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Abstract. We discuss the question of whether the global dimension is a monoidal invariant for Hopf algebras,
in the sense that if two Hopf algebras have equivalent monoidal categories of comodules, then their global
dimensions should be equal. We provide several positive new answers to this question, under various
assumptions of smoothness, cosemisimplicity or finite dimension. We also discuss the comparison between
the global dimension and the Gerstenhaber-Schack cohomological dimension in the cosemisimple case,
obtaining equality in the case the latter is finite. One of our main tools is the new concept of twisted separable
functor.

Résumé. Nous étudions la question de l'invariance monoidale de la dimension globale des algebres de
Hopf : si deux algebres de Hopf ont des catégories de comodules monoidalement équivalentes, ont-elles
méme dimension globale ? Nous apportons plusieurs nouvelles réponses positives dans les cas d’algebres
de Hopf lisses, cosemisimples ou de dimension finie. Nous comparons également la dimension globale et
la dimension cohomologique de Gerstenhaber—Schack dans le cas cosemisimple. Un outil important pour
obtenir ces divers résultats est la nouvelle notion de foncteur séparable twisté.
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1. Introduction

A classical invariant of an algebra A is its (right) global dimension
r.gldim(A) = max{pd (M), M € .4} € NU {oo}
where for a (right) A-module M, pd (M) stands for its projective dimension, i.e. the smallest
possible length for a resolution of M by projective A-modules.
The global dimension is a key ingredient in the analysis of certain geometric properties of
discrete groups [10, 16], and often serves as a good analogue of the dimension of a smooth affine

variety. However in some noncommutative situations, it is better to replace it by the Hochschild
cohomological dimension, which has similar geometric significance, and is defined by:

cd(A) =max{n: H"(A, M) #0 for some A-bimodule M} € NU {oo}
=min{n: H" (A, M) = 0 for some A-bimodule M}
=pd, 1, (A
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where H*(4,-) denotes Hochschild cohomology and pd, ,, (A) is the projective dimension of A
in the category of A-bimodules.

Indeed, for example if A = A, (k) is the first Weyl algebra (k is, as in all the paper, an alge-
braically closed field), we have r. gldim(A; (k)) = 1 (in characteristic zero) and cd(A; (k)) = 2, while
Aj (k) should definitively be considered as a 2-dimensional object.

When A is a Hopf algebra, it is well-known that we have

r.gldim(A) = pd (k) = cd(A) =1 gldim(A) = pd 4 (c k)

where k. and . k denote the respective right and left trivial A-modules, and 1.gldim(A) is the left
global dimension. See [28] for the equalities at the extreme left and right, and, for example, [22]
for the other equality. We simply will denote this number by cd(A), and call it the cohomological
dimension of A.

A general classical problem is whether the global dimension or the Hochschild cohomological
dimension remain preserved under various kind of “deformations" of A, and the question we are
particularly interested in, originally asked in [7] and suggested by examples studied in [5], is the
following one.

Question 1. If A and B are Hopf algebras having equivalent linear tensor categories of comodules,
do we have cd(A) = cd(B)?

Some remarks immediately arise on the significance and interest of Question 1.

(1) Theword “tensor” is crucial in the question, since this is what captures information about
the algebra structure inside the category of comodules. Dropping it would make the
question meaningless, as shown by the example of group algebras: if two group algebras
have equivalent categories of comodules, the only conclusion, in lack of additional
information, is that the groups have the same cardinality.

(2) Tannaka-Krein duality [23] enables one to reconstruct a Hopf algebra from its tensor
category of comodules together with the forgetful functor to vector spaces. However, it is
not assumed here that the given monoidal equivalence is compatible with the respective
forgetful functors, and so the Hopf algebras are non-isomorphic in general. There are
many instances of the situation, see for example [6, 42] for a large review of examples,
and [27,32, 33, 37] for more recent ones.

(3) As just said, the Hopf algebras in Question 1 are non-isomorphic in general, but worst,
some of their ring-theoretical properties, such as Gelfand—Kirillovdimension, can be very
different, see [15]. The interest in the question is thus both theoretical, in the investiga-
tion of which properties of a Hopf algebra are preserved under monoidal equivalence of
the category of comodules, and practical, in the determination of the global dimension
of new Hopf algebras from known old ones.

There are, to the best of our knowledge, two partial positive answers to Question 1 in the
literature.

(1) In [7, 8], it is shown that when A, B are cosemisimple with antipode satisfying S$*=1id,
then cd(A4) = cd(B).

(2) In [47], Wang, Yu and Zhang show that when A is twisted Calabi-Yau and B is homologi-
cally smooth, then cd(A) = cd(B).

The aim of this paper is to provide several new positive answers to Question 1, together with
application to the determination of the cohomological dimension of some Hopf algebras in some
new situations (universal cosovereign Hopf algebras and free wreath products). Indeed, we show
that Question 1 has a positive answer in the following cases.

(1) The smooth case: we show that if A, B have bijective antipode and are (homologically)
smooth, then cd(A) = cd(B). This improves on [47, Theorem 2.4.5], which assumed
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moreover that A is twisted Calabi-Yau (and then proved that B is twisted Calabi—Yau as
well), see Theorem 8. The proofis done by carefully inspecting the arguments in [47].

(2) The cosemisimple case: we show that if A, B are cosemisimple and both have finite co-
homological dimension, then cd(A) = cd(B). See Theorem 24. Removing the assumption
$* = id from [8] (with instead the finiteness assumption on cohomological dimensions)
enables us to compute cohomological dimension in a number of new situations, see Sec-
tion 8.

(3) The finite-dimensional case: we show that under natural characteristic assumption on
the base field or the assumption that A* is unimodular, then cd(A) = cd(B), see Theo-
rem 45. Here, since finite-dimensional Hopf algebras are self-injective, we have cd(A) €
{0,00}, and the interest of Question 1 is more on the theoretical side, but, as Etingof
pointed out, understanding the finite-dimensional situation should be an important as-
pect. The proof of Theorem 45 is a rather direct consequence of previous results [1,18,26],
but an interesting aspect is that it connects Question 1 to a weak form of an important
historical conjecture of Kaplansky saying that a finite-dimensional cosemisimple Hopf
algebra is unimodular (the strong form says that a cosemisimple Hopf algebra satisfies
$? =id).

Our method in the smooth and cosemisimple cases is based on the fact that if /4 =® 4B as
above, results by Schauenburg [40] ensures that there exists an A-B Galois object R, and then on
proving that cd(A) = cd(R) = cd(B), which is achieved in the smooth case by following arguments
of Yu [50]. In general one notices furthermore that cd(A) = de V7 (R), the projective dimension of
R in the category of R-bimodules inside B-comodules, and then the main question is to compare
de V7 (R) and de A (R) = cd(R). The main ingredient in this comparison in the cosemisimple
case is a twisted averaging trick, Lemma 20, that we believe to be quite non-straightforward.
The averaging lemma leads to the concept of twisted separable functor we define in Section 4,
a generalization of the notion of separable functor introduced in [34].

Of course, the above considerations lead to the following question.

Question 2. Let A be a Hopf algebra. Under which conditions on A do we have cd(A) = cd(R) for
any left or right A-Galois object R?

Theorem 24 in the cosemisimple case has the drawback, in concrete situations, that we need to
know in advance that both Hopf algebras have finite cohomological dimension, an information
that is not necessarily available. This leads us back to our initial idea to tackle Question 1
in [7], which was to use an auxiliary cohomological dimension for the Hopf algebra A, the
Gerstenhaber-Schack cohomological dimension, defined by

cdgs(A) = max{ n: Ext”

s (K, V) # 0 for some Ve@@ﬁ} e NU {oo}
A

where &% @ﬁ is the category of Yetter-Drinfeld modules over A and k is the trivial Yetter-Drinfeld

module. It was shown in [7, Theorem 5.6, Corollary 5.7] that cd(A) < cdgs(A) and that if A, B are
Hopf algebras with .« 4 ~® .4, then

max(cd(A),cd(B)) = cdgs(A) = cdgs(B)

Therefore, comparing cd(A) and cdgs(A) can be a key step towards answers to Question 1. In
this direction, we show (Theorem 31) that if A is a cosemisimple Hopf algebra with cdgs(A) finite,
then cd(A) = cdgs(A). Again the method of proofis based on a twisted averaging trick and uses an
appropriate twisted separable functor. Theorem 31 has, as a corollary, a weak form of Theorem 24,
which is probably sufficient in dealing with numerous examples, see Corollary 32.

We expect that the equality cd(A) = cdgs(A) holds for any cosemisimple Hopf algebra, but as
already pointed in [7], it cannot hold for any Hopf algebra over any field, as we see by taking a
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semisimple non cosemisimple Hopf algebra over a field of positive characteristic, so we asked
there whether the equality was true in characteristic zero. Etingof pointed out that it does not
hold in characteristic zero even for the very simple example A = k[x] with x primitive. Hence we
have now the following question.

Question 3. What are the Hopf algebras such that cd(A) = cdgs(A)?

The paper is organized as follows. Section 2 recalls the connection between Hopf-Galois ob-
jects and monoidal equivalences and proves our first result on the monoidal invariance of the
cohomological dimension, in the smooth case. Section 3 provides the necessary material on cat-
egories of bimodules inside categories of comodules. Section 4 introduces the notion of twisted
separable functor. This is used in Section 5 to prove Theorem 24, our second partial positive an-
swer to Question 1, in the cosemisimple case. Section 6 discusses the comparison between co-
homological dimension and Gerstenhaber-Schack cohomological dimension, together with the
necessary material on Yetter-Drinfeld modules. Section 7 studies the behaviour of Gerstenhaber—
Schack cohomological dimension under Hopf subalgebras in the cosemisimple case. Section 8 is
devoted to applications to some examples. Section 9 discusses the finite-dimensional situation
in Question 1. The reader only interested in this case might go directly to this section. The con-
cluding Section 10 summarizes the known positive answers to Question 1.

Notations and conventions

We work over an algebraically closed field k. We assume that the reader is familiar with the theory
of Hopf algebras and their tensor categories of comodules, as e.g. in [19, 24, 31], and with the
basics of homological algebra [10,48]. If A is a Hopfalgebra, as usual, A, € and S stand respectively
for the comultiplication, counit and antipode of A. We use Sweedler’s notations in the standard
way. The category of right A-comodules is denoted .#4, the category of right A-modules is
denoted .# 4, etc...The trivial (right) A-module is denoted k.. The set of A-module morphisms
(resp. A-comodule morphisms) between two A-modules (resp. two A-comodules) V and W is
denoted Hom 4(V, W) (resp. Hom*(V, W)).

Acknowledgements
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2. Hopf-Galois objects and monoidal equivalences
2.1. Hopf-Galois objects

Let A be a Hopf algebra. Recall that a left A-Galois object is a non-zero left A-comodule algebra R
such that the canonical map

R®R— A®R
X®Yr— X(-1)® XY

is bijective. Similarly a right A-Galois object is a non-zero right A-comodule algebra such that the
obvious analogue of the previous canonical map is bijective. If B is another Hopf algebra, an A-
B-bi-Galois object is an A-B-bicomodule algebra which is simultaneously left A-Galois and right
B-Galois. See [40,42].

As said in the introduction, it is important, in view of Question 1, to determine whether a Hopf
algebra and its left or right Galois object have the same cohomological dimension, which lead us
to Question 2, and for which we list a number of basic remarks.
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Remark 4. Let A be a Hopf algebra and let R be a left or right A-Galois object. Then we have
cd(R) = cd(A). This follows from Stefan’s spectral sequence [44, Theorem 3.3], or can be checked
directly at the level of complexes defining Hochschild cohomology [6, Theorem 7.12]. See [50,
Lemma 2.2] as well.

Remark 5. There is indeed the need of assumptions on A in Question 2, as the example of the
Taft algebra H,, shows, which admits the matrix algebra M, (k) as a Galois object [29], and for
which we have cd(M, (k)) =0 < cd(H,) = co.

Remark 6. In the setting of Question 2, as the Weyl algebra example shows, which is a Galois
object over k[x,y], the good dimension to consider is indeed the Hochschild cohomological
dimension, and not the global dimension.

Recall that an algebra is said to be (homologically) smooth if the trivial bimodule has a finite
resolution by finitely generated projective bimodules. For Hopf algebras, this is equivalent to
say that the trivial left or right A-module has a finite resolution by finitely generated projective
modules.

A partial positive answer to Question 2 was obtained by Yu [50]. Indeed, if A is a Hopf algebra
with bijective antipode and R be a left of right A-Galois object, [50, Theorem 2.4.5] states that if
A is twisted Calabi-Yau of dimension d, then so is R, and hence in particular d = cd(A) = cd(R).
Our first observation is that, inspecting carefully the arguments in [50], what is needed to ensure
the equality of the cohomological dimensions is smoothness only.

Theorem 7. Let A be a Hopf algebra with bijective antipode, and let R be a left or right A-Galois
object. If A is smooth, then we have cd(A) = cd(R).

Proof. Since A is homologically smooth, we have that cd(4) is finite, hence cd(A) = max{n :
Extz ule k, F) # 0 for some free module F}, and moreover the functor Ext: e k,-) commutes with
direct limits, see e.g. [10, VIII, Theorem 4.8]). Hence

cd(A) = pd, (k) = max{n: Ext” , (ck, A) # 0}
The algebra R is homologically smooth since A is, by [50, Lemma 2.4], hence we have similarly
cd(R) = pd, 4, (R) = max{n: Ext" , (R, R®R) #0}
We have by [50, Lemma 2.2, Lemma 2.1]
Ext® , (R,R®R) ~Ext* ,(-k,AA® R) =Ext" ,(ck,sA)® R

where the firstisomorphism is obtained from [50, Lemma 2.2, Lemma 2.1], with the left A-module
structure on 4A® R being simply by multiplying in A on the left, and the second one follows
from the smoothness of A, since then Ext: ule k,-) commutes with direct limits. Hence we obtain
cd(A) = cd(R).

If we start with a right Hopf-Galois object R over 4, it is well-known that R°P is a left A-Galois
object in a natural way (if the antipode of A is bijective), so that we can use the result for left
A-Galois objects to conclude that cd(A) = cd(R) as well. 0

2.2. Monoidal equivalences

Let A, B be Hopf algebras. Schauenburg [40, Corollary 5.7] has shown the equivalence of the
following assertions:

(1) There exists an equivalence of monoidal categories .4 =® ./ ?;

(2) There exists an A-B-bi-Galois object.
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It therefore follows that finding answers to Question 2 has immediate applications to Ques-
tion 1. We thus obtain, via Theorem 7, a partial positive answer to Question 1, only assuming that
the Hopf algebras are smooth, while [47, Theorem 2.4.5] assumed furthermore that one of the
Hopf algebras is twisted Calabi-Yau, and then proved that the other one is twisted Calabi-Yau
with the same dimension as well.

Theorem 8. Let A, B be Hopf algebras that have equivalent linear tensor categories of comodules:
MA =% 4B If A and B are smooth and have bijective antipode, we have cd(A) = cd(B).

Proof. Since there exists an A-B-bi-Galois object R, we have cd(A) = cd(R) = cd(B) by
Theorem 7. O

Remark 9. It is pointed out in Remark 5 that the matrix algebra M, (k) is a Galois object over
the Taft algebra H,,, and in fact M, (k) is an H,- H,-bi-Galois object [41]. This indicates that the
approach via Hopf-Galois objects cannot cover all the possible situations in Question 1.

3. Equivariant bimodule categories and projective dimensions

In this section we explain how one can use bimodule categories in order to obtain informations
on Question 2 and hence on Question 1.

Let A be a Hopf algebra, let R be a right A-comodule algebra (recall that this means that R is
an algebra in the monoidal category .# %) and let . }? be the category of R-bimodules in the
category .#“: the objects are the A-comodules V with an R-bimodule structure having the Hopf
bimodule compatibility conditions

(x-))® (x-V)a) = X0) Vo) ® X)), (V-X)(0)® (V- X)1) = V(o) * X(0) ® V(1) X(1)

for any x € R and v € V. The morphisms are the A-colinear and R-bilinear maps. The category
rt ;;‘ is obviously abelian, and the tensor product of bimodules induces a monoidal structure
onit.

The following basic property is certainly well-known, and a straightforward verification.

Proposition 10. Let A be a Hopf algebra and let R be a right A-comodule algebra.

(1) The forgetful functor Q4 : r 1‘;‘ — M has a left adjoint, which associates to a comodule
V the object R® V ® R whose bimodule structure is given by left and right multiplication
of R and whose comodule structure is the tensor product of the underlying comodules.

(2) The forgetful functor Qg : RMI‘;‘ — p Ay has a right adjoint, which associates to an R-
bimodule V the object V ® A whose R-bimodule structure is given by

x-(v®a)=xp-ve®xma, WA -x=v-x0)®axy
and whose A-comodule structure is induced by the comultiplication of A.

Objects in .4 1‘;‘ that are images of the above left adjoint functor are called free, they are indeed
free as bimodules. Any object in .4 }? is a quotient of a free object.

As usual, if € is an abelian category having enough projective objects, the notation pd (V)
refers to the projective dimension of the object V, i.e. the smallest length of a resolution of V by
projective objects in €, with, as well

pde (V) = max{n: Exty, (V, W) # 0 for some object W in €}

The following corollary is a direct consequence of Proposition 10 and of the standard proper-
ties of pairs of adjoint functors.
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Corollary 11. Let A be a Hopf algebra and let R be a right A-comodule algebra.

(1) Thecategory p. 4 1‘;‘ has enough injective objects, since p 4, has, and we have, for any object
V in 4]} and any R-bimodule W :

ExtRMR(QR(V),W) :EXtRM}?(V,WQDA)

(2) If #* has enough projective objects (in which case one says that A is co-Frobenius), so has
rH 1’;‘. In that case, the previous isomorphism ensures that for any object V in p 4 ;;‘, we
have

de./%R Qr(V) = deﬂig(V)

() If A is cosemisimple, then .4 }‘;‘ has enough projective objects, and the projective objects
are the direct summands of the free ones.

The connection between our problem and bimodules is now given by the following result.

Proposition 12. Let A be a Hopf algebra, let R be a left A-Galois object, and let B a Hopf algebra
such that R is A-B-bi-Galois. Then the category .4 g has enough projective objects, and we have

cd(d) =pd_4u(R)zpd 4 (R)=cd(R)

Proof. First recall that it follows from the right version of [39, Theorem 5.7] (the structure
theorem for Hopf modules) that the functor

Al — A M4
V— VoA

is a monoidal equivalence of categories, where V' ©® A is V ® A as a vector space, has the tensor
product left A-module structure and the right module and comodule structures are induced by
the multiplication and comultiplication of A respectively. This monoidal equivalence transforms
the trivial module . k into the A-bimodule A.

Now let R be an A-B-bi-Galois object. The corresponding monoidal equivalence .44 ~® .«®
in [40] is given by the cotensor product —[J4R, and sends A to R, and thus clearly induces an
equivalence between the bimodule categories ,.4 ;‘4 and .4 }1;. Composing with the equivalence
at the beginning of the proof, we get a monoidal equivalence

Al =° g MR
sending -k to R. It is then clear that Rﬂg has enough projective objects, and that cd(A) =
pda(ck) = de V7. (R). The last inequality has been given in Remark 4. U

It is therefore crucial to compare de V7 (R) and de A (R) for R aright B-Galois object. Notice

that the problem makes sense and is interesting for any comodule algebra, as soon as ,.# fg has
enough projective projects. This is the motivation for the tools we develop in the next section.

4. Twisted separable functors

In this section we introduce the notion of twisted separable functor.
If € is category, we say that a subclass & of objects of € is generating if for every object V of
%€, there exists an object P of & together with an epimorphism P — V.

Definition 13. Let € and 2 be some categories. We say that a functor F : € — 2 is twisted
separable if there exist
(1) an autoequivalence © of the category 2;
(2) a generating subclass & of objects of € together with, for any object P of &, an isomor-
phism0p : F(P) — OF (P);
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(3) a natural morphismM.. : Homg (F(-),0F(-)) — Home (-,-) such that for any object P of
Z, we haveMpp(0p) =idp.

The naturality condition above means that for any morphisms a: V' —= V, : W — W' in €
and any morphism f: F(V) — @F(W) in 2, we have

BoMy,w(f)oa =My w (OF(f)o foF(a))

When & is the whole class of objects of ¥, the autoequivalence © is the identity and the
isomorphisms Op all are the identity, we get the notion of separable functor from [34], which
is known to be provide a convenient setting for various types of generalized Maschke theorems,
see [12]. A basic example of a separable functor is, when A is a cosemisimple Hopf algebra, the
forgetful functor ./ — Vec: this is the content of Proposition 18 in the next section.

Our motivation to introduce the present notion of twisted separable functor is the following
result.

Proposition 14. Let € and 2 be abelian categories having enough projective objects, and let
F :6 — 2 be a functor. Assume that the following conditions hold:

(1) the functor F is exact and preserves projective objects;
(2) the functor F is twisted separable and & , the corresponding class of objects of €, contains
a generating subclass & consisting of projective objects.

Then, for any object V of € such that pd (V) is finite, we have pd (V) = pdg (F(V)).
We begin with some preliminaries.

Lemma 15. Let € be an abelian category and let &, be a generating subclass of € consisting of
projective objects. If pd (V) is finite, we have

pde (V) = max{n: Exty, (V,F) #0 for some object F in F}

Proof. Every object X fits into an exact sequence 0 — W — F — X — 0 with F an object of %,
hence projective. The result is thus obtained via a classical argument: if n = pd (V), the long Ext
exact sequence gives that the functor Extg, (V, -) is right exact, and hence Ext( (V, F) # 0 for some
object F of . O

Lemma 16. Assume we are in the setting of Proposition 14. For any objects X, W of €, we have a
morphism

Ext, (F(X),0F(W)) — ExtZ (X, W)
which is surjective if W is an object of & .

Proof. Start with a projective resolution

d dn- d d d
Py P, 2 AP L Py X0

of X by objects in ¥. Since the functor F is exact and preserves projectives, we get a projective
resolution
F(d, F(dn- F(d; F(d F(d,
.. — F(P,) “(dn) F(P,-1) nsy) | Fldy) F(Py) dy) F(Py) Q)F(X) -0
of F(X) in 2. For all i = 0, we have, by the naturality assumption, commutative diagrams

Homg (F(P;), OF(W)) — % Home (F(Pi41), OF (W)

lMP,-,W LMPHI,W
—odj+1

Home (P;, W) Home (P41, W)
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that induce a morphism of complexes
M : Homg (F(P,),®F(W)) — Home (Ps, W)
and hence a morphism between the corresponding cohomologies:
H*(M): EXt*@(F(X),GF(W)) — Ext% X,w)
Assume now that W is an object of &, and let f € Hom (P;, W). We have

Mp, w(Ow o F(f))=MwwOw)o f=f
and if moreover f od;.; = 0, we have also Oy o F(f) o F(d;;+1) = 0. This shows that H* (M) is
surjective. g

Remark 17. Assume, as the setting of Proposition 14 allows us to, that in the proof of the previous
lemma, we have started with a projective resolution

d, dp- d d d
P, p, 2 Ly X0

of X by objects in &. Then, for f € Hom« (P;, W), we have

Mp, w(O(F(f))o0p,) = foMp, p,0p,) = f

This shows that the morphism of complexes M: Homg (F(P,),0F(W)) — Hom« (P, W) in the
above proof is surjective in general. However, since we see no reason that © F(f)o0p, 0 F(d;.1) =0,
we cannot conclude that the corresponding morphism in cohomology is surjective without our
assumption on W.

Proof of Proposition 14. Let V be an object of ¢, and let

d dn- d d d
P, p, 2 B p P SV -0
be a projective resolution of V. Since the functor F is exact and preserves projectives, we get a
projective resolution

F(d, F(d,- F(d F(d F(d
o — F(Py) Y F(p,_p R pep)y T ppy) B Rvy — 0
of F(V) in 2. This shows that pdg (F(V)) < pd (V). To prove the converse inequality, we can
assume that n = pdg (F(V)) is finite. We then have in particular Extgrl (F(V),0F(P)) = {0} for any
object P in &, and by Lemma 16, we have Ext(’z;rl (V, P) = {0} as well. Hence, assuming that pd (V)
is finite, Lemma 15 shows that pd (V) < n, concluding the proof. 0

In this paper we will not develop any more theory on twisted separable functors, and will focus
on applications of Proposition 14.

5. Question 1 in the cosemisimple case
Recall that a Hopf algebra is cosemisimple if and only if it admits a Haar integral, i.e. a linear map
h: A— k such that for any a € A, we have

hlagy)ap) = h(a) = h(ag)agy and h(l)=1

The proof of the semisimplicity of the category of comodules from the existence of a Haar integral
is a consequence of the following classical averaging construction, which shows that the forgetful
functor .#4 — Vecy is separable, and that we record for future use.
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Proposition 18. Let V, W be right A-comodules over a cosemisimple Hopf algebra A, and let
f:V — W bea linear map. The map

lew(f) V—Ww
v— h(fwe)mSwa)) fve)o
is a morphism of comodules, with M(f) = f if and only if f is a morphism of comodules and with,

for any morphisms of comodules a: V' — V and p: W — W', BoMy,w (f)oa =My wi(fo foa).
The above construction therefore defines a projection

My w : Hom(V, W) — Hom”(V, W)
that we call the averaging with respect toV and W'.

The Haar integral is not a trace in general, but satisfies a KMS type property, discovered by
Woronowicz [49] in the setting of compact quantum groups.

Theorem 19. Let A be a cosemisimple Hopf algebra with Haar integral h. There exists a convo-
lution invertible linear map v : A — k, called a modular functional on A, satisfying the following
conditions:

o SP=yxidxyl;

e 0 :=1 *id *y is an algebra automorphism of A;

o we have h(ab) = h(bo(a)) for any a,b € A.

The proof relies on the orthogonality relations, whose first occurrence is due to Larson [25],
and were completed by Woronowicz [49], see [24, Proposition 11.15] for the statement. In all
the treatments we are aware of [24, 35], the setting is over the field of complex numbers, but
inspecting the proof shows that the orthogonality relations are valid for any cosemisimple Hopf
algebra over any algebraically closed field, and then proving the modularity property is just as
in [35, Corollary 5.10].

We now present our key averaging lemma for bimodules. If R is an A-comodule algebra over
a cosemisimple Hopf algebra A, we denote by p the algebra automorphism of R defined by
p=id *1//’2, ie. p(x) = 1//’2 (x1)) X(0), with y a modular functional as in Theorem 19.

Lemma 20. Let A be a cosemisimple Hopf algebra and let R be a right A-comodule algebra. Let
V, W be objects ofRMI‘;‘. Iff: V. — W is a linear map satisfying

fw-x)=fw)-x and f(x-v)=pkx):f(v)
foranyveV and x e R, thenMy w (f): V — W is a morphism in the categoryRJ%}‘;‘.

Proof. We already know that My w (f) : V — W is colinear and there remains to prove that
My w (f) is left and right R-linear as well. Let v € V and x € R. We have, using our condition
on f and the compatibility between the comodule and right module structure:

My,w (H-x)=h(f((v-00)0S(v-0)q)) f(v- X))o
= h(f (e - x0)mS@nxw)) f (o - *0) o
=h((f (o) - x0)m) S xm)) (f (o) - x0)o
= h((f (o) oy x@) S(vay X)) f o) o - X0
= h((f (o) ) xm S(x2) S(vy)) £ (o) ) * *()
=Myw (V) -x



Julien Bichon 571

Hence f is right R-linear. We also have, using our condition on f and the compatibility between
the comodule and left module structure:
My, (f)(x-v) = b (f((x- v)0) 1) S((x- v)ay) f((x- vV)o) o)
= h((f (x) - vo)) ) Sy va))) f(x) - Vo)
=2 () h (o) - f (o)) ) S ) oy - f (Vo) o)
=y () h (x) £ (w0) 1) SC vay)) Xo - F ) o)

Using the properties of the modular functional, this gives:

My, (f)(x-v) =9 2(x@)h (f (o) 1) Swa) Sxe)w (xa) xe ¥ (x@)) x© « f (Vo) 0
= h(f (o) ® S SEw)y (xa) Xy (x@3)) X0 f(v0) 0
=1 (f (o) vy Sx@) S (xa)) X0 - f (Vo) 0)
=x-My,w () (v)
and this shows that My, (f) is left R-linear as well. O

Lemma 21. Let V be a comodule over a cosemisimple Hopf algebra A, let R be an A-comodule
algebra and consider the map py = p®idy ®idgp: R®V®R — RO V®R. We haveM(pv) = idrever,
whereM stands for averaging with respect to R® V ® R.

Proof. It is immediate that py = p®idy ®idr: R® V® R — R® V ® R satisfies the assumption of
Lemma 20, hence M(py) is left and right R-linear. Since it is clear that M(py)(1®ve®l)=19ve®l
for any v € V, we get the result by the R-bilinearity of M(py). O

We now have all the ingredients to prove the following result.

Proposition 22. Let A be a cosemisimple Hopf algebra and let R be a right A-comodule algebra.
The forgetful functor Qp : R./%]? — gty is twisted separable, and we have deJ%I? V)= de“ﬂR )
for any object V in R"%}? such thatpdkﬂﬁ (V) is finite. In particular, ifdeM,? (R) is finite, we have
deJﬂ};; (R) = deﬂR (R) = cd(R).

Proof. In order to show that the forgetful functor Qg : Rﬂlf — gty is twisted separable,
consider

(1) the class & = % of free bimodules in .4 4,

(2) the autoequivalence O of the category ,.# that associates to an R-bimodule W the R-
bimodule , W having W as underlying vector space and R-bimodule structure given by
x'w-y=px) w-y,and is trivial on morphisms;

(3) forafree object R® V ® R, the R-bimodule isomorphism py : R® V®R— ,(R® V®R) in
Lemma 21;

(4) for objects V, W in RJ[ 4 the averaging map

My w: HomRﬁR(MpW) — HomRM}?(V, W)

from Lemma 20.

It follows from Lemma 20, Lemma 21 and Proposition 18 that the functor Qp : pt }f — gy
is indeed twisted separable. Moreover, as already said, the class & of free objects consists of
projective objects, the projective objects in .4 }‘;‘ are direct summands of free objects and hence
are preserved by Qp, which is clearly exact. Hence we are in the situation of Proposition 14, and
we obtain the equality of projective dimensions. g

We obtain the following partial answer to Question 2.
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Theorem 23. Let A be Hopfalgebra and let R be a left or right A-Galois object. If A is cosemisimple
and cd(A) is finite, we have cd(A) = cd(R)

Proof. The result is obtained by combining Proposition 12 and Proposition 22. g

We now obtain our partial answer to Question 1 in the cosemisimple case. The proof is similar
to that of Theorem 8.

Theorem 24. Let A, B be Hopf algebras that have equivalent linear tensor categories of comodules:
M4 =2 4B If A and B are cosemisimple and cd(A), cd(B) are finite, we have cd(A) = cd(B).

We finish the section by noticing that Proposition 22 can be strengthened in the case $* = id.

Proposition 25. Let A be a cosemisimple Hopf algebra with S* = id, and let R be a right A-
comodule algebra.
(1) The forgetful functor Qg : R'/%I? — p Ay is separable. We thus havedeﬂéq(V) = de"ﬂR(V)
for any object V in R./%A, and de/ﬂ{; (R) = cd(R).
(2) LetF: 4" =® .#(® be a monoidal equivalence with B satisfying S* = id as well. We then
have, for the B-comodule algebra T = F(R), cd(R) = cd(T).
(3) LetF: . #*— Vecy be a fibre functor. If cd(R) is finite, we have, for the algebra T = F(R),
cd(R) = cd(T).

Proof. As in the proof of Lemma 20, using the properties of the modular functional,we see that
foranya,xe A
h(S(aq))xaw) =¥ (ap)h(xas S (aq)

At x =1 this gives €(a) = 1//’2(a(2))h (d(g) S’l(a(l))). If $* = id, then 1//’2 convolution commutes
with the identity, hence we get ¢~ = ¢. Hence the automorphism p associated to an A-comodule
algebra R is the identity, the autoequivalence © in the proof of Proposition 22 is the identity, and
the class & is the class of all objects, and it follows that Qg : .4 1‘;‘ — gy is separable. The result
about projective dimensions is then either well-known or follows from the obvious improvement
of Proposition 22 in the separable case, having in mind that the conclusion of Lemma 16 now
holds for any object.

A monoidal equivalence F : .#% =® _#® induces, as before, an equivalence between the
bimodule categories R./%}? and T./%? for T = F(R), sending R to T, and then the assumption
$*=id on A and B ensures that cd(R) = de/z}g‘ (R)= pdTMTB (T) = cd(D).

Start now with a fibre functor F : .4 — Vec, i.e. a k-linear monoidal exact faithful functor
that commutes with colimits. Such a functor induces, by Tannaka-Krein duality (see e.g. [19, 23])
or by the results in [40], a monoidal equivalence .#* =~® .#® for some Hopf algebra B, with
as well a monoidal equivalence ,.# }‘;‘ =~® T./%?. The assumption that S* = id for A then gives
de uA®) =cd(R). Since pd_,1(R)=pd_,&(T), Proposition 22 ensures, under the assumption
that cﬁ(R) is finite, that pdT V7. (T) = cd(T), and thus this gives the expected result. O

Example 26. Leto: A® A— k be (Hopf, right) 2-cocycle on a Hopf algebra A (see [31]),i.e. o isa
convolution invertible linear map o : A® A — k satisfying, for any a,b,c € A

ola,1)=¢e(a)l =0(1,a), alap), bp))o(aqybqy,c) =o(a,bayca))o(by),ce))
If R is aright A-comodule algebra, we obtain a new (associative) algebra R, by letting
x.y = 0(xq), Y1) X© Yo
We then have, if A is cosemisimple with $* = id, cd(R) = cd(R,) if cd(R) is finite.

Proof. The algebra R, is the image of R under the fibre functor .#* — Vec; which has the
forgetful functor as underlying functor and monoidal constraint Ve W — Ve W, ve w —
o(vay, wa)) Vo) ® w(y). The result is thus a consequence of Proposition 25. 0
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Remark 27. If the Hopf algebra A% (see [17, 40]) satisfies as well S§* = id, we can conclude
that cd(R) = cd(Rs) without the finiteness assumption. This applies in particular, when A is a
group algebra, to the 2-cocycle twisting of a group-graded algebra, which therefore has the same
Hochschild cohomological dimension as the original algebra. This was probably well-known, but
we are not aware of an explicit reference for this fact.

6. Yetter—Drinfeld modules over cosemisimple Hopf algebras

Our aim in this section is to compare the cohomological dimension and the Gerstenhaber—
Schack cohomological dimension of a cosemisimple Hopf algebra, providing in this way a version
of Theorem 24 that looks slightly weaker, but that is probably more useful in concrete situations
(Corollary 32).

Recall that a (right-right) Yetter-Drinfeld module over a Hopf algebra A is a right A-comodule
and right A-module V satisfying the condition, V ve V,V a€ A,

(v-a)o)®(v-a)q) = v - ap) ®Slag) vy ags)

The category of Yetter-Drinfeld modules over A is denoted % 92’2: the morphisms are the A-
linear and A-colinear maps. The category & @‘2 is obviously abelian, and, endowed with the
usual tensor product of modules and comodules, is a tensor category, with unit the trivial Yetter—
Drinfeld module, denoted k.

The forgetful functor Q4 : 2% — 4 has a left adjoint [11], the free Yetter-Drinfeld module
functor, which sends a comodule V to the Yetter-Drinfeld module VX A, which as a vector space
is V ® A, has the right module structure given by multiplication on the right, and right coaction
given by

(ve (1)(0) ® (e a)(l) =V ®ap) ® S(a(l)) V) aea)
A Yetter—Drinfeld module isomorphic to some V X A as above is said to be free. Let us record the
following facts, that are straightforward consequences of standard properties of pairs of adjoint
functors.

(1) Every Yetter-Drinfeld module is a quotient of a free Yetter-Drinfeld module. Indeed,
for a Yetter-Drinfeld V, the A-module structure of V induces a surjective morphism
QAVRA-V.

(2) If the category .#“ has enough projective objects, then so has & @1’2.

(3) If Ais cosemisimple, then & @2 has enough projective objects, and the projective objects
are precisely the direct summands of the free Yetter-Drinfeld modules.

Similarly, the forgetful functor Q4 : %2 2 — 4 has aright adjoint [11], the cofree Yetter—Drinfeld
module functor, which sends a module V to the Yetter-Drinfeld module V#A, which as a vector
space is V ® A, has the right comodule structure given by the comultiplication of A on the right,
and right A-module structure given by

(vea)- b=v- b(g) ® S(b(l))ab(g)
Again, as a consequence of general properties of adjoint functors, it follows that the category
28 @‘2 has enough injective objects, since .44 has.

Recall that we have defined the Gerstenhaber-Schack cohomological dimension of a Hopf
algebra A by

cdgs(A) :max{n: Extg@/,(k, V) #0 for some Ve@@ﬁ} e NU {oo}
A

The name comes from the fact, proved in [45], that if V is a Yetter-Drinfeld over A, then
Ext; 2 Ak, V) is isomorphic with HES(A, V), the Gerstenhaber-Schack cohomology of A with
A

coefficients in V [21,43].
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Notice that since % @ﬁ has enough injective objects, the above Ext can be computed using
injective resolutions of V, and if & @ﬁ has enough projective objects, using projective resolutions
of kin¥ 9?. Another consequence of general properties of pairs of adjoint functors is that we
have, for any Yetter-Drinfeld module V and any A-module W, natural isomorphisms

Ext;(QA(V), W) = Extg*y@g(v, W#A)
This is what proves that cd(A) < cdgs(A) [7].
We now present an averaging lemma for Yetter-Drinfeld modules over cosemisimple Hopf
algebras, in the same spirit as Lemma 20, which will be the key tool towards the proof of

Theorem 31. If A is a cosemisimple Hopf algebra with modular functional v, we denote by 6
the algebra automorphism of A defined by 8 = 12 x id.

Lemma28. LetV,W be Yetter—Drinfeld modules over a cosemisimple Hopfalgebra A. If f : V — W
is a linear map satisfying f(v-a) = f(v)-0(a) foranyve V anda€ A, thenMy,w (f):V —-Wisa
morphism of Yetter-Drinfeld modules.

Proof. We already know that My w (f) : V — W is colinear and there remains to prove that
My w (f) is A-linear as well. Let v € V and a € A. We have, using our condition on f and the
Yetter-Drinfeld property:

My,w (H(w-a)=h(f((v-a)e)nSv-a)a)) f(v:-a)o)o
=h(fvo - ae)mSSan)vyas)) f (e - a@)o
= h((f(v©)-0aw)qSSam) va as)) (f (ve) -0ae)) o)
=y (a)h((f 0©) - a@)m SSan) vy aw)) (f o) - a@) o)
=y?(ap)h(Slag) f (o) mas SSam) va)ae)) f (Vo) o - dw
=y (a@)h(Sa@) f (o) o) ae Slae) Sway) S (aw)) f(ve) o - dw
=y (ap)h(S(a@) f (o) Swm)S*aw)) f(ve) o - aw

1

Using the properties of the modular functional, and since 6o S=0"! =y~ ! * S* ¢! because o

is an algebra map, this gives:
Myw(f)(v-a)= 1112(61(2))/1(f(U(O))(l)S(U(U)Sz((l(1))0(5(a(3)))f(l/(O))(O) - agw)
=vy?(ap)h (f(v(()))(l)S(Uu))SZ(a(n)i//_l(d(s))S(a(4))1//_1(ds)) Fvo)o - ae)
= h(f(V(O))(l)S(V(l))Sz(a(l))l,//(a(Z))S(a(S))U/_l(614)))f(V(O))(O) -ag)
= h(f (W)@ Swa)S*(an)S* (@) f(ve) o - as)
=h(f(ve)nSvw) fve) o a=Myw (@) -a
and this shows that My (f) is A-linear. O
Lemma 29. Let V be a right comodule over the cosemisimple Hopf algebra A, and consider the
linear map Oy = idy®0 : VKA — VX A. We have M(Oy) = idyx 4, where M(0y) stands for
Myxa,v=a@v).

Proof. Itisimmediate thatidy ®0: VX A — VX A satisfies the assumption of Lemma 28, hence
M(idy ®0) is A-linear. Since it is clear that M(idy ®9)(v® 1) = v® 1 for any v € V, we get the result
by the A-linearity of M(idy ®0). g

We now have all the ingredients to prove the following result.

Proposition 30. Let A be a cosemisimple Hopf algebra. The forgetful functor Q4 : % QZﬁ — M is
twisted separable, and we have pdgygg (V) = pd4(V) for any Yetter-Drinfeld module V such that
pd@@/z(V) is finite.
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Proof. In order to show that the forgetful functor Q4 : % @f} — U 4 is twisted separable, consider

(1) the class & = % of free Yetter-Drinfeld modules;

(2) the autoequivalence O of the category .#/4 that associates to a right A-module W the
A-module Wy having W as underlying vector space and A-module structure given by
w- a= w-0(a), and is trivial on morphisms;

(3) forafree Yetter-Drinfeld module VX A4, the A-module isomorphism 0y : V@ A — (Ve A)y
in Lemma 29.

(4) for Yetter-Drinfeld modules V, W, the averaging map

My, : Hom4(V, Wy) — Homg, 5,4 (V, W)
A
from Lemma 28.

It follows from Lemma 28, Lemma 29 and Proposition 18 that the functor Q4 : & @g — My is
indeed twisted separable. Moreover, as already said, the class & of free Yetter—Drinfeld modules
consists of projective objects, the projective objects in & @g are direct summands of free objects
and hence are preserved by Q 4, which is exact. Hence we are in the situation of Proposition 14,
and we obtain the equality of projective dimensions. U

We thus obtain the main result in the section.
Theorem 31. Let A be a cosemisimple Hopf algebra. If cdgs(A) is finite, we have cd(A) = cdgs(A).

Proof. Let A be a cosemisimple Hopf algebra. Since cdgs(A) = pd@@g(k) and cd(A4) = pd (ke),
we have cd(A) = cdgs(A) if cdgs(A) is finite, by Proposition 30. O

We get the following weak form of Theorem 24, whose formulation is useful.

Corollary 32. Let A, B be Hopf algebras such that 4" ~® #(®. If A and B are cosemisimple and
cdgs(A) is finite, we have cd(A) = cd(B).

Proof. We have cdgs(A) = cdgs(B), hence cd(A) = cd(B) by Theorem 31. Il
As in Section 3, Proposition 30 can be strengthened when S* = id.

Theorem 33. Let A be Hopf algebra. The forgetful functor Q4 : % @ﬁ — M 4 is separable if and
only if A is cosemisimple and S* = id, and in that case we have pd@_@ﬁ (V) =pd 4 (V) for any Yetter-
Drinfeld module V.

Proof. If A is cosemisimple and S* = id,we see, as in the proof of Proposition 25, that the
automorphism 6 of A is the identity, and that Q4 : & @ﬁ — 4 is indeed separable, and the
assertion on projective dimensions, which was already proved in [8, Section 6], follows similarly.

Assume now that Q4 : % @fx — 4 is separable. Since Q4 admits the right adjoint —#A, the
characterization of separability for functors that admit a right adjoint in [38] gives in particular
an A-colinear and A-linear map

n:k#A— k withn(l)=1

By the A-collinearity and n(1) = 1, we have that n = h is a Haar integral on A, which is thus
cosemisimple. The A-linearity of h gives, for any a, x € A,

h(S(aqy)xa)) = e(a)h(x)
We have seen in the proof of Proposition 25 that for any a, x € A,
h(S(agy)xaw) =¥ *(ap)h (xa@,) 571(61(1)))
Hence we have for any a, x € A

h(x(e(a@) —1[/72(61(2))61(3)571(“(1)))) =0
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The non-degeneracy of the Haar integral (which follows from the orthogonality relations) then
gives, foranyae A

e@1 =y 2(ap)agzS (aw)

Hence applying ¢ gives € = w2, and we thus have $* = id. O

We finish the section by noticing that Yetter-Drinfeld modules are also useful outside the
cosemisimple case. Recall [7] that a Yetter-Drinfeld module is said to be relative projective if it
is a direct summand of a free Yetter-Drinfeld module, and let us say that a Hopf algebra is Yetter—
Drinfeld smooth if the trivial object k has a finite resolution by relative projective Yetter-Drinfeld
modules that are finitely generated as modules.

Theorem 34. Let A, B be Hopf algebras that have equivalent linear tensor categories of comodules:
MDA =® 4B, If A and B have bijective antipode and A is Yetter-Drinfeld smooth, then we have
cd(A) =cd(B).

Proof. Clearly A is smooth since it is Yetter-Drinfeld smooth, and if we start from a resolution
of k be finitely generated relative projective Yetter—Drinfeld modules in % 24, |5, Theorem 4.1]
ensures that one can transport this resolution to a resolution of k to a finitely generated relative
projective Yetter—Drinfeld modules in %2 g. Hence B is smooth as well and Theorem 8 concludes
the proof. g

7. Hopf subalgebras and cohomological dimension

Let B < A be a Hopf subalgebra. Under the assumption of faithful flatness of A as a B-module,
which holds in many situations and in particular if A is cosemisimple [13], we have cd(B) <
cd(A) [7, Proposition 3.1]. In this section we prove, in view of an example in the next section,
an analogue inequality for Gerstenhaber-Schack cohomological dimension, in the cosemisimple
case. Of course, if the conclusion of Theorem 31 was known to hold for any cosemisimple Hopf
algebra, this would become trivial.

We begin with some results of independent interest. Recall [7] that a Yetter—Drinfeld module
is said to be relative projective if it is a direct summand in a free one.

Proposition 35. Let A be a Hopf algebra, let V be a Yetter-Drinfeld over A and let W be a right
A-comodule. Then we have an isomorphism of Yetter-Drinfeld modules

QAV)eW)KA=Ve (WK A)

In particular, if P is a relative projective Yetter—Drinfeld module, so is the Yetter—Drinfeld module
VeP.

Proof. The map

QY MV)e W)X A— Ve (WK A)

vewl®a—vr-aq)®we®dap)

is easily seen to be a morphism of Yetter-Drinfeld modules, and its inverse is givenby ve we® a —
v-Slag)) ® w e ag). If P is relative projective, let W be a right A-comodule and Q be a Yetter—
Drinfeld module such that WX A = P& Q. We then have (Ve P)o (Ve Q) = Ve (WK A) =
(QA(V)® W)X A, which proves that V ® P is relative projective. O
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Corollary 36. If A is a cosemisimple Hopf algebra, we have
cdgs(A) = pd@,@g(k) = max{n : EXtZJ@A(k, V) #0 for someV € @@ﬁ}
A
= max{pd@@ﬁ(V), Ve @@g} = max{n : Extg@g(v, W) # 0 for some V, W € @@ﬁ}
= min{n : Ext;;ﬁ(v, W) =0 forany V,W E@/@f‘}
= max{injd@,@A(V), Ve @/@ﬁ}
A
where injd@@/: is the injective dimension in the category % 9 ﬁ.

Proof. The first two equalities have already been discussed. Let P, — k be resolution of k by
projective objects, of length n = pd@%(k). Since A is cosemisimple, the projective objects are
the relative projectives, so if V is a Yetter-Drinfeld module, tensoring the above resolution with
V yields, by Proposition 35, a length 7 resolution of V' by projective objects. This gives the third
equality, and the other ones then follow by classical arguments. O

Let B c A be a Hopf subalgebra. Recall [8] that there is a pair of adjoint functors
A B B A
NPy — XDy WDy — YDy
X— x® V— Vg A

where

(1) for a Yetter-Drinfeld module X over A, XB) = {xe X | X(0) ® X(1) € X ® B} has the restricted
B-module structure;

(2) for a Yetter-Drinfeld module V over B, V Xz A is the induced module V ®g A, with A-
comodule structure given by

(vepa)o)® (Ve a)u = Vo) ®p ap) ® S(aw)) va)aa)

Lemma37. LetB c A bea Hopf subalgebra, and assume that A is cosemisimple. Let V be a Yetter—
Drinfeld module over B. Then V is isomorphic to a direct summand of (V Xg A)®.

Proof. Itisimmediate to check thatwe have a morphism of Yetter-Drinfeld modules
i:V— (VR AP, v—vepl

Assume now that A is cosemisimple. Then, by the proof of Theorem 2.1 in [13], there exists a
sub-B-bimodule T < A, which is as well a subcoalgebra, such that A=Be® T.Let E: A— B be
the corresponding projection: E(b) = b for b € B and E(a) = 0 for a € T. By construction E is a
B-bimodule map and a coalgebra map, and it is immediate to check that we have forany ae€ A

S(E(a)q) ® E(a)o ® E(a)3) = S(am) ® E(aw) ® ag)
From this, we see that the map
(VXp AB v, vega— v-E(a)

is a morphism of Yetter-Drinfeld modules. Since this map is clearly a retraction to i, this proves
the lemma. O

We now have all the ingredients to prove the expected result.

Proposition 38. Let B c A be a Hopf subalgebra. If A is cosemisimple, we have cdgs(B) < cdgs(A).
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Proof. We can assume that cdgs(A) = n is finite. Since A is cosemisimple, [13, Theorem 2.1]
ensures that A is flat as a left B-module, and B < A is coflat. Hence, by [8, Proposition 3.3] we
have

* _ * (B)
Exth,(vgB AX)= Extggg(V,X )
for any Yetter-Drinfeld module X over A, and any Yetter-Drinfeld module V over B. Hence, for
V =k, Corollary 36 yields
n+1 (B)y ~ n+l1 _
Ext@/@g(k,X )= Ext?y@g(k@g A, X) ={0}

for any Yetter-Drinfeld module X over A. Lemma 37 ensures that any Yetter—Drinfeld module
over B is a direct summand in one of type X B) 50 we get cdgs(B) < n, as required. O

8. Examples

We now use the previous results to examine some examples that were not covered by the
literature.

8.1. Universal cosovereign Hopf algebras

In this subsection we complete some of the results of [8] on the cohomological dimension of the
universal cosovereign Hopf algebras. Recall that for n = 2 and F € GL,(k), the algebra H(F) is the
algebra generated by (u;)1<,j<n and (v;)1<i,j<n, With relations:

wv' =vlu=1,, vFu'F'=Fu'Flv=1,,
where u = (u;}), v = (v;;) and I is the identity n x n matrix. The algebra H(F) has a Hopf algebra
structure defined by
Aluij) = Z Uik ® Ugj, Avij)= Z Vik ® Vg,
k k
e(uij) =€) =6;j, Sw=v', Sw)=Fu'F

We refer the reader to [4, 8] for more information and background on the universal cosovereign
Hopf algebras H(F).

Recall [8] that we say that a matrix F € GL; (k) is

e normalizable if tr(F) # 0 and tr(F 1) # 0 or tr(F) = 0 = tr(F~1);

« generic if it is normalizable and the solutions of the equation g% — \/tr(F) tr(F~1)g +1 = 0 are
generic, i.e. are not roots of unity of order = 3 (this property does not depend on the choice of the
above square root);

« an asymmetry if there exists E € GL, (k) such that F = E'E™L.

Theorem 39. Let F € GL,(k), n=2. IfF is an asymmetry or F is generic, we have cd(H(F)) = 3.

Proof. We know from [8, Theorem 2.1], that cd(H(F)) = 3if F is an asymmetry and that
cdgs(H(F) = 3 if F is generic, in which case H(F) is cosemisimple [4], so Theorem 31 gives the
result in that case. O

As anillustration of Theorem 23, consider, for E € GL, (k) and F € GL,(k), n, m = 2, the algebra
H(E, F) presented by generators u;j, vjj, 1 <i <m,1 < j < n, and relations

wv' =1, =vFu'E™' ; viu=1,=Fu'E v

Theorem 40. IfE, F are generic, tr(E) = tr(F) and tr(E™Y) = tr(F~Y), then we have cd(H(E, F)) = 3.
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Proof. The assumption tr(E) = tr(F) and tr(E~!) = tr(F~!) ensures that H(E, F) is an H(E)-H(F)-
bi-Galois object [4]. Hence, since the genericity assumption ensures that H(E) cosemisimple and
we know from the previous result that cd(H(E)) and cd(H(F)) are finite, the result follows from
Theorem 23. Il

8.2. Free wreath products

In this subsection we assume that the base field is k = C, since the monoidal equivalences on
which we rely [20, 27] were obtained in this framework. Before going to the general setting of
Theorem 42, we feel it is probably worth to present a particular example. So for 7, p = 1, consider,
following the notation of [2], the algebra Az(n) presented by generators u;j, 1 < i,j < n, and
relations
n n
Z ufj =1= Z ufl., uijuir =0=ujug;, fork#j,
j=1 j=1
Atp=1, A}l(n) = A;(n), the coordinate algebra of Wang’s quantum permutation group [46]. In
general AZ (n) is a Hopf algebra with [3]
-1
Alu;j) = Xk: Uig® ugj, eij)=06i;, Suij)= ”?i
The following result, for which the p = 1 case was obtained in [7] (see [9] as well, where it is
shown that A;(n) is Calabi-Yau of dimension 3), will be a particular instance of the forthcoming
Theorem 42.

Theorem 41. We have, forp=1andn =4, cd(AZ(n)) =3.

Let A be a Hopf algebra, and consider A*", the free product algebra of n copies of A, which
inherits a natural Hopf algebra structure such that the canonical morphisms v; : A — A*" are
Hopf algebras morphisms. The free wreath product A *,, As(n) [3] is the quotient of the algebra
A*™ % Ag(n) by the two-sided ideal generated by the elements:

Vi(@ug; —ugivi(a), 1<i,k<n, acA.

The free wreath product A *,, A;(n) admits a Hopf algebra structure given by

n n
Alu;j) = Z Uik ® ugj, Avila)) = Z vilam)uix ® vi(awz),
k=1 k=1

n
e(wij) =6j, eWi@)=¢a), Suij)=uji, Swia)=)_ vi(S@)ug;.
k=1

When A is a compact Hopf algebra (i.e. arises from a compact quantum, we do not need the
precise definition here), the free wreath product is as well a compact Hopf algebra. In that case
the monoidal categories of comodules have been described for n = 4 by Lemeux-Tarrago [27] in
the case S? = id and Fima-Pittau [20] in general.

Taking A to be the group algebra C[Z/pZ], we have Az(n) = C[Z/pZ] * As(n) by [3, Exam-
ple 2.5], hence Theorem 41 is a particular instance of the following result.

Theorem 42. We have cd(A *,, As(n)) = max(cd(A),3) for any compact Hopf algebra A such that
cd(A) = cdgs(A) and any n = 4.

Proof. First notice that there is a Hopf algebra map 7 : A *,, As(n) — As(n) such that 7 (u;;) = u;;
and n(a) = €(a), hence As(n) stands as Hopf subalgebra of A x,, A;(n). We thus have, by [7,
Proposition 3.1], 3 = cd(As(n)) < cd(Ax*,, Ag(n)). Similarly the natural map A*" — Ax,, A;(n) hasa
retraction, and hence A*" stands as left coideal *-subalgebra of A %, As(n). By the results in [14],
Axy, Ag(n) is thus faithfully flat as A*”-module, hence projective [30]. We then have, using [8,
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Corollary 5.3], cd(A) = cd(A*"?) < cd(A = Ag(n)), since restricting a resolution by projective
Ay, As(n)-modules to A*"-modules remains a projective resolution. Hence we have

max(cd(A),3) < cd(A *,, As(n))

The converse inequality obviously holds if cd(A) is infinite, hence we can assume that cd(A) is
finite, and hence, in view of our assumption, that cdgg(A) is finite.

The results in [20,27] ensure the existence, for g satisfying g + g~! = v/, of a monoidal equiv-
alence between the category of comodules over A *,, A;(n) and the category of comodules over a
certain Hopf subalgebra H of the free product A * G (SU,(2)). We have, combining Proposition 38
and [8, Corollary 5.10]

cdgs(H) = cdgs(A * G(SU4(2))) = max(cdgs(A), cdgs (@ (SU4(2)))

Since cdgs (0 (SU,4(2)) = 3 by [5, 7], we get cdgs(H) < max(cdgs(A),3), and since we assume that
cdgs(A4) is finite, we get that cdgs (H) is finite. Hence by Corollary 32 and Theorem 31, we get

cd(A * Ag(n)) = cd(H) = cdgs(H) < max(cdgs(A),3) = max(cd(A),3)
which concludes the proof. O

Remark 43. At n = 2, using the simple description of the free wreath product as a crossed
coproduct in [3], it is not difficult to show directly that cd(A *,, As(2)) = max(cd(A),1) if Ais non
trivial.

Remark 44. Fima-Pittau [20] define more generally a free wreath product A *,, Aaut(R, @), for
suitable pairs (R, ¢) consisting of a finite-dimensional C*-algebra and a faithful state, and prove
a similar monoidal equivalence result, so that Theorem 42 should generalize to this setting.

9. Question 1 in the finite-dimensional case

In this section we provide a partial answer to Question 1 in the finite-dimensional case. Recall
that a Hopf algebra A is said to be unimodular if there is a non-zero two-sided integral in A, i.e.
there exists a non-zero t € A such that ta = at = e(a)t for any a. If A is cosemisimple and finite-
dimensional, then A* is unimodular.

Theorem 45. Let A, B be finite-dimensional Hopf algebras such that 4" =® /(®. Then we have
cd(A) = cd(B) if one of the following condition holds.

(d)
(1) The characteristic of k is zero, or satisfies p > d = , where d = dim(A).
(2) A* isunimodular.

Proof. First notice that since a finite-dimensional Hopf algebra is self-injective (projective mod-
ules are injective), we have cd(A),cd(B) € {0,00} and hence there are only few cases to consider.
Moreover, for the Drinfeld double D(A), we have cd(D(A4)) = 0 if and only if D(A) is semisim-
ple, if and only if A is semisimple and cosemisimple [36, Proposition 7], and cd(D(A)) = oo oth-
erwise. Moreover, we have cd(D(A)) = cd(D(B)) since our monoidal equivalence . A~® yB
induces a monoidal equivalence between the monoidal centers of these categories (notice that
cd(D(A)) = cdgs(A)).

If k has characteristic zero or satisfies p > d %m’ then by [26, Theorem 3.3] and [18, Theo-
rem 4.2] respectively, we have that A is semisimple if and only if A is semisimple and cosemisim-
ple, if and only if cd(D(A)) = 0. Hence under one of these assumptions we have cd(A) = cd(B)
because cd(D(A)) = cd(D(B)).

Since .4 =® .45 and A, B are finite-dimensional, We have, by [40, Corollary 5.9], B = A”
for some Hopf 2-cocycle o. At the dual level this means that B* = (A*)/ for some Drinfeld twist
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J. Hence if cd(A) = 0, i.e. A is semisimple, we have that A* is cosemisimple, and assuming that
A* is unimodular, we have that B* is cosemisimple as well by [1, Corollary 3.6], and hence B is
semisimple, so that cd(B) = 0, as needed. The assumption that A* is unimodular is stable under
Drinfeld twist since the multiplication does not change, thus B* is unimodular as well, and hence
we also have cd(B) =0 = cd(A) =0, concluding the proof. O

As we see in the proof of the previous theorem, a complete answer to Question 1 in the finite-
dimensional case reduces to the question whether the class of finite-dimensional cosemisimple
Hopf algebras is stable under Drinfeld twists. Remark 3.9 in [1] claimed that this is expected to
be true, and would follow from a weak form of an important conjecture of Kaplansky saying
that a finite-dimensional cosemisimple Hopf algebra is unimodular (the strong form says that
a cosemisimple Hopf algebra satisfies S? = id), but we are not aware of a proof since then.

10. Summary of positive answers to Question 1

In this last section, for the convenience of the reader, we summarize what are, to the best of
our knowledge, the known positive answers to Question 1, most of which are in this paper. Let
A, B be Hopf algebras having equivalent linear tensor categories of comodules. Then we have
cd(A) = cd(B) in the following situations.

(1) A, B have bijective antipode and are smooth.

(2) A, B are cosemisimple and their antipodes satisfy $* = id.

(3) A, B are cosemisimple and cd(A), cd(B) are finite.

(4) A, B are finite-dimensional, and the characteristic of k is zero, or satisfies p > d 7 , where

d =dim(A).
(5) A, B are finite-dimensional and A* is unimodular.
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