Monge : une bijection réalise le transport optimal. Quand m 6= n,
nous montrons que le problème de Kantorovitch admet une solution telle que chaque point de X se déplace
vers au plus n/pgcd(m,n) points de Y, et réciproquement, chaque point de Y reçoit de la masse d’au plus
m/pgcd(m,n) points de X.
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1. Introduction

Let µ and ν be two (probability) measures. A classical question, due to Monge, is to understand
the optimal way of mapping µ to ν. If we denote the cost of transporting mass from x to y by
c(x, y), then the Monge problem asks for

inf
T

{∫
X

c (x,T (x))dµ(x) : T∗(µ) = ν

}
(Monge),
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where T∗(µ) denotes the push forward of µ by T . This problem may not be solvable because such
transport maps T may simply not exist. Kantorovich proposed to relax the problem and instead
try to minimize

inf
γ

∫
X×Y

c(x, y)dγ(x, y) (Kantorovich),

where γ is a probability measure on X ×Y having marginalsµ and ν. There is a nice classical result
linking these two problems in the discrete setting: ifµ andν are two uniform probability measures
over two sets X and Y with n elements, then it is known that these two problems coincide.

Theorem 1 (see e.g. [2, 4, 6]). If µ= (1/n)
∑n

i=1δxi and ν= (1/n)
∑n

i=1δyi , then there is a solution
of the Kantorovich problem which also solves the Monge problem.

The statement is independent of the transport costs c(xi , y j ). A proof is as follows: the Kan-
torovich problem is, in the discrete setting, a linear program over bistochastic matrices. A theo-
rem of Birkhoff [1] (also attributed to König [3] and von Neumann [5]) says that the bistochastic
matrices are the convex hull of the permutation matrices. The minimum of a linear program in a
non-empty polyhedron is attained in an extremal point.

2. Main Result

No such statement can be true when m 6= n: the two sets have different cardinalities and no
bijection is possible. The goal of this short note is to point out that there nonetheless exists a
particularly simple solution of the Kantorovich problem.

Theorem 2. Let µ= (1/m)
∑m

i=1δxi and ν= (1/n)
∑n

i=1δyi . There is a solution of the Kantorovich
problem such that mass from each point in X is moved to at most n/gcd(m,n) different points in
Y and that each point in Y receives mass from at most m/gcd(m,n) points in X .

Figure 1. Left: m = n, the transport is a bijection. Right: m = 20 red points are sent to n = 30
blue points. Each red point is transported to at most 30/gcd(20,30) = 3 blue points, each
blue points receives mass from at most 20/gcd(20,30) = 2 red points.

Somewhat to our surprise, we were unable to find this simple but intriguing statement (illus-
trated in Fig. 1) in the literature. Besides its intrinsic appeal, it does seem like it could be poten-
tially useful insofar as it guarantees the existence of “sparse” solutions of the Kantorovich prob-
lem (with sparsity depending on m,n).

Proof. Suppose that

µ= 1

m

m∑
i=1

δxi and ν= 1

n

n∑
i=1

δyi
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are two given measures. We replace each point xi by n/gcd(m,n) identical points xi , j for 1 ≤ j ≤
n/gcd(m,n) and, likewise, we replace each point yi by m/gcd(m,n) identical points yi , j where
1 ≤ j ≤ m/gcd(m,n). This allows us to write

µ= gcd(m,n)

mn

m∑
i=1

n/gcd(m,n)∑
j=1

δxi , j
and ν= gcd(m,n)

mn

n∑
i=1

m/gcd(m,n)∑
j=1

δyi , j
.

The problem can now be interpreted as finding a transport map from mn/gcd(m,n) points
of the same weight to another set of mn/gcd(m,n) points of the same weight. Applying the
classical result shows that there exists bijective map between the points that realizes the optimal
Kantorovich cost. This corresponds into each point in X being split into at most n/gcd(m,n)
equal parts and each point in Y being split into at most m/gcd(m,n) parts. �

We conclude by observing that the same argument also applies to linear combinations of
weighted Dirac measures as long as the weights are rational. Suppose

µ=
m∑

i=1

ai

bi
δxi where

m∑
i=1

ai

bi
= 1

and where ai ,bi ∈ N are positive rational weights. We note that it is possible to equivalently
represent µ as a linear combination of a number of equally weighted Dirac measures. This
number will depend on the least common multiple lcm(b1, . . . , bm) of the denominators. This
can be seen by writing

µ= 1

lcm(b1, . . . , bm)

m∑
i=1

ai lcm(b1, . . . , bm)

bi
δxi

and noting that ai lcm(b1, . . . , bn)/bi ∈N. This implies the following corollary.

Corollary 3. Let

µ=
m∑

i=1

ai

bi
δxi and ν=

n∑
i=1

ci

di
δyi

be two probability measures with positive rational weights and let

B = lcm(b1, . . . , bm) and D = lcm(d1, . . . , dn).

There exists a solution of the Kantorovich problem such that mass from each point in X is moved
to at most D/gcd(B ,D) different points in Y and each point in Y receives mass from at most
B/gcd(B ,D) different points in X .

We note that this reduces to the previous Theorem when ai = ci = 1, bi = m and di = n. We
also observe that it is quite possible that D/gcd(B ,D) À n and that B/gcd(B ,D) À m (this will
usually happen when the bi ,di have many different prime factors). In such a case, the statement
would not say anything of interest.
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