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Abstract. We study the existence of global implicit functions for equations defined on open subsets of Banach
spaces. The partial derivative with respect to the second variable is only required to have a left inverse instead
of being invertible. Generalizing known results, we provide sufficient criteria which are easy to check. These
conditions essentially rely on the existence of diffeomorphisms between the respective projections of the
set of zeros and appropriate Banach spaces, as well as a corresponding growth bound. The projections
further allow to consider cases where the global implicit function is not defined on all of the open subset
corresponding to the first variable.
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1. Introduction

When dealing with nonlinear dynamical systems with constraints, i.e., implicit differential equa-
tions of the form

F
(
x(t ), ẋ(t )

)= 0,

where the number of equations does not match the number of variables, it is often necessary to
solve this equation for ẋ(t ), preferably globally in the form ẋ(t ) = g (x(t )). This means to find a
global implicit function of the equation F (x, y) = 0. Numerous results on global implicit function
theorems exist, and we mention the relevant literature. However, most results involve conditions
which are not easy to check in practice. In the present paper, we provide a novel extension of the
global implicit function theorem under conditions which can easily be verified.

In the following we summarize some results on global implicit functions, tailored to be
applicable in our framework. We consider equations of the form F (x, y) = 0 for which we want
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to find a unique maximal solution y(x). There are several approaches available in the literature
which provide a solution to this problem, see e.g. [10] for an early result. Most works concentrate
on the case that the partial derivative ∂F

∂y (x, y) is invertible for all (x, y), i.e., F (x, y) = 0 is locally
solvable for y(x) in a neighborhood of every point (a,b) such that F (a,b) = 0. We discuss some
important work:

• For F : X ×Y → Rl , where X ⊆ Rm and Y ⊆ Rn are open and X is convex, Sandberg [11]
provides necessary and sufficient conditions for the existence of a unique g ∈ C (X ,Y )
such that F−1(0) = {(x, g (x))|x ∈ X }. However, the conditions are not easy to check; in
particular, it needs to be guaranteed that

for some x0 ∈ X there exists exactly one y0 ∈ Y such that F (x0, y0) = 0. (1)

Furthermore, the result of Sandberg is not applicable in the case that the maximal
solution g is not defined on all of X .

• Using the theory of covering maps, Ichiraku [6] improves the characterization of Sand-
berg. Nevertheless, the condition (1) is still present and the results are only applicable
in the case of globally defined g . However, in [6, Theorem 5] it is shown that in the case
X =Rm , Y =Rn and l = m for the existence of a unique solution g ∈C (Rm ,Rn) it is suffi-
cient that ∂F

∂y (x, y) is invertible for all (x, y) ∈Rm ×Rn , condition (1) holds and

∀ (x, y) ∈ F−1(0) :

∥∥∥∥(
∂F

∂y
(x, y)

)−1∥∥∥∥ ·∥∥∥∥∂F

∂x
(x, y)

∥∥∥∥≤ M (2)

for some M ≥ 0.
• The above result of Ichiraku has in turn be improved by Gutú and Jaramillo [5, Corol-

lary 5.3], who showed that the condition (1) can be replaced by the intuitive condition
“F−1(0) is connected” and in the condition (2) the constant M can be replaced by the
term ω(‖y‖), where ω : [0,∞) → (0,∞) is a continuous weight, which means that ω is
nondecreasing and ∫ ∞

0

dt

ω(t )
=∞.

These conditions are indeed easy to check. The only drawback is that F needs to be
defined on all of Rm ×Rn and the solution g is defined on all of Rm .

• A result which is similar to that of Gutú and Jaramillo, but holds for some X ⊆ Rm which
is open, connected and starlike with respect to some a ∈ X such that F (a,b) = 0 for some
b ∈ Y = Rn , has been derived by Cristea [2]. The assumption of connectedness of F−1(0)
is not needed, however a version of assumption (2) (with M =ω(‖y‖)) is required to hold
on all of X ×Rn .

• Yet another approach has been pursued by Zhang and Ge [12] who show that for existence
of a unique solution g ∈C (Rm ,Rn) it is sufficient that the element-wise absolute value of
∂F
∂y is uniformly strictly diagonally dominant in the sense that there exists d > 0 such that∣∣∣∣(∂F

∂y
(x, y)

)
i i

∣∣∣∣− ∑
j 6= i

∣∣∣∣∣
(
∂F

∂y
(x, y)

)
i j

∣∣∣∣∣≥ d

for all (x, y) ∈ Rm ×Rn and all i = 1, . . . , n. While this condition is easy to check, it is very
restrictive as it already excludes a lot of linear equations Ax+B y = 0 where B is not strictly
diagonally dominant, but invertible.

As discussed above, typical limitations of the approaches are that F needs to be defined on all
of Rm ×Rn or the solution g is required to be globally defined. In [1] these limitations are resolved
as X and Y are assumed to be open and X is connected, and maximal solutions of F (x, y) = 0
are considered in every connected component of F−1(0). Assuming that Z := F−1(0) is connected



T. Berger and F. E. Haller 441

we may then find a solution g ∈ C (π1(Z ),Y ), where π1 : X ×Y → X , (x, y) 7→ x is the projection
onto the first component, provided that π1(Z ) is open and simply connected and π1 : Z →π1(Z )
“lifts lines” (for a precise definition see [9, Definition 1.1]). This result can be extended in a
straightforward way to the case where l ≥ m and rk ∂F

∂y (x, y) = n for all (x, y) ∈ X ×Y since it is
only necessary to show that π1 is locally a homeomorphism, which replaces the condition that
F (x, y) = 0 is locally solvable for y(x) as in [1, Theorem 4]; then [1, Lemma 1] can still be applied
to π1 : Z →π1(Z ). The drawback of this result is that the condition “π1 : Z →π1(Z ) lifts lines” is
not easy to check.

In the present paper, we provide a generalization of [5, Corollary 5.3] to the case of functions
defined only on open subsets and where the partial derivative ∂F

∂y is only required to have a left
inverse instead of being invertible. The crucial assumption is that the projections πi (Z ) on the
i th component, i = 1,2, are diffeomorphic to some Banach spaces and the transformation of
the equation F (x, y) = 0 satisfies a generalized version of (2). We stress that this assumption in
particular implies that πi (Z ) must be open and simply connected. The main result is presented
in Section 2 and a discussion together with some illustrative examples is given in Section 3.

2. Main result

In this section we state and prove the following main result of the paper.

Theorem 1. Let X ⊆U , Y ⊆ V be open sets, U ,V ,Z be Banach spaces, F ∈C 1(X ×Y ,Z ) and

Z ⊆ {
(x, y) ∈ X ×Y

∣∣ F (x, y) = 0
}

be such that

(i) Z is path-connected and closed in X ×Y ;
(ii) ∀ (x, y) ∈ Z ∃ S(x, y) ∈L (Z ,V ) : S(x, y)D y F (x, y) = idV ;1

(iii) for the projections πi (p1, p2) = pi with i ∈ {1,2}, (p1, p2) ∈ U × V , there exist diffeomor-
phisms φ : π1(Z )→X , ψ : π2(Z )→Y for some Banach spaces X ,Y , and a continuous
weight ω : [0,∞) → (0,∞) such that for all (x, y) ∈ Z we have∥∥Dψ(y) ·S(x, y)

∥∥
L (Z ,Y ) ·

∥∥∥Dx F (x, y) · (Dφ(x)
)−1

∥∥∥
L (X ,Z )

≤ω(∥∥ψ(y)
∥∥

Y

)
.

Then there exists a unique g ∈C (π1(Z ),Y ) such that{ (
x, g (x)

) ∣∣ x ∈π1(Z )
}= Z ,

and g is Fréchet-differentiable at every x ∈π1(Z ).

The proof of Theorem 1 requires us to recall the following concepts, which can be found in [5,
pp. 77–80].

Definition 2. Let Z be a metric space, and let P be a family of continuous paths in Z . We say that
Z is P -connected, if the following conditions hold:

(1) If the path p : [a,b] → Z belongs to P , then the reverse path p, defined by p(t ) = p(a−t+b),
also belongs to P ;

(2) Every two points in Z can be joined by a path in P .

We say that Z is locally P -contractible if every point z0 ∈ Z has an open neighborhood U which is
P -contractible, in the sense that there exists a homotopy H : U × [0,1] →U between the constant
function U 3 z 7→ z0 and the identity idU , which satisfies

1Here L (Z ,V ) denotes the Banach space of all bounded linear operators A : Z → V and idV : V → V , v 7→ v is the
identity operator on V .
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(a) H(z0, t ) = z0, for all t ∈ [0,1],
(b) for every z ∈U , the path pz := H(z, t ) belongs to P .

Further, let Z ′ also be a metric space and p : [0,1] → Z ′ be a path in Z ′. We say that a continuous
map f : Z → Z ′ has the continuation property for p, if for every b ∈ (0,1] and every path
q ∈ C ([0,b), Z ) such that f ◦ q = p�[0,b), there exists a sequence {tn} in [0,b) convergent to b and
such that {q(tn)} converges in Z . Furthermore, a continuous map f : Z → Z ′ is called a covering
map, if every z ′ ∈ Z ′ has an open neighborhood U such that f −1(U ) is the disjoint union of open
subsets of Z each of which is mapped homeomorphically into U by f .

Proof of Theorem 1. We proceed in several steps.

Step 1. We first reduce the original problem to a simpler case. By the existence of φ,ψ in
assumption (iii) it follows that, for i ∈ {1,2}, πi (Z ) are open sets in U ,V , resp., and since Z ⊆
π1(Z )×π2(Z ), it is no loss of generality to assume X ×Y = π1(Z )×π2(Z ). That is, we search for
an implicit function for the restriction F : π1(Z )×π2(Z ) → Z instead of F : X ×Y → Z . Next, we
argue that it suffices to prove the theorem for cases in which (i)–(iii) are satisfied withφ= idX and
ψ = idY . Note that these assumptions imply U = X = π1(Z ) = X and V = Y = π2(Z ) = Y since
X and Y are open subspaces of U and V , resp. Having proved this case, we can conclude the
general case by considering the function F̃ = F ◦(φ−1,ψ−1) with F̃ : X ×Y →Z . Next we translate
the conditions (i)–(iii) on F to conditions on F̃ for Z̃ := (φ,ψ)(Z ).

(i’) We have that Z̃ is path-connected and closed in X×Y if, and only if, Z is path-connected
and closed in X ×Y .

(ii’) Define

S̃ : Z̃ →Y ,
(
x̃, ỹ

) 7→ (
D

(
ψ−1)(ỹ

))−1 ·S
(
φ−1 (x̃) ,ψ−1 (

ỹ
))

.

With the identification (x, y) = (φ−1(x̃),ψ−1(ỹ)) we obtain for all (x, y) ∈ Z that

D y F (x, y) = D y
(
F̃

(
φ(x),ψ(y)

))
= (

D ỹ F̃
)(
φ(x),ψ(y)

) ·Dψ(y)

= D ỹ F̃
(
x̃, ỹ

)(
D

(
ψ−1)(ỹ

))−1
,

where the latter equality is a consequence of the inverse function theorem. Using this we
find that

S
(
x, y

)
D y F

(
x, y

)= idV ⇐⇒ S
(
φ−1 (x̃‘) ,ψ−1 (

ỹ
)) · (D ỹ F̃

)(
x̃, ỹ

) · (D
(
ψ−1)(ỹ

))−1 = idV

⇐⇒ (
D

(
ψ−1)(ỹ

))−1 ·S
(
φ−1 (x̃) ,ψ−1 (

ỹ
))︸ ︷︷ ︸

=S̃(x̃, ỹ)

·D ỹ F̃
(
x̃, ỹ

) = idY .

(iii’) Similar to the computations above we obtain that, for (x, y) ∈ Z ,

D x̃ F̃
(
x̃, ỹ

)= Dx F (x, y) · (Dφ(x)
)−1 .

Therefore, we have for all continuous weights ω : [0,∞) → (0,∞) and all (x, y) ∈ Z that,
omitting the spaces in the subscripts of the norms,∥∥Dψ(y) ·S(x, y)

∥∥ ·∥∥∥Dx F (x, y) · (Dφ(x)
)−1

∥∥∥≤ω(‖ψ(y)‖)

⇐⇒ ∥∥S̃
(
x̃, ỹ

)∥∥ ·∥∥D x̃ F̃
(
x̃, ỹ

)∥∥≤ω(∥∥ỹ
∥∥)

.

Now, define the projections π̃i (p1, p2) = pi with i ∈ {1,2}, (p1, p2) ∈X ×Y . We recapitulate the
situation with the following commuting diagram:
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X ×Y ⊇ Z

X =π1(Z )

Y =π2(Z )

π̃1(Z̃ ) ⊆X

π̃2(Z̃ ) ⊆Y

Z̃ ⊆X ×Y

π1

π2

(φ,ψ)

φ

ψ

π̃1

π̃2

For the conclusion, consider g̃ :=ψ◦ g ◦φ−1 together with the equality π1(Z ) =φ−1(π̃1(Z̃ )).

Step 2. By Step 1, in the following we assume that X = π1(Z ) and Y = π2(Z ) as well as φ = idX

and ψ= idY . We show that π1 : Z →π1(Z ) is a local homeomorphism between connected metric
spaces. Clearly, Z and π1(Z ) are metric spaces and since Z is path-connected, π1(Z ) is path-
connected as well. To show that π1 : Z → π1(Z ) is a local homeomorphism, let (a,b) ∈ Z , i.e.,
F (a,b) = 0. Applying the implicit function theorem, see e.g. [3, Theorem 10.2.1], yields open
neighborhoods U ⊆ X of a, V ⊆ Y of b, and g ∈C 1(U ,V ) such that{ (

x, g (x)
) ∣∣ x ∈U

}= { (
x, y

) ∈U ×V
∣∣ S(a,b)F

(
x, y

)= 0
}

.

Consider the restriction π̂1 : Z ∩ (U × V ) → π1(Z ∩ (U × V )). Then π̂1 is injective since
π̂1(x1, y1) = π̂1(x2, y2) for some (x1, y1), (x2, y2) ∈ Z ∩ (U ×V ) gives x1 = x2 and S(a,b)F (x1, y1) =
S(a,b)F (x2, y2), thus y1 = g (x1) = g (x2) = y2. Therefore, π̂1 is bijective and continuous. Further-
more, it is easy to see that π̂1 is an open map, and hence it is a homeomorphism.

Step 3. Let

P :=C 1([0,1],π1(Z )
)

and observe that π1(Z ) is P -connected and locally P -contractible since it is open. We show
thatπ1 has the continuation property for every path in P , that is, for all q1 ∈P , all b ∈ (0,1] and all
q2 ∈C ([0,b),Y ) such that (q1(t ), q2(t )) ∈ Z for all t ∈ [0,b) there exists a sequence (tn)n∈N ⊆ [0,b)
with limn→∞ tn = b such that (q2(tn))n∈N converges and

lim
n→∞

(
q1(tn), q2(tn)

) ∈ Z .

First note that q2 is differentiable at any t ∈ [0,b), since there exists a local implicit function as in
Step 2, so that q2(s) = g (q1(s)) for all s in a neighborhood of t . Since g and q1 are differentiable
we obtain q̇2(t ) = Dg (q1(t ))q̇1(t ). Moreover, it can be seen that the derivative is continuous at
each point in [0,b). Then, using property (iii), it can be proved by only a slight modification
of the proof of [5, Corollary 5.3] that for any sequence (tn)n∈N ⊆ [0,b) with limn→∞ tn = b the
sequence (q2(tn))n∈N is a Cauchy sequence and hence converges in Y = V . Since Z is closed in
X ×Y =U ×V by (i) we thus obtain limn→∞(q1(tn), q2(tn)) ∈ Z .

Step 4. We show thatπ1 : Z →π1(Z ) is a homeomorphism. By [5, Theorem 2.6] and Step 3 we may
infer that π1 is a covering map. Since π1(Z ) =φ−1(X ) is in particular simply connected by (iii) it
follows from [7, Proposition A.79] that π1 : Z →π1(Z ) is a homeomorphism.

Step 5. By Step 4 we have (x 7→ (x, g (x)) = π−1
1 (x)) ∈ C (π1(Z ), Z ) which uniquely defines the

desired function g ∈ C (π1(Z ),Y ). Since π1(Z ) is in particular open by condition (iii), for all
x ∈π1(Z ) we have that g coincides with any solution provided by the implicit function theorem as
in Step 1 in a neighborhood of x. The implicit function theorem provides Fréchet-differentiability
of the local solution, thus g is Fréchet-differentiable at x.

�
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We like to emphasize that Z in Theorem 1 may only be a subset of the zero set F−1(0). This
allows to exclude points (x, y) in F−1(0) at which D y F (x, y) has not left inverse, or, actually, to
exclude open sets containing such points so that Z is closed (alternatively, one may restrict the
sets X and Y ). Then a global implicit function may still exist in each connected component of Z ,
provided the growth bound in (iii) is satisfied.

Remark 3. An important question that arises is whether the growth bound in condition (iii) in
Theorem 1 is independent of the choice of the diffeomorphisms φ and ψ. Use the notation from
Theorem 1, assume that conditions (i)–(iii) are satisfied and let φ̂ :π1(Z ) → X̂ and ψ̂ :π2(Z ) → Ŷ
be diffeomorphisms for some Banach spaces X̂ ,Ŷ . Then, omitting the subscripts indicating the
spaces corresponding to the norms, we have the estimate∥∥Dψ̂(y) ·S

(
x, y

)∥∥ ·∥∥∥Dx F
(
x, y

) · (Dφ̂(x)
)−1

∥∥∥
≤ ∥∥Dψ(y) ·S

(
x, y

)∥∥ ·∥∥∥Dψ̂(y) · (Dψ(y)
)−1

∥∥∥
·
∥∥∥Dx F

(
x, y

) · (Dφ(x)
)−1

∥∥∥ ·∥∥∥Dφ(x) · (Dφ̂(x)
)−1

∥∥∥
≤ω(∥∥ψ(y)

∥∥
Y

) ·∥∥∥Dψ̂(y) · (Dψ(y)
)−1

∥∥∥ ·∥∥∥Dφ(x) · (Dφ̂(x)
)−1

∥∥∥
for all (x, y) ∈ Z . If the last term satisfies

∀ (x, y) ∈ Z : ω
(∥∥ψ(y)

∥∥
Y

) ·∥∥∥Dψ̂(y) · (Dψ(y)
)−1

∥∥∥ ·∥∥∥Dφ(x) · (Dφ̂(x)
)−1

∥∥∥≤ ω̂(∥∥ψ̂(y)
∥∥

Ŷ

)
for some continuous weight ω̂, then the growth bound in condition (iii) would indeed be inde-
pendent ofφ andψ. However, it is still an open problem whether this is true (or a counterexample
exists) and remains for future research.

3. Examples and discussion

In this section we discuss the assumptions in Theorem 1 and provide some illustrative examples.
First, we provide a practical example occurring in the modelling of electrical circuits, where the
projection π1(Z ) (on which the implicit function is defined) is a proper subset of X .

Example 4. Consider two diodes D1, D2 with associated currents i1, i2 and voltages u1,u2.
Following [8, Equation (39.46)], we can model their constitutive relations as

i1(t ) = a1

(
e

u1(t )
b1 −1

)
, i2(t ) = a2

(
e

u2(t )
b2 −1

)
, t ∈R, (3)

for some constants a1, a2,b1,b2 > 0. We may further impose the restrictions

u1(t ) ∈ (
umin

1 ,umax
1

)=: Y1, u2(t ) ∈ (
umin

2 ,umax
2

)=: Y2, t ∈R, (4)

reflecting physical properties, e.g. the regions of operation of the corresponding devices that are
being modelled. From (3) and (4) we can also derive restrictions

i1(t ) ∈ (
i min

1 , i max
1

)=: X1, i2(t ) ∈ (
i min

2 , i max
2

)=: X2, t ∈R. (5)

Such restrictions are incorporated in a natural manner in the port-Hamiltonian modelling of
nonlinear electrical circuits in the context of resistive relations, see e.g. [4]. Next, we consider
a parallel connection of the two diodes and add a current source with current I and voltage V as
depicted in Figure 1, i.e., we have

i1(t )+ i2(t ) = I (t ),

u1(t ) = u2(t ) =V (t ), for t ∈R.
(6)
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V

I

u1

i1

u2

i2

Figure 1. Circuit containing two diodes.

re�ecting physical properties, e.g. the regions of operation of the correspond-
ing devices that are being modelled. From (3.1) and (3.2) we can also derive
restrictions

(3.3) i1(t) ∈ (imin
1 , imax

1 ) =: X1, i2(t) ∈ (imin
2 , imax

2 ) =: X2, t ∈ R.

Such restrictions are incorporated in a natural manner in the port-Hamiltonian
modelling of nonlinear electrical circuits in the context of resistive relations,
see e.g. [4]. Next, we consider a parallel connection of the two diodes and
add a current source with current I and voltage V as depicted in Figure 1,
i.e., we have

(3.4)
i1(t) + i2(t) = I(t),

u1(t) = u2(t) = V (t), for t ∈ R.

From the constitutive relations, it is clear that we can describe i1, i2 and
hence I as a function of V . However, the converse is not evident, i.e., how V
is given in terms of the current I. Invoking (3.1) and (3.4), I and V satisfy
the relation

I = a1

(
e
V
b1 − 1

)
+ a2

(
e
V
b2 − 1

)
=: f(V ).

Further by (3.2) and (3.4), V has to satisfy V ∈ Y1 ∩Y2 =: Y , whereas I has
to satisfy I ∈ X1 +X2 = (imin

1 + imin
2 , imax

1 + imax
2 ) =: X by (3.3) and (3.4).

Note that both X and Y are open intervals and we exclude the trivial case
that Y is empty. Recapitulating, with F : X × Y → R, (I, V ) 7→ I − f(V )
and

Z := { (I, V ) ∈ X × Y | F (I, V ) = 0 } ,
we seek the existence of a function g ∈ C(π1(Z), Y ) such that

{ (I, g(I)) | I ∈ π1(Z) } = Z.

Figure 1. Circuit containing two diodes.

From the constitutive relations, it is clear that we can describe i1, i2 and hence I as a function of
V . However, the converse is not evident, i.e., how V is given in terms of the current I . Invoking (3)
and (6), I and V satisfy the relation

I = a1

(
e

V
b1 −1

)
+a2

(
e

V
b2 −1

)
=: f (V ).

Further by (4) and (6), V has to satisfy V ∈ Y1 ∩Y2 =: Y , whereas I has to satisfy I ∈ X1 + X2 =
(i min

1 + i min
2 , i max

1 + i max
2 ) =: X by (5) and (6). Note that both X and Y are open intervals and we

exclude the trivial case that Y is empty. Recapitulating, with F : X ×Y →R, (I ,V ) 7→ I − f (V ) and

Z := {
(I ,V ) ∈ X ×Y

∣∣F (I ,V ) = 0
}
,

we seek the existence of a function g ∈C (π1(Z ),Y ) such that{ (
I , g (I )

) ∣∣ I ∈π1(Z )
}= Z .

The existence of such a function is obviously equivalent to the invertibility of f on π2(Z ) ⊆ Y ,
which holds true since its derivative is positive. Nevertheless, we check the assumptions (i)-(iii)
of Theorem 1 in order to illustrate it. Since Z is the zero set of a continuous function, it is relatively
closed in X ×Y , i.e., (i) holds. For (ii) , note that

DV F (I ,V ) =− f ′(V ) =−a1

b1
exp

(
V

b1

)
− a2

b2
exp

(
V

b2

)
< 0.

It remains to find diffeomorphisms φ : π1(Z ) → R, ψ : π2(Z ) → R and a continuous weight
ω : [0,∞) → (0,∞) such that the growth bound in (iii) is satisfied. Choose any diffeomorphism
φ : π1(Z ) → R, which exists since π1(Z ) = X is an open interval. Define ψ := φ ◦ f , which is a
diffeomorphism since f is invertible on π2(Z ). Then ψ′ = (φ′ ◦ f ) · f ′. Further, let ω(t ) = t +1 for
t ∈ [0,∞) and note that S(I ,V ) = (DV F (I ,V ))−1 = (− f ′(V ))−1 for (I ,V ) ∈ Z . Recalling that I = f (V )
for all (I ,V ) ∈ Z we find∥∥Dψ(V ) ·S(I ,V )

∥∥ ·∥∥∥D I F (I ,V ) · (Dφ(I )
)−1

∥∥∥=
∣∣∣φ′(I ) · f ′(V ) · (− f ′(V )

)−1
∣∣∣ · ∣∣φ′(I )−1∣∣= ∣∣φ′(I )

∣∣∣∣φ′(I )
∣∣

= 1 ≤ |ψ(V )|+1 =ω(∥∥ψ(V )
∥∥)

,

for all (I ,V ) ∈ Z , proving (iii).
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We like to highlight that none of the assumptions (i)–(iii) in Theorem 1 can be omitted in
general. It is clear that connectedness of Z in (i) and local solvability guaranteed by (ii) are
indispensable. Counterexamples in finite dimension are constructed for (iii) in the following
examples. Condition (iii) basically consists of two parts. The first one is to check whether πi (Z ),
i = 1,2, are diffeomorphic to some Banach spaces. The second part is the growth bound involving
the diffeomorphisms, the partial derivative Dx F and the left inverse of D y F .

First, we like to discuss why we chose the projections of Z as the domains of the diffeomor-
phisms in Theorem 1, whereas intuitively one could consider the open sets X and Y as the
domains.

Remark 5. In a possible different formulation of Theorem 1 one could choose diffeomorphisms
φ̃ : X →X and ψ̃ : Y →Y and then consider, mutatis mutandis, the corresponding growth bound
in condition (iii). This would relax the assumptions on the projections πi (Z ), which would then
not necessarily need to be open and simply connected. However, for the proof technique to be
feasible we need to additionally require that π1(Z ) is simply connected. Indeed, the proof is
analogous, but the modified theorem does not cover basic examples.

For F :R×(−1,1) →R, (x, y) 7→ x−y and Z := F−1(0) it is easy to check that conditions (i)and (ii)
are satisfied. The growth bound in condition (iii) reads

∀ (x, y) ∈ Z :
∣∣ψ̃′(y)

∣∣ · ∣∣φ̃′(x)−1∣∣≤ω(∣∣ψ̃(y)
∣∣)

⇐⇒∀ y ∈ (−1,1) :
∣∣φ̃′(y)

∣∣≥ ∣∣ψ̃′(y)
∣∣

ω
(∣∣ψ̃(y)

∣∣)
for some continuous weight ω. Note that φ̃′((−1,1)) is bounded and φ̃(y) 6= 0 for all y ∈R, hence∫ 1

−1

∣∣φ̃′(y)
∣∣dy =

∣∣∣∣∫ 1

−1
φ̃′(y)dy

∣∣∣∣<∞.

Then the change of variables theorem with the substitution t = ψ̃(y) together with the inverse
function theorem yields that

∞>
∫ 1

−1

∣∣φ̃′(y)
∣∣dy ≥

∫ 1

−1

∣∣ψ̃′(y)
∣∣

ω
(∣∣ψ̃(y)

∣∣)dy =
∫ ∞

−∞

∣∣ψ̃′ (ψ̃−1(t )
)∣∣

ω(|t |)
∣∣∣(ψ̃−1)′ (t )

∣∣∣dt

= 2
∫ ∞

0

1

ω(t )
dt =∞,

a contradiction.
Nevertheless, a global implicit function obviously exists. The assumptions of Theorem 1 are

satisfied since π1(Z ) = π2(Z ) = (−1,1) and we may choose φ =ψ, with which the growth bound
holds true.

We continue by presenting an example where in assumption (iii) it is not possible to find
suitable diffeomorphisms and, at the same time, a global implicit function does not exist.

Example 6. Consider

F :R2 ×R→R2,
(
x1, x2, y

) 7→ (
x1 −cos y
x2 − sin y

)
, Z := F−1(0).

Then assumptions (i) and (ii) in Theorem 1 are satisfied. Since π1(Z ) = S1, the unit circle in R2,
there is no Banach space X such that π1(Z ) is diffeomorphic to X . Indeed, no global implicit
function can exist, since y 7→ (cos y, sin y) is not injective on R.

In the next example the growth bound in condition (iii) is not satisfied for any suitable choice
of diffeomorphisms and, at the same time, a global implicit function does not exist.



T. Berger and F. E. Haller 447

ON A GLOBAL IMPLICIT FUNCTION THEOREM 11

Figure 2. Illustration of the construction of F̃ .

and consider the non-injective function

F̃1 : (0, δ)× (0, 1)→R2, (y1, y2) 7→
(
(α+ y2) sin

(
2π
δ (1 + ε)y1

)

(α+ y2) cos
(
2π
δ (1 + ε)y1

)
)
.

Observe that im F̃1 = Bα+1(0) \ Bα(0), where Bα(z) denotes the open ball

with radius α around z ∈ R2, i.e., the image of F̃1 is an annulus. Next,
de�ne F̃2 similarly to F̃1 using elementary functions such that the hole of the
annulus is �lled as displayed in Fig. 2, i.e., Bα(0) ⊂ im F̃2 ⊂ Bα+1(0). Note

that F̃2 can be chosen such that the resulting composition F̃ is di�erentiable
everywhere. Overall, we have constructed a non-injective function F̃ .

Observe that im F̃ = π1(Z) = Bα+1(0) and π2(Z) = (0, 1)2. Then the

three conditions on F translate to F̃ as follows:

(i') the graph of F̃ is connected;

(ii') ∀ y ∈ (0, 1)2 : rkDF̃ (y) = 2 ;
(iii') there exist di�eomorphisms φ : Bα+1(0) → X , ψ : (0, 1)2 → Y for

some Banach spaces (X , ‖ · ‖X ), (Y, ‖ · ‖Y), and a continuous weight
ω : [0,∞)→ (0,∞) such that for all y ∈ (0, 1)2 we have
∥∥∥Dψ(y) ·DF̃1(y)

−1
∥∥∥
L(Z,Y)

·
∥∥∥
(
Dφ(F̃1(y))

)−1∥∥∥
L(X ,Y)

≤ ω(‖ψ(y)‖Y).

Note that (i') is guaranteed by our choice of Y = (0, 1)2 and the continuity

of F̃ , which holds by construction. For (ii') note that

DF̃1(y1, y2) =

[
(α+ y2)

2π
δ (1 + ε) cos

(
2π
δ (1 + ε)y1

)
sin
(
2π
δ (1 + ε)y1

)

−(α+ y2)
2π
δ (1 + ε) sin

(
2π
δ (1 + ε)y1

)
cos
(
2π
δ (1 + ε)y1

)
]
,

and det
(
F̃1(y1, y2)

)
= (α + y2)

2π
δ (1 + ε) 6= 0. Further, the use of the

constant α (large enough) guarantees that rkDF̃ (y) = 2 when �lling Bα(0)
as displayed in Fig 2. Hence, (ii') is satis�ed. Next, we show that (iii') is not
satis�ed, although, obviously, both π1(Z) = Bα+1(0) and π2(Z) = (0, 1)2 are

Figure 2. Illustration of the construction of F̃ .

Example 7. We choose F : X × Y → R2 = Z as a function of the type F (x, y) = x − F̃ (y) and
Z := F−1(0). This means that the existence of a global implicit function is equivalent to F̃ being
injective. We further set X×Y =R2×(0,1)2 and construct F̃ by successively defining its restrictions
F̃�(0,δ)×(0,1) = F̃ 1 and F̃�(δ,1)×(0,1) = F̃ 2 for some 0 < δ≤ 1

2 . Choose ε,α> 0, and consider the non-
injective function

F̃ 1 : (0,δ)× (0,1)→R2,
(
y1, y2

) 7→ ((
α+ y2

)
sin

( 2π
δ (1+ε)y1

)(
α+ y2

)
cos

( 2π
δ (1+ε)y1

)) .

Observe that im F̃ 1 = Bα+1(0)\Bα(0), where Bα(z) denotes the open ball with radius α around z ∈
R2, i.e., the image of F̃ 1 is an annulus. Next, define F̃ 2 similarly to F̃ 1 using elementary functions
such that the hole of the annulus is filled as displayed in Figure 2, i.e., Bα(0) ⊂ im F̃ 2 ⊂ Bα+1(0).
Note that F̃ 2 can be chosen such that the resulting composition F̃ is differentiable everywhere.
Overall, we have constructed a non-injective function F̃ .

Observe that im F̃ = π1(Z ) = Bα+1(0) and π2(Z ) = (0,1)2. Then the three conditions on F
translate to F̃ as follows:

(i’) the graph of F̃ is connected;
(ii’) ∀ y ∈ (0,1)2 : rkDF̃ (y) = 2 ;

(iii’) there exist diffeomorphisms φ : Bα+1(0) → X ,ψ : (0,1)2 → Y for some Banach spaces
(X ,‖ · ‖X ), (Y ,‖ · ‖Y ), and a continuous weight ω : [0,∞) → (0,∞) such that for all
y ∈ (0,1)2 we have∥∥Dψ(y) ·DF̃ 1(y)−1∥∥

L (Z ,Y ) ·
∥∥∥(

Dφ
(
F̃ 1(y)

))−1
∥∥∥

L (X ,Y )
≤ω(∥∥ψ(y)

∥∥
Y

)
.

Note that (i’) is guaranteed by our choice of Y = (0,1)2 and the continuity of F̃ , which holds by
construction. For (ii’) note that

DF̃ 1
(
y1, y2

)= [ (
α+ y2

) 2π
δ (1+ε)cos

( 2π
δ (1+ε)y1

)
sin

( 2π
δ (1+ε)y1

)
−(
α+ y2

) 2π
δ (1+ε)sin

( 2π
δ (1+ε)y1

)
cos

( 2π
δ (1+ε)y1

)] ,

and det(F̃ 1(y1, y2)) = (α+ y2) 2π
δ (1 + ε) 6= 0. Further, the use of the constant α (large enough)

guarantees that rkDF̃ (y) = 2 when filling Bα(0) as displayed in Figure 2. Hence, (ii’) is satisfied.
Next, we show that(iii’) is not satisfied, although, obviously, both π1(Z ) = Bα+1(0) and π2(Z ) =
(0,1)2 are diffeomorphic to some Banach spaces X and Y . Without loss of generality, we may
assume that X =Y =R2.
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We show that condition(iii’) is not satisfied for any diffeomorphisms φ : Bα+1(0) → R2 and
ψ : (0,1)2→R2 by considering two cases. Let (ŷ1, ŷ2) :=ψ−1(0,0) ∈ (0,1)2.

Case 1. Assume that ŷ1 ≤ δ. We show that the growth bound fails for F̃ 1. Seeking a contradiction,
assume that we have∥∥Dψ(y) ·DF̃ 1(y)−1∥∥

L (Z ,Y ) ·
∥∥∥(

Dφ
(
F̃ 1(y)

))−1
∥∥∥

L (X ,Y )
≤ω(∥∥ψ(y)

∥∥
Y

)
for all y ∈ (0,δ)× (0,1) and some weight ω. Although we did not specify the norms on X ,Y ,Z ,
using the weight property and the equivalence of all norms on Rn2

,Rn , respectively, guarantees
the existence of positive constants c1,c2 such that

c1
∥∥Dψ(y) ·DF̃ 1(y)−1∥∥

F ·
∥∥∥(

Dφ
(
F̃ 1(y)

))−1
∥∥∥

L (X ,Y )

≤ ∥∥Dψ(y) ·DF̃ 1(y)−1∥∥
L (Z ,Y ) ·

∥∥∥(
Dφ

(
F̃ 1(y)

))−1
∥∥∥

L (X ,Y )

≤ω(∥∥ψ(y)
∥∥

Y

)≤ω(
c2

∥∥ψ(y)
∥∥

2

)
,

where ‖ · ‖F is the Frobenius norm. Observing that ω̃(·) := c−1
1 ω(c2 ·) again defines a weight, we

obtain ∥∥Dψ(y) ·DF̃ 1(y)−1∥∥
F ·

∥∥∥(
Dφ

(
F̃ 1(y)

))−1
∥∥∥

L (X ,Y )
≤ ω̃(∥∥ψ(y)

∥∥
2

)
for all y ∈ (0,δ)× (0,1). In order to simplify the computations, choose δ = 1

2 and α = ε = 1. Since
F̃ 1

(
(0, 1

2 )× {ŷ2}
)= (1+ ŷ2)S1 is a compact subset of B2(0) and B2(0) 3 z 7→ ‖Dφ(z)‖ is a continuous

mapping we have

∃ γ> 0 ∀ y ∈
(
0,

1

2

)
×{

ŷ2
}

:
∥∥Dφ

(
F̃ 1(y)

)∥∥
L (X ,Y ) ≤ γ.

This gives ‖(Dφ(F̃ 1(y)))−1‖L (X ,Y ) ≥ γ−1 for all y ∈ (0, 1
2 )×{ŷ2}. Accordingly, we may calculate that

for all y1 ∈ (0, 1
2 ) we have

DF̃ 1
(
y1, ŷ2

)−1 =
[

1
8π(1+ŷ2) cos

(
8πy1

) − 1
8π(1+ŷ2) sin

(
8πy1

)
sin

(
8πy1

)
cos

(
8πy1

) ]
and hence∥∥Dψ(y1, ŷ2) ·DF̃ 1(y1, ŷ2)−1∥∥

F

=
√

1

64π2(1+ ŷ2)2

(
∂ψ1

∂y1

2

+ ∂ψ2

∂y1

2)
+ ∂ψ1

∂y2

2

+ ∂ψ2

∂y2

2

≥ 1

8π
(
1+ ŷ2

) ∥∥∥∥ ∂ψ∂y1

(
y1, ŷ2

)∥∥∥∥
2

.

Note that for all y1 ∈ (0, ŷ1) we have that ‖ψ(y1, ŷ2)‖2 > 0 and, because limy1 →0 ‖ψ(y1, ŷ2)‖2 =∞,
the set

S :=
{

y1 ∈
(
0, ŷ1

) ∣∣∣∣ ∂

∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2 < 0

}
has compact complement (0, ŷ1) \S . Furthermore, for all y1 ∈ (0, ŷ1) we have that

1

2

∣∣∣∣ ∂

∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2

∣∣∣∣= ∣∣∣∣ψ(
y1, ŷ2

)> ∂ψ

∂y1

(
y1, ŷ2

)∣∣∣∣
≤ ∥∥ψ(

y1, ŷ2
)∥∥

2

∥∥∥∥ ∂ψ∂y1

(
y1, ŷ2

)∥∥∥∥
2

≤ 8π
(
1+ ŷ2

)∥∥ψ(
y1, ŷ2

)∥∥
2

∥∥∥Dψ
(
y1, ŷ2

) ·DF̃ 1
(
y1, ŷ2

)−1
∥∥∥

F

≤ 8π
(
1+ ŷ2

)
γ

∥∥ψ(
y1, ŷ2

)∥∥
2 ω̃

(∥∥ψ(
y1, ŷ2

)∥∥
2

)
.

With

ξ :=
∫

(0, ŷ1)\S

∂
∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2∥∥ψ(

y1, ŷ2
)∥∥

2 ω̃
(∥∥ψ(

y1, ŷ2
)∥∥

2

) dy1 <∞
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and the substitutions t = ‖ψ(y1, ŷ2)‖2
2 and u =p

t we may then derive

16πγŷ1 ≥
∫ ŷ1

0

∣∣∣ ∂
∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2

∣∣∣∥∥ψ(
y1, ŷ2

)∥∥
2 ω̃

(∥∥ψ(
y1, ŷ2

)∥∥
2

) dy1 ≥
∫
S

∣∣∣ ∂
∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2

∣∣∣∥∥ψ(
y1, ŷ2

)∥∥
2 ω̃

(∥∥ψ(
y1, ŷ2

)∥∥
2

) dy1

=
∫
S

− ∂
∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2∥∥ψ(

y1, ŷ2
)∥∥

2 ω̃
(∥∥ψ(

y1, ŷ2
)∥∥

2

) dy1 −ξ+ξ

=
∫ ŷ1

0

− ∂
∂y1

∥∥ψ(
y1, ŷ2

)∥∥2
2∥∥ψ(

y1, ŷ2
)∥∥

2 ω̃
(∥∥ψ(

y1, ŷ2
)∥∥

2

) dy1 +ξ

=
∫ ∞

‖ψ(ŷ1, ŷ2)‖2
2

1p
tω̃(

p
t )

dt +ξ= 2
∫ ∞

0

1

ω̃(u)
du +ξ=∞,

a contradiction.

Case 2. Assume that ŷ1 > δ. We show that the growth bound fails for F̃ 2, which is similar to
Case 1. To this end, we render the definition of F̃ 2 more precisely. First define the curve

γ1 : (0,δ) →R2, t 7→
((
α+ 1

2

)
sin

( 2π
δ (1+ε) t

)(
α+ 1

2

)
cos

( 2π
δ (1+ε) t

))
and the (rotation) matrix R := [ 0 −1

1 0 ]. Then F̃ 1 can alternatively be written as

F̃ 1
(
y1, y2

)= γ1
(
y1

)+(
y2 − 1

2

)
Rγ̇1

(
y1

)
for all (y1, y2) ∈ (0,δ)× (0,1). In view of this, we may choose a curve γ2 : (δ,1) → R2 as depicted in
Figure 2 such that

F̃ 2
(
y1, y2;

)= γ2
(
y1

)+(
y2 − 1

2

)
Rγ̇2

(
y1

)
for all (y1, y2) ∈ (δ,1)× (0,1) and, as mentioned before, Bα(0) ⊂ im F̃ 2 ⊂ Bα+1(0) and DF̃ 2(y1, y2)
is invertible for all (y1, y2) ∈ (δ,1)× (0,1). Omitting the details, the same arguments as in Case 1
may now be applied to arrive at a contradiction. In particular, fixing y2 = ŷ2 leads to a curve
γ̃2(y1) = γ2(y1)+ (ŷ2 − 1

2 )Rγ̇2(y1) along which the growth bound is violated.

Remarks 8. Finally, we like to point out that, while Theorem 1 is already quite general, still it
does not cover all relevant cases. Consider

F :R2 ×R2 →R3,
(
x1, x2, y1, y2;

) 7→
 x1 − y1

x2 − y2

x2
1 +x2

2 −1

 ,

then

Z := F−1(0) = { (
x1, x2, y1, y2

) ∈R4 ∣∣ x2
1 +x2

2 = 1, y1 = x1, y2 = x2
}

and π1(Z ),π2(Z ) are both the unit circle in R2, i.e., closed subsets which are not simply con-
nected, for which it is not possible to satisfy Theorem 1(iii). However, a global implicit function
obviously exists. Further research is necessary to cover examples of this type.
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