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Abstract. Let X, Y be two finite sets of points having #X = m and #Y = n points with u = (1/m) (5)51 ++0x,,)
andv=(1/n) y et o yn) being the associated uniform probability measures. A result of Birkhoff implies
that if m = n, then the Kantorovich problem has a solution which also solves the Monge problem: optimal
transport can be realized with a bijection 7 : X — Y. This is impossible when m # n. We observe that when
m # n, there exists a solution of the Kantorovich problem such that the mass of each point in X is moved to
at most n/gecd(m, n) different points in Y and that, conversely, each point in Y receives mass from at most
m/ ged(m, n) points in X.

Résumé. Soient X et Y deux ensembles de points de cardinaux respectifs m et n; et u,v les mesures de
probabilité associées. Quand m = n, un résultat de Birkhoff assure que le probleme de Kantorovitch a une
solution qui résout aussi le probléme de Monge : une bijection réalise le transport optimal. Quand m # n,
nous montrons que le probleme de Kantorovitch admet une solution telle que chaque point de X se déplace
vers au plus n/pgcd(m, n) points de Y, et réciproquement, chaque point de Y recoit de la masse d’au plus
m/pgcd(m, n) points de X.
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1. Introduction

Let 1 and v be two (probability) measures. A classical question, due to Monge, is to understand
the optimal way of mapping u to v. If we denote the cost of transporting mass from x to y by
¢(x, y), then the Monge problem asks for

ir%f{f c(x, T(x)dp(x): Tu () = v} (Monge),
X
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where T, (1) denotes the push forward of u by T. This problem may not be solvable because such
transport maps T may simply not exist. Kantorovich proposed to relax the problem and instead
try to minimize
inf f clx,ydy(x,y) (Kantorovich),
Y JXxy

where y is a probability measure on X x Y having marginals ¢ and v. There is a nice classical result
linking these two problems in the discrete setting: if 1 and v are two uniform probability measures
over two sets X and Y with n elements, then it is known that these two problems coincide.

Theorem 1 (see e.g. [2,4,6]). Ifu=(1/n) Z;Ll Oy, andv = (1/n) Z;.’zl 63,[, then there is a solution
of the Kantorovich problem which also solves the Monge problem.

The statement is independent of the transport costs c(x;, y;). A proof is as follows: the Kan-
torovich problem is, in the discrete setting, a linear program over bistochastic matrices. A theo-
rem of Birkhoff [1] (also attributed to Konig [3] and von Neumann [5]) says that the bistochastic
matrices are the convex hull of the permutation matrices. The minimum of a linear program in a
non-empty polyhedron is attained in an extremal point.

2. Main Result

No such statement can be true when m # n: the two sets have different cardinalities and no
bijection is possible. The goal of this short note is to point out that there nonetheless exists a
particularly simple solution of the Kantorovich problem.

Theorem 2. Let u=(1/m) Z;’il Oy, andv = (1/n) Z?Zl 0y, There is a solution of the Kantorovich
problem such that mass from each point in X is moved to at most n/ gcd(m, n) different points in
Y and that each point in'Y receives mass from at most m/ gcd(m, n) points in X.
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Figure 1. Left: m = n, the transport is a bijection. Right: m = 20 red points are sent to n = 30
blue points. Each red point is transported to at most 30/ gcd(20,30) = 3 blue points, each
blue points receives mass from at most 20/ gcd(20,30) = 2 red points.

Somewhat to our surprise, we were unable to find this simple but intriguing statement (illus-
trated in Fig. 1) in the literature. Besides its intrinsic appeal, it does seem like it could be poten-
tially useful insofar as it guarantees the existence of “sparse” solutions of the Kantorovich prob-
lem (with sparsity depending on m, n).

Proof. Suppose that

1 n
— Y Oy and v=—2Y 0y,
miIXl ”;yl
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are two given measures. We replace each point x; by n/ ged(m, n) identical points x; i forlsj<
n/ged(m, n) and, likewise, we replace each point y; by m/gcd(m, n) identical points Yij where
1< j = m/gcd(m,n). This allows us to write

n/ ged(m,n) n m/ged(m,n)
B gcd(m, n) & 3 gcd(m, n)
T T N T
i=1 j=1 i=1 j=1

The problem can now be interpreted as finding a transport map from mn/gcd(m, n) points
of the same weight to another set of mn/gcd(m, n) points of the same weight. Applying the
classical result shows that there exists bijective map between the points that realizes the optimal
Kantorovich cost. This corresponds into each point in X being split into at most n/gcd(m, n)
equal parts and each point in Y being split into at most m/ gcd(m, n) parts. O

We conclude by observing that the same argument also applies to linear combinations of

weighted Dirac measures as long as the weights are rational. Suppose

m . m .

uzZ%@xi where Z%:l

i=1Pi i=1Yi
and where a;, b; € N are positive rational weights. We note that it is possible to equivalently
represent (1 as a linear combination of a number of equally weighted Dirac measures. This
number will depend on the least common multiple lcm(by, ..., by,) of the denominators. This
can be seen by writing

B 1 iailcm(bl,”.,bm)a
Clem(by, ..., by) b; i
and noting that a;lcm(b;, ..., b,)/b; € N. This implies the following corollary.

U

Corollary 3. Let

m al, n Ci
p=Y —by and v=) —&y,
i=1 bi o di
be two probability measures with positive rational weights and let
B=Icm(by,..., by) and D=Icm(d;, ..., d,).

There exists a solution of the Kantorovich problem such that mass from each point in X is moved
to at most D/ gcd(B, D) different points in Y and each point in Y receives mass from at most
B/ gcd(B, D) different points in X.

We note that this reduces to the previous Theorem when a; = ¢; =1, b; = m and d; = n. We
also observe that it is quite possible that D/ gcd(B, D) > n and that B/ gcd(B, D) > m (this will
usually happen when the b;, d; have many different prime factors). In such a case, the statement
would not say anything of interest.

References

[1] G. Birkhoff, “Tres observaciones sobre el algebra lineal”, Rev., Ser. A, Univ. Nac. Tucumdn 5 (1946), p. 147-151.

[2] H.Brezis, “Remarks on the Monge-Kantorovich problem in the discrete setting”, C. R. Math. Acad. Sci. Paris 356 (2018),
no. 2, p. 207-213.

[3] D. Konig, Theorie der endlichen und unendlichen Graphen, Teubner-Archiv zur Mathematik, vol. 6, Teubner, 1936.

[4] Q. Mérigot, B. Thibert, “Optimal transport: discretization and algorithms”, in Geometric partial differential equations.
Part 2, Handbook of Numerical Analysis, vol. 22, Elsevier, 2021, p. 133-212.

[5] J. von Neumann, “A certain zero-sum two-person game equivalent to an optimal assignment problem”, in Contribu-
tions to the theory of games. Vol. 2, Annals of Mathematics Studies, vol. 28, Princeton University Press, 1953, p. 5-12.

[6] G. Peyré, M. Cuturi, “Computational optimal transport: With applications to data science”, Found. Trends Mach.
Learn. 11 (2018), no. 5-6, p. 355-407.



	1. Introduction
	2. Main Result
	References

