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Abstract. We show that under Kalman’s rank condition, the observability of a scalar equation implies the
uniqueness of solution to a system of elliptic operators. Using this result, we establish the asymptotic
synchronization by groups for second order evolution systems.

Résumé. Nous montrons que sous la condition du rang de Kalman, 1'observabilité d'une équation scalaire
implique I'unicité de la solution d'un systéme d’opérateurs elliptiques. En utilisant ce résultat, nous établis-
sons la synchronisation asymptotique par groupes de systémes d’évolution du second ordre.
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1. Uniqueness Theorem

Let # and 7 be two Hilbert spaces such that 7 ¢ # with dense and compact imbedding. Let L
be the duality mapping from 7 into its dual space 7’ such that

(L, wyyry = (D W)y, YIweV. 1)
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By Riesz-Fréchet’s representation theorem, L is an isomorphism from 7 onto the dual space ¥’.
Let y be a linear continuous operator from 7 into 7’, such that

Yo Wy y =, Pyry, YOWeV 2
and
Yo, dyyry = 0; (y¢,dyyry =0 ifandonlyif y¢p=0. (3)

Finally, denoting by Iy the identity of RY, we define the following operators . and ¢ of diagonal
form:

:fZLIN, (gZYIN. 4)

The first objective of the present paper is to find a simple and efficient characterization for the
uniqueness of solution to the over-determined system with variable ® = (¢V,...,¢™)T:

Lo+ AD = 2D (5)
associated with the condition of observation:
DT¢o =0, (6)

where € R, D is a matrix of order N x M and A is a symmetric matrix of order N, both with
constant entries.
We observe that Kalman’s rank condition

rank(D, AD,..., AN 'D)=N @)

is necessary for this uniqueness of solution (see Theorem 7). However, since a matrix D satisfying
Kalman’s rank condition (7) is not invertible in general, the partial observation (6) cannot imply
the nullity of the full observation:

Y =0, 1<i<N, @)

so the uniqueness of solution to the over-determined system (5)-(6) cannot be obtained by the
standard Carleman’s theorem of uniqueness of continuation (see [3,4]). Since only Kalman’s rank
condition is not sufficient, some additional conditions should be required for the uniqueness of
continuation.

Definition 1. Let A1,...,A,, denote the distinct eigenvalues of A. The matrix A satisfies the €-
closing condition if there exists a number a such that

sup |A;—al<e. 9)

1<ism

Definition 2. The operator L satisfies the c-gap condition if there exists a number ¢ > 0, such that
lap—ayl=c (10)
holds true for all distinct eigenvalues a;, # a,y of L.

Definition 3. The pair (L,y) is observable if there exists a constant c > 0, independent of p € R and
f € A, such that the observability inequality

clplze < fllzz (11
holds for any given solution ¢ to the following over-determined scalar problem
Bp—Lp=f with yp=0. (12)

Let us recall the following generalized rank condition of Kalman’s type (see [8]).
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Proposition 4. The rank condition

rank(D, AD,...,AN"'D)=N-d (13)
holds for one integer d = 0 if and only if d is the largest dimension of the subspaces which are
invariant for A and contained in Ker(DT).

Now we can give the main result on the uniqueness of continuation.
Theorem 5. Assume that the pair (A, D) satisfies Kalman’s rank condition (7). Then, the over-
determined system (5)-(6) has only the trivial solution ® = 0 in any one of the following situations:
(i) The operatory is global, namely,

(ii) The matrix A satisfies the e-closing condition (9) with € > 0 small enough, the operator L
satisfies the c-gap condition (10), and the over-determined scalar problem

Bp—Lp=0 and yp=0 (15)

has only the trivial solution ¢ = 0.
(iii) The matrix A satisfies the e-closing condition (9) with € > 0 small enough and the pair
(L,y) is observable.

In order to simplify the proof, we make some necessary preparations.
First, under a suitable basis, A can be written as

g m
f_"l_\ f_UA_\
A:diag(/h,...,/ll, ...... ,ﬂ,m,...,ﬂm),
where A; are the eigenvalues of A of multiplicity o; (1 << m).
Accordingly, we regroup the state variable ® = (¢, ..., T as
O =(W,..., W0, .. pHmtl | plm) T
where the integers p, are defined by
=0, pr=pgr_1+o0, r=1,...,m,and y,, =N.

On the other hand, if we replace A by A+ bI, and B2 by g2 + b for any given b > 0 in (5), it
will not modify anything in Theorem 5. So, without loss of generality, we may assume that the
eigenvalues of A are strictly positive.

Finally, denote by ¢; (i = 1,...,N) the canonical basis vectors in RN, and by d; the i-
th column-vector of the matrix DT. Because DT¢; = d; (i = 1,...,N) and the subspace V =
Spanfey,_ +1,...,€y,} is invariant for A (1 < I < m), by Proposition 4, Kalman’s rank condition (7)
implies that V nKer(DT) = {0}, namely,

1
Y aidi=0ifandonlyif a; =0 forall ;1 +1<i<p.
i=pp-1+1

Therefore, for each 1 < [ < m, the vectors dy,,_+1,...,dy, are linearly independent.
Proof. Now we give the proof of Theorem 5.

Case (i). From (6) and (14) we have
D9 =yD'®)=0= DT0=0.
Then, applying D7 to (5) and noting the first formula of (4), it follows that
DT A® =0,
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namely,

mo ,

> Y aedi=o. (16)

I=1 l‘:‘u[,1+1
We write (5) as

LD =B+ A, i +l<is<p, 1<l<m. a7

Since L is self-adjoint, the eigenspaces

Span{p®i-1*Y, . o0} (18)

associated with the different eigenvalues 1; are mutually orthogonal. Then it follows from (16)
that

Hi .
Y nepPdi=0, 1<i<m.

i=pp-1+1
Since for each 1 < I < m, the eigenvalue 1; # 0 and the vectors dy,;_ +1,...,dy, are linearly
independent, it follows that

V=0, p+l<is<p, l<l<m,
namely ® = 0.
Case (ii). Assume that there exist two integers /, k with 1 < [,k < m and [ # k, such that qﬁ@ #0
for some i with p;_; +1 < i < y;, and ¢'? # 0 for some i’ with pj_; + 1 < i’ < ug. Then ¢ and

<p“’) will be eigenfunctions of L, so there exist the corresponding eigenvalues a,, and a,, such
that

Br+A=an, and BE+Ar=any;
then
Al —/1]{ =Qn; — Apg.-
However, because of the e-closing condition (9) and the c-gap condition (10), the above equality

cannot be satisfied for ¢ > 0 small enough. Therefore, there exists at most one integer k with
1< k< m, such that

¢pW=0 fori=p_1+1,...,p;and [ # k. (19)
Then (6) reduces to
m Hi . Hk .
D'go=Y Y ypPdi= Y y¢Pd;=0.
I=1i=py_+1 i=pip_y +1
Since the vectors dy,_,+1,...,dy, arelinearly independent, it follows from (17) that
LoV = (B2 + 10D with YD =0, oy +1<i<py. (20)
Then the uniqueness of continuation of the scalar problem (15) implies that
¢V=0, o +l<is<py,
which, combined with (19), leads to
PW =0, wo+l<is<p, l<l<m,
namely, ® =0.
Case (iii). Applying D' to (5) and noting W = DT ®, we get
BP-a)W—-LW =D AD—aWw. (21)

Setting
W=(w;j), DTA®-aw=(f}) and D'=(d})
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forl<i<Nandl<j< M, wehave

N X m |4 X
wj= Z‘idji(p(z) — Z Z dji(P(l)
1=

=1 i:}tl,1+1

and
m 0 .
fi=YW-a Y dje®. (22)
1=1 i=p[,1 +1
On the other hand, by the definition of ¢ in (4), condition (6) leads to
W =¢D"®=DT9yd=0. (23)
Then, taking the j-th component of (21) and (23), we get
(,Bz—a)wj—ijzfj (24)
with the additional condition
yw; =0. (25)

If % — a < 0, multiplying (24) by w;, we get
— (B - allwili%, +lwil5 =—(fj, w))ze.
It follows that
cllwillz < | fillz. (26)
If ﬁz —a > 0, then w; satisfies the scalar problem (12). Since (L,y) is observable, we get

again (26).
By the orthogonality of the eigenspaces (18), it follows from (22) that

Hi . 2
Z dji(P(l)

i=pp1+1

2 2
= sup |a—A1"lw;l%.
1sism

m
Ifil% < sup la—A* Y

1<ism =1

0
By the e-closing condition (9), we get
I fillzz < sup la—Ailllwjllze<elwjllz.
1slsm

Thus, it follows from (26) that

Hi .
Y dipP=0 1<js<sM, 1<is<m,
I=py—+1

provided that € < ¢; namely, we have

i )
Y dip”=0, 1<i<sm.

i=pp-1+1

Since dy,;_,+1,...,dy, are linearly independent, we obtain that
pW =0, o +l<isp, l<l<m,
namely, ® = 0. The proof is then complete. 0

The above theorem can be read as “under Kalman's rank condition on the coupling matrices
A and D, the observability of a scalar equation implies the uniqueness of solution to a complex
system”. Thus, it provides a simple and efficient approach to solve a seemingly difficult problem
of uniqueness for a complex system.

Case (i) of global observation is similar to the finite-dimensional case. In this case, without
any additional conditions on the matrix A or on the operator L, only Kalman’s rank condition
is sufficient for the uniqueness of solution to the over-determined system (see Theorem 16). In
case (ii), thanks to the c-gap condition, the unique continuation of a scalar problem implies the
uniqueness of solution to the over-determined system (see Theorem 14). In the general case (iii),
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the observability inequality is required and can be established under suitable geometrical control
conditions (see Theorem 15). Moreover, the necessity of e-closing condition is shown by an
example in [8].

In the previous discussion, we have assumed that the matrix A is symmetric, which is actually
essential for the stability of the evolution systems that we will study in the next section. A
generalization of Theorem 5 can be found in the complete version [6].

2. Asymptotic synchronization by groups

Recall that the operators L and y satisfy the conditions (1)-(3). In what follows, we assume
furthermore that the operator y is compact from 7 into 7.
Let A and D be symmetric and positive semi-definite matrices. Consider the following second

order evolution system with variable U = (u'V, ..., u™)7
U+ £U+AU+DY%U; =0 27
associated with the initial data
t=0: U=Uy, U=U. (28)
Defining the linear operator < by
AU, V)=(V,-ZLU- AU - D¥V), (29)
we formulate (27) into a first-order evolution system
U,V);=«(U,V). (30)

Clearly (see [11]), the operator «f generates a semi-group of contractions in the space (¥ x 0N,
Definition 6. The system (27) is asymptotically (strongly) stable if for any given initial data
(Uo, Uy € ¥V x FON, the corresponding solution U to problem (27)-(28) satisfies
U, U (D) — 0,00 in(¥ x )N ast — +oo. 31
Theorem 7. If the system (27) is asymptotically stable in (V x 7€)V, then Kalman's rank condi-

tion (7) holds. Inversely, assume that the pair (A, D) satisfies Kalman's rank condition (7), then the
system (27) is asymptotically stable in any one of the three situations described in Theorem 5.

Proof. Assume that the rank condition (7) fails. By Proposition 4, Ker(D) contains at least an
eigenvector E € RY associated with an eigenvalue A € R:
AE=AE and DE=0.
Then, applying E to (27) and setting ¢ = (E, U), we get
tht+L(p+A('b= 0,
which is conservative, so never asymptotically stable.

Inversely, because the resolvent of < is compact in the space (¥ x /)", by the classic theory
of semi-groups (see [1, 2]), the system (27) is asymptotically stable if and only if </ has no pure
imaginary eigenvalues.

In fact, let e R and (@, V) € ¥ x A, such that

oA (D,¥) = if(®,V).

It follows that

L0+ AD + iBDYD = 0. 32)
Since £ + A is positive definite, we have 8 # 0. Since £ + A and D% are symmetric, equation (32)
is equivalent to the over-determined system (5)-(6), which has only the trivial solution ® = 0 by
virtue of Theorem 5. O
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By Theorem 7, when the pair (4, D) does not satisfy Kalman’s rank condition (7), the sys-
tem (27) is not asymptotically stable. We then return to consider a weakened notion, the asymp-
totic synchronization.

Let p = 1 be one integer and

O=nop<ni<m<---<np=N

with n, —n,_; =2 for all 1 < r < p. We re-arrange the components of the state variable U into p
groups as
@W, ..., umy, @mr ey (et )y,

Definition 8. The system (27) is asymptotically synchronizable by p-groups if for any given initial
data (Uy, Uy) € (V x #)N, the corresponding solution U to problem (27)-(28) satisfies

WP -uPw -0, WP -uPW)—0 in¥xHast— +oo (33)
foralln,_1+1<k,l<nrandl<r<p.

Let S; be the full row-rank matrix of order (n, — n,_1 —1) x (n, — n,_1):
1-1
1 -1
Sr= o forlsrs<p.
1 -1
Define the (N — p) x N matrix C,, of synchronization by p-groups as
$1

Sp
Then the asymptotic synchronization by p-groups (33) can be equivalently rewritten as
Cp(U(0),U(1)) — (0,00 in (¥ x #)N"P ast— +oo. 34)

Since the above asymptotic synchronization by p-groups investigates the behaviour of the
solutions on the infinite horizon, the notion of synchronizable state by p-groups is no longer
available as for the synchronization on a finite interval considered in [7-10]; therefore the
corresponding asymptotic synchronization by p-groups certainly proposes interesting questions
and needs new effective methods. This is the second topic to be developed in this paper.

Before starting the study on the asymptotic synchronization, we first give some algebraic
preliminaries.

Definition 9. The matrix A satisfies the condition of Cy,-compatibility if
AKer(Cp) = Ker(Cp), (35)
or equivalently, there exists a positive semi-definite matrix E,, of order (N — p), such that
(CyCp)~2CpA= A, (CyCTV2C),. (36)
Definition 10. The matrix D satisfies the condition of strong C,-compatibility if
Ker(C,) = Ker(D), (37
or equivalently, there exists a positive semi-definite matrix R of order (N — p), such that

D=C,RC). (38)

C. R. Mathématique, 2020, 358, n° 3, 285-295
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In this case, D satisfies also the condition of C,-compatibility. Moreover, setting
D, =(C,CH*R(C,C)',
we have _
(CyCy)"2CpD =Dy (C,CH 7V 2C,,.
Now we give the basic idea of asymptotic synchronization by p-groups. Assume that A and D
satisfy the conditions of compatibility. Applying the matrix (C, C; )~1/2 Cp to the system (27), and
setting W = (C,C ; )"Y2C,U, we get a reduced self-closed system

Wi+ LW+ A,W + DG W,; =0. (39)

Then the asymptotic synchronization by p-groups of the system (27) is equivalent to the asymp-
totic stability of the reduced system (39). Since the reduced matrices A, and D), are still sym-
metric, the asymptotic stability of the reduced system (39) is equivalent to the uniqueness of the
over-determined system with the reduced variable ¥ = (yV, ...,y ™N-P)T:

LY +AY = gAY (40)
associated with the condition of observation
D,4¥ =0. )
The previous approach is direct and efficient. However, the necessity of the conditions of com-
patibility is a delicate question. The following theorem shows that it is in fact the consequence of
the minimality of the rank of Kalman’s matrix. This makes the theory of asymptotic synchroniza-
tion by p-groups more complete for systems of partial differential equations.
Theorem 11. Ifthe system (27) is asymptotically synchronizable by p-groups, then necessarily
rank(D, AD,...,AN"1D)= N—p. (42)

Furthermore, if the system (27) is asymptotically synchronizable by p-groups under the minimal
rank condition

rank(D, AD,...,AN"'D)= N-p, (43)
then, necessarily, A satisfies the condition of C,-compatibility (36) and D is given by (38).

Theorem 12. Assume that the pair (A, D) satisfies Kalman's rank condition (43). Assume further-
more that the matrix A satisfies the condition of Cy,-compatibility (36) and that the matrix D is
given by (38). Then the system (27) is asymptotically synchronizable by p-groups in any one of the
three situations described in Theorem 5.

Proof. Asexplained above, it suffices to show the asymptotic stability of the reduced system (39),
or the uniqueness of the reduced over-determined problem (40)-(41). By Theorem 7, this is true
under the condition

rank(ﬁp,zpﬁp,...,Zg_p_lﬁp) =N-p,
which is equivalent to (43) (see [6] for details). O

Theorem 13. Assume that the matrix A satisfies the condition of Cy,-compatibility (36) and that
the matrix D is given by (38). If the system (27) is asymptotically synchronizable by p-groups, then
for any given initial data (Uy, Uy) € (V x )N, there exist some scalar functions uy, ..., up such that
u® ) —u, (0 —=0, uPO)—u () =0 in¥ xH ast— +oo
foralln,_1+1<k<nrandl<r<p.
In this case, the system (27) is called asymptotically synchronizable by p-groups in the pin-
ning sense with the asymptotically synchronizable state by p-groups u = (u,..., up) T However,

unlike the approximately synchronizable state by p-groups (see [8, 9]), the asymptotically syn-
chronizable state by p-groups u is not uniquely determined.
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3. Applications to wave equations

We will give some classic examples to illustrate possible applications of the abstract theory
mentioned above. However, the approach is quite flexible and can easily be applied to other types
of wave equations with variable density, or outside a star-shaped domain (cf. [5,12, 13]).

In what follows, Q is a bounded domain in R” with suitably smooth boundary I' =T'; uT such
that mes(I';) > 0. Let H%O () denote the subspace of H 1(Q) of functions with vanishing trace on
To.

Consider the following coupled system of wave equations with the state variable U =
(u(l)’ ) u(N))T .

Uy —AU+AU =0 inR*xQ,
U=0 onR* x Ty, (44)
0,U+DU;=0 onR* xT7j.

Multiplying the system (44) by ® = (¢'V,...,¢™) € (H} ()" and integrating by parts, we get the
following variational formulation:

f (Uyt, @) dx+f (VU,VD) dx+f (AU, D) dx+f (DU, @)dI' = 0. (45)
Q Q Q I
Let L and y be defined by
(Lv,<p>=[ Vv-V¢dx and (yv,(p)zf vepdr. (46)
Q I,
With £ and ¥ as in (4), the variational equation (45) can be rewritten as
Ui+ LU+ AU + D% U, =0. 47)

3.1. Case with the gap condition

We first consider a specific situation on a rectangular domain
Q=(0,m)x(0,an), To={0,)um,y), 0<y<an}, I'1=I\IYy, (48)
where a > 0 is a parameter.

Theorem 14. Let a® be a rational. Assume that the pair (A, D) satisfies the rank condition (7)
and that A satisfies the e-closing condition with € > 0 small enough. Then the system (44) is
asymptotically stable.

Proof. Consider the following eigensystem:

-Ap=a¢d inQ,

¢=0 on I,

0v¢p=0 onlj.
By Carleman’s uniqueness theorem (see [3, 4]), under the additional condition ¢ = 0 on I';, the
above system has only the trivial solution. Moreover, a straightforward computation gives the
eigenvalues and the associated eigenvectors as follows:

12 l
a1 = K+ L ¢x,1 = sin(kx) cos(;y).

Since a? is a rational, the eigenvalues satisfy the c-gap condition:
2_ 2

ak,l—a,,,q:kz—p2+ p =c>0

C. R. Mathématique, 2020, 358, n° 3, 285-295
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for all ay,; > ap,4. Then, by Theorem 7, the system (44) is asymptotically stable, provided that A
satisfies the e-closing condition with € > 0 small enough.

If a? is an irrational, the c-gap condition is no longer valid. In this case, we don’t know if the
system (44) is asymptotically stable or not, even though the coupling matrix A satisfies the e-
closing condition with € > 0 small enough. 0

3.2. Case with the observability inequality

In this subsection, we assume that there exists xpeR", such that setting m = x — xo, we have
(m-v) <0 onTy. Then there exists a constant ¢ > 0 independent of § and f, such that any given
solution ¢ to the over-determined scalar problem

Bo+Ap=f inQ,
¢$=0 onl,
0v¢p=0 onI

satisfies the following observability inequality

f(|ﬁ¢|2+|v¢|2)dx<cf |12 dx.
Q Q

In other words, the pair (L,y) defined by (46) is observable (see [6] for details). Noting that y is
compact from H, () into (Hy (€)', by Theorem 12 we have the following

Theorem 15. Assume that the pair (A, D) satisfies the rank condition (43) and that A satisfies the
e-closing condition (9) with € > 0 small enough. Assume furthermore that A satisfies the condition
of Cp-compatibility (36) and that D is given by (38). Then the system (44) is asymptotically
synchronizable by p-groups.

3.3. Case of global damping

Finally, we investigate the asymptotic stability of a system of wave equations with globally
distributed damping:

Uy —AU+AU+DU;=0 inR*xQ,
(49)

Uu=0 onR* xT.
As in the finite-dimensional case of ordinary differential equations, without any additional con-
ditions, only Kalman’s rank condition is sufficient for the asymptotic stability of wave equations.
By Theorem 7, we have the following

Theorem 16. Let the pair (A, D) satisfy the rank condition (7). Then the system (49) is asymptoti-
cally stable.
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