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Abstract. Let q be a power of a prime number and V be a 2-dimensional column vector space over a
finite field Fq . Assume that SL2(V ) < G ≤ GL2(V ). In this paper we prove an Erdős–Ko–Rado theorem for
intersecting sets of G and we show that every maximum intersecting set of G is either a coset of the stabilizer
of a point or a coset of G〈w〉, where G〈w〉 = {M ∈G : ∀v ∈V , M v−v ∈ 〈w〉}, for some w ∈V \{0}. It is also shown
that every intersecting set of G is contained in a maximum intersecting set.
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1. Introduction

One of the fundamental results in extremal set theory is the Erdős–Ko–Rado theorem which was
proved in 1961 [5]. This theorem is concerned with obtaining the size of the largest family of
subsets of size r from {1, . . . ,n} such that any two of these subsets have a nonempty intersection.
The famous Erdős–Ko–Rado theorem states that if n ≥ 2r , then the largest family has size

(n−1
r−1

)
,

and for n > 2r , the only families that have this size are the families of all subsets containing a
fixed element from {1, . . . ,n}.

There are many generalizations of this theorem for other mathematical objects. In this paper,
we consider the Erdős–Ko–Rado theorem for the general linear group of dimension 2 and its
subgroups containing the special linear group.

Let Ω be a finite set and K be a permutation group on it. We say that a subset A of K is
intersecting if for any δ,τ ∈ A, there exists x ∈ Ω such that δ(x) = τ(x). It is obvious that the
stabilizer of a point is an intersecting set. If the size of every intersecting set of a group G is at
most the size of the largest stabilizer of a point, we say G has the EKR property while G has the
strict EKR property if every maximum intersecting set is a coset of the stabilizer of a point.

A natural question that arises here is to determine which groups have the (strict) EKR property.
Our first theorem is in line with answering this question. Before describing our theorems, let us
mention a few interesting results.

The first result in this area that dates back to 1977 is due to Frankl and Deza [6]. Let Sn denote
the symmetric group of degree n. Frankl and Deza proved that Sn has the EKR property. After
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that, Cameron and Ku [4] showed that Sn has the strict EKR property as well which answered
affirmatively to the conjecture posed in [6]. This result was also proved independently by Larose
and Malvenuto [9].

It has been proved that the alternating groups have the strict EKR property [8]. In [1], the
authors showed that SL2(q) acting on a 2-dimensional vector space over Fq has the strict EKR
property. From combined results of [2, 12], it is known that the size of the maximum intersecting
set in PSL2(q) is q(q−1)/2. As a step forward, Ling et al. [10] presented the characterization of the
maximum intersecting sets in PSL2(q) whenever q > 3 is an odd prime power.

Furthermore, it has been shown that the projective general linear groups PGL2(q) have the
strict EKR property [12], while the groups PGL3(q) do not so [13]. Finally, Spiga showed that the
maximum intersecting sets of PGLn+1(q) acting on the points of the projective space Pn

q are the
cosets of the stabilizer of a point and the cosets of the stabilizer of a hyperplan [15]. For more
studies, we refer the reader to [7, 11, 14].

It is worth mentioning that the group action plays an essential role to determine which groups
have (strict) EKR property. Because a group can have the EKR property under an action while it
does not have the same property under the other action. We refer the reader to see [3] for finding
an example of such groups.

In [1], the authors showed that the EKR property holds for GL2(V ), however their result is
incomplete. In this paper, we inspire their method and employ the properties of the linear groups
and group actions for generalizing their result and correcting the flaw. Let SL2(V ) <G ≤ GL2(V ).
We show that G has the EKR property and does not have the strict EKR property. Furthermore, we
prove that every intersecting set F of G is contained in an intersecting set of the maximal size.

Note that the authors of [1] showed that GLn(q) of arbitrary dimension admits EKR property.
We do not already have any significant evidence whether GLn(q) has the strict EKR property or
not.

2. Additional notation and auxiliary Lemmas

In this section, we recall some notation and definitions. Also, we prove several lemmas in order
to prove our main results.

Assume that p is a prime number, k is a positive integer and q = pk . We denote a finite field
of order q by Fq . Let V = F2

q and G be a finite group such that SL2(V ) <G ≤ GL2(V ). Throughout
this paper, assume that F is an intersecting set of G acting naturally on F2

q and F0 = F \ {Id}.
For a basis B of V and g ∈ G , [g ]B stands for the matrix representation corresponding to g and
for w ∈ V \ {0}, 〈w〉 stands for the 1-dimensional subspace of V with {w} as its basis. We denote
the stabilizer subgroup of a point v ∈ V by Gv while G〈w〉 denotes the stabilizer subgroup of a
subspace 〈w〉.

For every w ∈V \ {0}, set

G〈w〉 = {M ∈G : ∀ v ∈V , M v − v ∈ 〈w〉}.

We define det(G) as the set of determinants of all elements of G .

Remark 1. Let F be an intersecting set of G . In this paper we assume that Id ∈ F . Because if
x ∈F , then Id = x−1x ∈ x−1F and |F | = |x−1F |. So x−1F is an intersecting set containing Id with
the same size as |F |. Now we can use x−1F instead of F .

Lemma 2. For w ∈V \ {0}, G〈w〉 is a subgroup of G and |G〈w〉| = qd, where d = |det(G)|.
Proof. Since Id ∈ G〈w〉, G〈w〉 6= ;. Let M1, M2 ∈ G〈w〉. Then, for every v ∈ V , M1v − v, M2v − v ∈
〈w〉. Thus, M1(M2v)− M2v ∈ 〈w〉, and hence M1M2v − M2v + M2v − v ∈ 〈w〉. This shows that
M1M2v − v ∈ 〈w〉. Therefore M1M2 ∈G〈w〉.
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Also, M−1
1 v ∈V , so M1M−1

1 v−M−1
1 v ∈ 〈w〉 and consequently, M−1

1 v−v ∈ 〈w〉. This implies that
M−1

1 ∈G〈w〉 and hence G〈w〉 ≤G .
Now we are going to prove the second part. Assume that B = {v, w} is a basis of V . Let

g ∈G〈w〉 \ {Id}. Since g v − v, g w −w belong to 〈w〉, we have

[g ]B =
[

1 0
c µ

]
,

where µ ∈ det(G) and c ∈ Fq . For every
(α
β

) ∈V , we can see that[
1 0
c µ

](
α

β

)
−

(
α

β

)
∈ 〈w〉.

One can check at once that for every µ ∈ det(G) and c ∈ Fq , if g ∈ GL2(V ) such that [g ]B = [1 0
c µ

]
,

then g ∈G . This guarantees that

G〈w〉 = {g ∈G : [g ]B =
[

1 0
c µ

]
,where µ ∈ det(G) and c ∈ Fq },

which gives |G〈w〉| = q|det(G)|, as wanted. �

Lemma 3. Let v ∈V \ {0}. Then |Gv | = q |det(G)|.
Proof. Since G acts transitively on V \ {0}, we have [G : Gv ] = q2 − 1. Observe that |G| =
q(q2 −1)|det(G)|. So, the lemma follows. �

Lemma 4. Let w ∈V \ {0}. Then G〈w〉 is an intersecting set of G.

Proof. Let B = {v, w} be a basis of V . As mentioned in the proof of Lemma 2, we have G〈w〉 = {g ∈
G : [g ]B = [1 0

c µ

]
,where µ ∈ det(G) and c ∈ Fq }. Let g1, g2 ∈ G〈w〉. Then there exist µ1,µ2 ∈ det(G)

and c1,c2 ∈ Fq such that [g1]B = [ 1 0
c1 µ1

]
and [g2]B = [ 1 0

c2 µ2

]
. If µ1 =µ2, then g1w = g2w . Otherwise

g1(v +αw) = g2(v +αw), where α = (µ2 − µ1)−1(c1 − c2). Thus G〈w〉 is an intersecting set, as
wanted. �

Lemma 5. Let B = {v, w} be a basis of V and F be an intersecting set of G. If x ∈ F0 ∩Gv and
y ∈F0 ∩Gw , then [x]B = [

1 c
0 λ

]
and [y]B = [ 1+cα 0

(λ−1)α 1

]
for some λ ∈ det(G), c ∈ Fq and α ∈ F∗q .

Proof. Since x ∈ Gv \ {Id} and y ∈ Gw \ Gv , we have [x]B = [
1 c
0 λ

]
and [y]B =

[
λ′ 0
c ′ 1

]
, where

λ,λ′ ∈ det(G) and c,c ′ ∈ Fq . The set F is an intersecting set of G and x, y ∈ F . So, there exists
u ∈ V \ {0} such that x(u) = y(u). Note that V = 〈v, w〉. Hence u = av +bw for some a,b ∈ F∗q and
ax(v +a−1bw) = x(u) = y(u) = ay(v +a−1bw). Therefore x(v +αw) = y(v +αw), where α= a−1b.
It follows that (1+cα)v +λαw =λ′v + (c ′+α)w . Consequently, λ′ = 1+cα and c ′ = (λ−1)α. Also
this shows that

F0 ∩Gw ⊆
{

z ∈G : [z]B =
[

1+ cγ 0
(λ−1)γ 1

]
, where γ ∈ F∗q

}
. (1)

�

Corollary 6. Let B = {v, w} be a basis of V and F be an intersecting set of G. If F ∩Gw 6= {Id} and
x ∈F0 ∩Gv such that [x]B = [

1 0
0 λ

]
, for some λ ∈ det(G), then F ∩Gv ⊆G〈w〉.

Proof. Since F ∩Gw 6= {Id}, there exists an element y ∈F0 ∩Gw . By Lemma 5,

[y]B =
[

1 0
(λ−1)α 1

]
, (2)

for some α ∈ F∗q . Now, let z ∈F0 ∩Gv . Then, [z]B =
[

1 c ′
0 λ′

]
, for some λ′ ∈ det(G) and c ′ ∈ Fq . By (1),

we know that

F0 ∩Gw ⊆
{

w ∈G : [w]B =
[

1+ c ′γ 0
(λ′−1)γ 1

]
, where γ ∈ F∗q

}
.
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Hence, [y]B =
[

1+c ′µ 0
(λ′−1)µ 1

]
, for some µ ∈ F∗q . So, (2) forces 1 = 1+ c ′µ. Since µ 6= 0, c ′ = 0. Thus,

z ∈G〈w〉. This shows that F ∩Gv ⊆G〈w〉, as wanted. �

Corollary 7. Let B = {v, w} be a basis of V and F be an intersecting set of G. If F0 ∩Gv 6= ;, then
|F0 ∩Gw | ≤ ε, where

ε=
{

q −1, if F0 ∩Gv ⊆G〈w〉,
d −1, otherwise,

and d = |det(G)|. Also, if F0 ∩Gw 6⊆G〈v〉, then |F0 ∩Gv | ≤ d −1.

Proof. Let x ∈F0 ∩Gv . By Lemma 5, [x]B = [
1 c
0 λ

]
where λ ∈ det(G) and c ∈ Fq . By (1), we have

F0 ∩Gw ⊆ {z ∈G : [z]B =
[

1+ cγ 0
(λ−1)γ 1

]
, where γ ∈ F∗q }.

Thus |F0 ∩Gw | ≤ q −1. If F ∩Gv 6⊆ G〈w〉, then c 6= 0. Also, 1+ cγ ∈ det(G). So γ ∈ c−1(1−det(G)).
Since γ 6= 0, γ ∈ c−1(1−det(G))\{0}. It follows from (1) that |F0∩Gw | ≤ d −1, as desired. The same
argument completes the proof for |F0 ∩Gv |. �

Example 8. Let V = F2
3 and G = GL2(V ). Consider v = (1,0), w = (0,1) and w1 = (1,−1) as the

elements of V . Then B = {v, w} is a basis of V . Set

F1 =
{[

1 0
0 1

]
,

[
1 −1
0 −1

]
,

[−1 0
−1 1

]
,

[
0 1
1 0

]
,

[−1 1
−1 0

]
,

[
0 −1
1 −1

]}
and

F = {M ∈ GL2(V ) : [M ]B ∈F1}.

One can check at once that F = G〈w1〉 and d = |det(G)| = 2. Also, F0 ∩Gv 6⊆ G〈w〉 and F0 ∩Gw ={[−1 0−1 1

]}
. Hence, |F0 ∩Gw | = 1.

Corollary 9. Let B = {v, w} be a basis of V and F be an intersecting set of G. If x, y ∈F0 such that
x ∈Gv ∩G〈w〉 and y ∈Gw , then y(v) = v + c ′w, for some c ′ ∈ Fq .

Proof. The proof follows immediately from (1). �

3. The Erdős–Ko–Rado Theorem for the general linear group and its subgroups

The purpose of this section is to prove an analogues of the Erdős–Ko–Rado theorem for the
general linear group of dimension 2 and some of its subgroups. The following observations will
be needed throughout this section.

Proposition 10. Let B = {v, w} be a basis of V and F be an intersecting set of G such that
F0 ∩Gv 6= ; and F ⊆G〈w〉. Then, F ⊆G〈w〉.

Proof. By Remark 1, Id ∈F . Set wt = v+ t w , where t ∈ Fq . Since F ⊆G〈w〉, we get F ∩Gwt ⊆G〈w〉
for every t ∈ Fq . Note that {wt : t ∈ Fq }∪ {w} are pairwise linearly independent, and for every
u ∈ V , either u ∈ 〈w〉 or there exists t ∈ Fq such that u ∈ 〈wt 〉. Since F is an intersecting set of
G , for every g ∈ F , there exists an element u ∈ V \ {0} such that g (u) = Id(u) = u. So, g ∈ Gu .
Consequently,

F =
( ⋃̇

t∈Fq

F0 ∩Gwt

)
∪̇ (F0 ∩Gw ) ∪̇ {Id}. (3)

If g ∈ F0 ∩Gv , then g v − v = 0 ∈ 〈w〉 and g (αv +w)− (αv +w) ∈ 〈w〉, for every α ∈ Fq , because
g ∈F0 ∩Gv ⊆G〈w〉. So g ∈G〈w〉. If t ∈ F∗q and g ∈F0 ∩Gwt , then

g v − v = g (v + t w − t w)− v = v + t w − t g (w)− v = t w − t g (w) ∈ 〈w〉,
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because g ∈F0 ∩Gwt ⊆G〈w〉. Also

g (αv +w)− (αv +w) =α(v + t w)+ (−tα+1)g (w)− (αv +w)

= (αt −1)w + (−tα+1)g (w) ∈ 〈w〉,
for every α ∈ Fq . Therefore g ∈ G〈w〉. Observe that if g ∈ Gw , then g ∈ G〈w〉. Thus F ⊆ G〈w〉, as
wanted. �

Proposition 11. Let B = {v, w} be a basis of V and F be an intersecting set of G. If F0 ∩Gw 6= ;
and ; 6=F0 ∩Gv ⊆G〈w〉, then F ⊆G〈w〉.

Proof. Let x ∈F0 ∩Gv and y ∈F0 ∩Gw . Then, y 6∈Gv and [y]B = [
λ 0
c ′ 1

]
, where c ′ ∈ Fq and λ ∈ F∗q .

Since F ∩Gv ⊆G〈w〉, λ= 1 by Corollary 9. For t ∈ Fq , let wt = v + t w .

(i) If there exists t ∈ F∗q such that F ∩Gwt 6⊆ G〈w〉, then there is z ∈ (F ∩Gwt ) \ G〈w〉. Since
z, y ∈ F0 and F is an intersecting set of G , there exists u ∈ V \ {0} such that y(u) = z(u).
If u = v , then z(v) = y(v) = v + c ′w . We can see that v + t w = z(v + t w) = z(v)+ t z(w) =
v+c ′w+t z(w). Therefore z(w) = t−1(t w−c ′w) ∈ 〈w〉. So z ∈G〈w〉. This is a contradiction.
If u = v +αw , for some α ∈ F∗q , then v + t w + (α− t )z(w) = z(v +αw) = y(v +αw) =
v + c ′w +αw , for some c ′ ∈ Fq . Thus, if α 6= t , then z(w) = (α− t )−1(c ′ +α− t )w ∈ 〈w〉,
which is a contradiction. Also, if α= t , then y(v + t w) = z(v + t w) = v + t w . So, y(v) = v .
Consequently y ∈Gv , which is a contradiction.

(ii) Assume that for every t ∈ F∗q , F ∩Gwt ⊆ G〈w〉. Then, (3) shows that F ⊆ G〈w〉. It follows
from Proposition 10 that F ⊆G〈w〉, as wanted.

�

Theorem 12. Let F be an intersecting set of G. Then |F | ≤ d q, where d = |det(G)|. In particular,
|F | = d q if and only if F is either a coset of Gv or a coset of G〈w〉 for some v, w ∈V \ {0}.

Proof. According to Remark 1, assume that Id ∈ F . Let x ∈ F0. Since Id ∈ F and F is an
intersecting set of G , there exists v ∈ V \ {0} such that x(v) = v . This yields x ∈ Gv . If F ⊆ Gv ,
then Lemma 3 completes the proof. Now let F 6⊆ Gv . Note that for every a ∈ F∗q , Gv = Gav . Let
y ∈ F \ Gv . Since Id ∈ F and y 6∈ Gv , there exists w ∈ V \ 〈v〉 such that y(w) = w and B = {v, w}
is a basis of V . Observe that y ∈ Gw \ {Id}, so [y]B = [

λ 0
c ′ 1

]
, where c ′ ∈ Fq and λ ∈ F∗q . For t ∈ Fq ,

let wt = v + t w . If there exist the linearly independent vectors u,u′ ∈ {v, w, wt : t ∈ F∗q } such that
F0 ∩Gu′ 6= ; and ; 6=F0 ∩Gu ⊆G〈u′〉, then Proposition 11 shows that F ⊆G〈u′〉, as desired. This
shows that if |F | = d q , then F = G〈u′〉. Next assume that for every linearly independent vectors
u,u′ ∈ {v, w, wt : t ∈ F∗q }, if F0 ∩Gu 6= ; and F0 ∩Gu′ 6= ;, then F ∩Gu 6⊆ G〈u′〉. Thus, Corollary 7
and (3) show that |F | ≤ (q +1)(d −1)+1 < qd . So, the theorem follows. �

Theorem 13. Every intersecting set of G is contained in an intersecting set of size qd.

Proof. Let F be an intersecting set of G such that F 6⊆Gu , for every u ∈V \ {0}. By Remark 1, we
can assume that Id ∈F . Let x0 ∈F0. Since F is an intersecting set of G and Id ∈F , x0(v) = Id(v)
for some v ∈ V \ {0}. So, we have x0 ∈ F0 ∩Gv . Note that F 6⊆ Gv . This implies that there exists
y0 ∈ F0 \ Gv . Now, y0 ∈ F and F is an intersecting set of G . Hence, we can find w ∈ V \ 〈v〉 such
that y0 ∈ Gw . Set wt = v + t w , for t ∈ F∗q and let B0 = {v, w}. It is clear that B0 is a basis of V . By
Lemma 5,

[x0]B0 =
[

1 c0

0 λ0

]
, (4)

where c0 ∈ Fq and λ0 ∈ det(G). If c0 = 0, then F ∩Gv ⊆ G〈w〉, by Corollary 6. It follows from
Proposition 11 that F ⊆ G〈w〉, as desired. If λ0 = 1, then (1) shows that F ∩Gw ⊆ G〈v〉. So,
Proposition 11 guarantees that F ⊆ G〈v〉, as desired. Finally let c0 6= 0 and λ0 6= 1. Then, x0(v +
(λ0 −1)c−1

0 w) =λ0(v + (λ0 −1)c−1
0 w). Thus, x0 ∈G〈wα〉, where α= (λ0 −1)c−1

0 . If z ∈F0 ∩Gv , then
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Lemma 5 shows that [z]B0 = [
1 c
0 λ

]
, where c ∈ Fq and λ ∈ det(G). By (1) and (4), we can conclude

1+γ0c0 = 1+γc and (1−λ0)γ0 = (1−λ)γ, for some γ0,γ ∈ F∗q . Then, we have z(v + (λ−1)c−1w) =
λ(v + (λ− 1)c−1w). However, (λ0 − 1)c−1

0 = (λ− 1)γγ−1
0 c−1γ−1γ0 = (λ− 1)c−1. Hence, z ∈ G〈wα〉.

Consequently, F0 ∩Gv ⊆ G〈wα〉, where α = (λ0 − 1)c−1
0 . Assume that t ∈ F∗q and xt ∈ F0 ∩Gwt .

Set Bt = {v, wt }. Then, Bt is a basis of V . One can check at once that [x0]Bt =
[

1 1+tc0−λ0
0 λ0

]
. So,

(1) shows that [xt ]Bt =
[

1+(1+tc0−λ0)γt 0
(λ0−1)γt 1

]
, for some γt ∈ F∗q . Also, v +αw = (1−αt−1)v +αt−1wt

and xt ((1−αt−1)v +αt−1wt ) = (1+ (1+ tc0 −λ0)γt )((1−αt−1)v +αt−1wt ). Hence, xt ∈ G〈wα〉.
Thus, F0 ∩Gwt ⊆ G〈wα〉. The same reasoning shows that F0 ∩Gw ⊆ G〈wα〉. Thus, F ⊆ G〈wα〉. So,
Proposition 10 forces F ⊆G〈wα〉, as desired. �
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