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Abstract. A finite group all of whose complex character values are rational is called a rational group. In this
paper, we classify all rational groups whose character degree graphs are disconnected.

Résumé. Un groupe fini dont toutes les valeurs de caractères complexes sont rationnelles est appelé un
groupe rationnel. Dans cet article, nous classifions tous les groupes rationnels dont les graphes de degrés
de caractère sont déconnectés.
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1. Introduction

Throughout this paper, G is a finite group and Irr(G) is the set of all irreducible complex characters
of G . The set of all irreducible complex character degrees of G is denoted by cd(G) so that
cd(G) = {χ(1) : χ ∈ Irr(G)}. Let ρ(G) be the set of all primes that divide some irreducible character
degrees in cd(G). The character degree graph of G , denoted by 4(G), is the graph whose vertex
set is ρ(G). Two distinct vertices p, q in ρ(G) are connected by an edge if and only if there exists at
least one degree a ∈ cd(G) such that pq divides a. Note that if N is a normal subgroup of G , then
4(G/N ) and 4(N ) are subgraphs of 4(G).

A finite group G all of whose character values are rational is called a rational group. Equiva-
lently, G is a rational group if and only if all generators of the cyclic group 〈x〉 are conjugate in G
for every x ∈ G. Thus, G is a rational group if and only if NG (〈x〉)/CG (〈x〉) ∼= Aut(〈x〉) for every x ∈ G.
For example, all symmetric groups, extra special 2-groups and elementary abelian 2-groups are
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rational groups. A quotient group of a rational group and the direct product of a finite number
of rational groups are also rational groups. The center Z(G) of a rational group G is an elemen-
tary abelian 2-group and so the abelian rational groups are precisely the elementary abelian 2-
groups. Kletzing has presented a detailed investigation into the structure of the rational groups
by [8]. Gow has shown in [4] that if G is a solvable rational group then π(G) ⊆ {2,3,5} where π(G)
is the set of all primes that divide |G|. We use E(2) to denote an elementary abelian 2-group.

In this paper, we determine all rational groups whose character degree graphs are discon-
nected. The main theorems are the following:

Theorem 1. Let G be a solvable rational group. The character degree graph 4(G) of G is discon-
nected if and only if G ∼= S4 ×E(2).

Theorem 2. Let G be a nonsolvable rational group. The character degree graph 4(G) of G is
disconnected if and only if one of the following holds:

(i) G ∼= S5 ×E(2).
(ii) G ∼= S6 ×E(2).

(iii) G ∼= Aut(A6)×E(2).

2. The Proofs of the Main Theorems

Manz, Willems and Wolf proved in [11] that the character degree graph 4(G) of a finite group
G has at most three connected components and if G is solvable, then 4(G) has at most two
connected components. Palfy showed in [12] that each connected component of the character
degree graph of a solvable group must be a complete graph. In [9], Lewis classified all solvable
groups having disconnected character degree graphs. Later, Lewis and White classified in [10]
nonsolvable groups whose character degree graphs are disconnected. Motivated by these results,
we give the proofs of the main theorems.

Proof of Theorem 1. Let G be a solvable rational group whose character degree graph is discon-
nected. We know from [9] that there exist six types of solvable groups having disconnected char-
acter degree graphs. Then let’s continue the proof by examining these types. We first assume that
G is as in Example 2.1 of [9]. G has a normal nonabelian Sylow p-subgroup P and an abelian
p-complement K for some prime p. That is G = PK . Since G is a rational group, G/P ∼= K is an
abelian rational group. Thus, K is an elementary abelian 2-group. By Proposition 21 in [8], we ob-
tain that P ∈ Syl3(G). Since CG (K ) = Z(K ) = K from Corollary 16.A of [8], we see that C:= CP (K ) = 1.
This is a contradiction because 1 6= P ′ ≤C in Example 2.1 of [9].

G cannot be either Example 2.2 or Example 2.3 of [9] since SL(2,3) and GL(2,3) are not rational
groups.

Let G be a group as in Example 2.4 of [9]. Then G is the semi-direct product of V by a
subgroup H where V is an elementary abelian p-group for some prime p. Let F and E/F be the
Fitting subgroups of G and G/F respectively. We know that G/E and E/F are cyclic groups from
Lemma 3.4 of [9]. Also, H/K is a cyclic group where K is Fitting subgroup of H . Since G/V ∼= H is
a rational group, the cyclic group H/K is also a rational group and so [H:K ] = m = 2. Thus we can
observe from (vi) of Lemma 3.4 in [9] that [E:F ] is not divisible by 2. Therefore, we know that G 6= E
since G is rational and E/F is a non trivial cyclic group of odd order. By Lemma 3.4 in [9], we know
that Z:= CH (V ) = Z(G) and also know that H/K and K /Z are cyclic groups with coprime orders.
Because of the fact that the Sylow 2-subgroup of the rational group H/Z is an abelian group, we
get from Proposition 21 of [8] that the Sylow 3-subgroup K /Z of H/Z is a group of order 3. That
is, H/Z ∼= S3. Since |V | = q2 where q is a prime power and q +1 | 3 from Example 2.4 of [9], we
find that q = 2, and so |V | = 4. By considering the fact that the Sylow 2-subgroup of the rational
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group H is abelian group, we obtain from Proposition 21 of [8] that H ∼= S3 ×E(2). Finally, we get
that G ∼= S4 ×E(2) as desired.

Now we assume that G is a group as in Example 2.5 of [9]. G has a normal non-abelian 2-
subgroup Q and an abelian 2-complement K with the property that [G : KQ] = 2 and G/Q is
not an abelian group. Also, Z := CK (Q) ≤ Z(G). Since G is a rational group, Z(G) must be an
elementary abelian 2-group, and so Z = 1. Now let H := NG (K ). It follows from Lemma 3.5 of [9]
that H ∩Q = CQ (K )=:C and H ∩ [Q,K ] = Q ′. Also, G = H .[Q,K ]. By considering the fact that
G/Q ′ ∼= S4×E(2) from (ii) of Lemma 3.5 in [9], we deduce that |K | = 3, and so Q/C is an elementary
abelian 2-group of order 4 from Example 2.5 of [9]. Since [G : KQ] = 2 and |K | = 3, we have that
[G :Q] = 6. Thus, G/Q ∼= S3 since G/Q is not an abelian group. Since [H : KQ ′] = 2 from Lemma 3.5
in [9], we obtain that Q ′ = C and Q = [Q,K ]. Therefore, G/Q ′ ∼= S4. Now, we consider that Q ′>1.
Let T ≤ Q ′ be a chief factor of G . Since Q ′/T is a minimal normal subgroup of G/T , we know
that Q ′/T is an elementary abelian 2-group. Observe that Q/T is the Fitting subgroup of G/T .
We know that Q ′/T ≤ Z(Q/T ) since Q/T is a 2-group and Q ′/T is a minimal normal subgroup of
G/T . Since Q/T is non-abelian and [Q :Q ′] = 4, we conclude that Z(Q/T ) = Q ′/T . Thus, Q ′/T is
the unique minimal normal subgroup of G/T . Now let A/T be a maximal abelian subgroup of
Q/T . Since [Q : A] = 2, we know that A/T is a normal subgroup of Q/T . By Lemma 12.12 in [7],
we get |A/T | = |Q ′/T |.|Z(Q/T )|. It follows that 2|Q ′/T | = |Q ′/T |2, and so |Q ′/T | = 2. Therefore,
G/T is a rational group of order 48 and Z(G/T ) = Q ′/T . We know that G/T has at least one
faithful irreducible character since Z(G/T ) = Q ′/T is the unique minimal normal subgroup of
G/T . Because of the fact that F(G/T ) =Q/T is a non-abelian 2-group, all of the faithful irreducible
character degrees of G/T are even numbers by Clifford Theorem. By considering the fact that
the sum of squares of degrees of all faithful irreducible characters of G/T is 24, we say that G/T
has at least one faithful irreducible character ψ of degree 2. It follows that ψPT /T ∈ Irr(PT /T )
where P ∈ Syl2(G) since ψQ/T ∈ Irr(Q/T ). Thus, we deduce that Z(PT /T ) = Z(G/T ) = Q ′/T
and |(PT /T )′| = 4. Therefore, PT /T is a maximal class 2-group of order 16. That is, one of the
situations PT /T ∼= Q16, PT /T ∼= SD16 or PT /T ∼= D8 is true. This is a contradiction, because the
faithful irreducible characters of Q16, SD16 and D8 are not rational.

We know from [5] that if G is a solvable rational group, then ρ(G) = {2,3}. Therefore, G can not
be a group as in Example 2.6 because the character degree graph of such a group has at least 3
vertices.

All of this proves that the character degree graph of G is disconnected if and only if G ∼= S4×E(2)
as desired. �

Corollary 3. Let G be a solvable rational group such that G � S4 ×E(2) and |ρ(G)| > 1. Then there
exists at least one irreducible character of G whose degree is divisible by 6.

Proof. It is an easy consequence of [5] and Theorem 1. �

In 1988, Feit and Seitz [3, Theorem B], proved that a noncyclic finite simple group G is a
composition factor of a rational group iff G is isomorphic to an alternating group or one of
the groups PSp4(3), Sp6(2), O+

8 (2)′, PSL(3,4), PSU (4,3). Thus we can observe that the groups
PSL(2, q) for all prime powers q 6= 2 are not rational groups. We use frequently this fact in the
nonsolvable case of main theorems. For the reader’s convenience, we give an elementary proof of
it in the following Lemma before the proof of Theorem 2.

Lemma 4. The groups PSL(2, p f ) are not rational groups, where p is prime, f is a positive integer
and p f 6= 2.

Proof. Suppose that G := PSL(2, p f ) is a rational group for a prime power p f . We can assume
that p f ≥ 7 since the groups PSL(2,3) ∼= A4, PSL(2,4) ∼= A5

∼= PSL(2,5) are not rational. We know

from Theorem 8.3 of [6] that PSL(2, p f ) has a cyclic subgroup D = 〈x〉 of order u := p f −1
k where k
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is the greatest common divisor of 2 and p f −1. Also, NG (D) is a dihedral group of order 2u from
Theorem 8.3 of [6]. Thus we get that |Aut(〈x〉)| = 2 since NG (〈x〉)/CG (〈x〉) ∼= Aut(〈x〉). Therefore
ϕ(u) = 2 and so u ∈ {3,4,6}, where ϕ is Euler’s function. It follows that p 6= 2 because G � A5.
Thus, we obtain that G is isomorphic to one of the groups PSL(2,7), PSL(2,9) and PSL(2,13) since
p f = 2u +1. Assume that G:= PSL(2,13) is rational. We know from Theorem 8.4 of [6] that G has a
cyclic subgroup 〈a〉 of order 7, which 〈a〉 ∈ Syl7(G). Thus we have that all of the elements of order
7 in G are conjugate. By Theorem 8.4 [6], we know that NG (〈a〉) is a dihedral group of order 14,
and so the number of sylow 7-subgroups of G is [G : NG (〈a〉)] = 6.13. Therefore, the cardinality of
the conjugacy class containing all elements of order 7 in G is 6.6.13. This is a contradiction since
|PSL(2,13)| = 13.12.7 is not divisible by 6.6.13. Then PSL(2,13) is not a rational group. Similarly,
PSL(2,9) is not a rational group. Otherwise we get a contradiction that all of the elements of order
5 in PSL(2,9) are conjugate. We know that |Syl7(PSL(2,7))| = 8 from Theorem 8.2 of [6]. This is why,
all of the elements of order 7 in PSL(2,7) are not in the same conjugacy class. That is, PSL(2,7) is
not a rational group. So we are done. �

Proof of Theorem 2. Let G be a nonsolvable rational group whose character degree graph is
disconnected. By [11], we know that 4(G) has two or three connected components. Suppose
that 4(G) has three connected components. Then G ∼= S × A, where S ∼= PSL(2,2n) for an integer
n ≥ 2 and A is an abelian group from Theorem 4.1 of [10]. Since G is a rational group, G/A ∼= S ∼=
PSL(2,2n) is also a rational group, which is a contradiction by Lemma 4. Therefore, 4(G) must
have two connected components. It follows that G has normal subgroups N and K that satisfy
conditions (1)− (6) in Theorem 6.3 of [10]. Thus we know from (1) of Theorem 6.3 in [10] that
K /N ∼= PSL(2, q), where q ≥ 4 is a power of a prime p. Since G is a rational group, we also know
from (2) of Theorem 6.3 in [10] that G/K is an elementary abelian 2-group.

We first assume that q = 2 f , where f ≥ 2. If q > 5, then we know from (3) of Theorem 6.3
in [10] that 2 - [G : C K ] where C /N = CG/N (K /N ). Thus we obtain that G =C K since G is a rational
group. Because of the fact that G/N =C /N×K /N is a rational group, we find that K /N ∼= PSL(2, q)
is also a rational group, which is a contradiction by Lemma 4. This implies that q = 4. Now let’s
consider the normal subgroup N of G . Assume that N>1. Then there exists an elementary abelian
2-subgroup L of order 16 such that K /L ∼= SL(2,4) and K /L acts transitively on Irr(L)− {1} from (4)
of Theorem 6.3 in [10]. Now, let 1 6= ν ∈ Irr(L) and let T := IG (ν) be the inertia group of ν in G .
Thus we find that [K : (K ∩T )] = q2 − 1 = 15 since |K /L| = (q2 − 1)|K /L ∩T /L|. By considering
(6) of Theorem 6.3 in [10], we obtain that q2 − 1 = 15 ∈ cd(K ). Since K is a normal subgroup of
G , there exists χ ∈ Irr(G) such that 15 | χ(1). Therefore the connected components of 4(G) must
be {2} and {3,5} since π(G) = {2,3,5} where π(G) is the set of all primes dividing the order of G .
On the other hand, K /N ×C /N = KC /N < G/N since G/N is a rational group and K /N ∼= A5.
Thus, we obtain that G/C ∼= S5 since G/C is isomorphic to a subgroup of Aut(K /N ) ∼= S5 and
A5

∼= PSL(2,4) ∼= KC /C <G/C . Therefore, 4(S5) is a subgraph of 4(G). But this is a contradiction
since the connected components of 4(S5) are {2,3} and {5}. This contradiction gives that N = 1.
Therefore, we know that K ∼= PSL(2,4) and C := CG (K ) ≤ Z(G) from Theorem 6.3 in [10]. Since G
is a rational group, we get that K ×C < G . Thus, we find that G/C ∼= S5 since A5

∼= KC /C < G/C
and G/C is isomorphic to a subgroup of Aut(K ) ∼= S5. Now, let x ∈ G −KC . Then we have that
G = K 〈x〉C since [G : KC ] = 2. Also, K 〈x〉∩C = 1 since G/K is an elementary abelian 2-subgroup
and K ∩C = 1. Thus, K 〈x〉 ∼= S5. By considering the fact that C = Z(G) is an elementary abelian
2-group, we obtain that G ∼= S5 ×E(2).

Now, suppose that 2 - q . Since K /N ∼= PSL(2, q) is not a rational group by Lemma 4, we know
that KC < G . Also, KC /C ∼= K /N ∼= PSL(2, q) since K ∩C = N . Thus we obtain that PSL(2, q) ∼=
KC /C < G/C and G/C is isomorphic to a subgroup of Aut(K /N ). Therefore, G/C is an almost
simple group. From Theorem 1.1 of [13], PSL(2, q) is isomorphic to an alternating group An , where
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n ≥ 5. Thus, G/C ∼= Sn or G/C ∼= Aut(A6). We know that if q = 5, then PSL(2,4) ∼= PSL(2,5) and so
this case coincide with the first case. If q > 5, then 4(G/C ) has two connected components from
Theorem 2.7 in [10]. Thus we obtain from [1] that G/C must be isomorphic to S6 if G/C ∼= Sn for
some n. Therefore, G/C ∼= S6 or G/C ∼= Aut(A6). Moreover, K /N ∼= A6

∼= PSL(2,9). If N = 1, then
we obtain that G ∼= S6 ×E(2) or G ∼= Aut(A6)×E(2). Indeed these groups are rational groups whose
character degree graphs are disconnected.

Now, assume that N > 1. Then there exists a normal subgroup L of G such that K /L ∼= SL(2,9)
from (4) of Theorem 6.3 in [10]. Since G/N is a rational group and C /N = CG/N (K /N ) ≤ Z (G/N ),
we know that C /N is an elementary abelian 2-group. Thus the order of each element of C /L must
be 2 or 4 since |N /L| = 2. Also, 〈xL〉 is a normal subgroup of G/L for every xL ∈C /L. It follows that
[G/L : CG/L(〈xL〉)] ≤ 2 since G/L is rational. Since K /L = (K /L)′ ≤ (G/L)′ ≤ CG/L(〈xL〉) for every
xL ∈C /L, we obtain that C /L ≤ CG/L(K /L). Suppose that G/C ∼= S6. Then [G : KC ] = 2 and so there
exists an element y ∈G−KC such that G = K 〈y〉C and K 〈y〉∩KC = K . We know that U := K 〈y〉/L, a
bicyclic extension of PSL(2,9), is not a rational group from ATLAS [2]. Now letψ ∈ Irr(U ) be a non-
rational character. Then there exists an irreducible character θ of K /L such that [ψK /L ,θ] 6= 0. Let
T /L be the inertia group of θ in G/L. Since C /L ≤ CG/L(K /L), we know that KC /L ≤ T /L. U is not a
subgroup of T /L. Otherwise, T /L =G/L and so we know that from Theorem 6.11 in [7] that there
exists an irreducible characterχof G/L such that[χU ,ψ] 6= 0 andχK /L =αθ for a positive integerα.
Thus, χU =αψ by Corollary 6.20 in [7]. This is a contradiction since G/L is rational. Therefore, we
get that θU =ψ and T /L = KC /L. It follows that there exists an irreducible characterλ of T /L such
that λG/L ∈ Irr(G/L) and λK /L = nθ for a positive interger n. Thus we get from Problem 5.2 of [7]
that (λG/L)U = (nθ)U = nψ. This is a contradiction because λG/L is a rational character but nψ is
not. This contradiction implies that G/C � S6. On the other hand, we know from [2] that there is
no group with structure 2.A6.23 in the ATLAS notation. Therefore, we obtain that G/C � Aut(A6).
Finally, we get that N must be trivial. So the proof is complete. �
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