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Abstract. Let R be a general ring. Duality pairs of R-modules were introduced by Holm-Jørgensen. Most
examples satisfy further properties making them what we call semi-complete duality pairs in this paper.
We attach a relative theory of Gorenstein homological algebra to any given semi-complete duality pair
D = (L ,A ). This generalizes the homological theory of the AC-Gorenstein modules defined by Bravo–
Gillespie–Hovey, and we apply this to other semi-complete duality pairs. The main application is that the
Ding injective modules are the right side of a complete (perfect) cotorsion pair, over any ring. Completeness
of the Gorenstein flat cotorsion pair over any ring arises from the same duality pair.
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1. Introduction

Duality pairs were introduced by Holm-Jørgensen in [20], and complete duality pairs over com-
mutative rings were defined in [17]. In this paper, we extend this notion to noncommutative rings
to show how a theory of relative Gorenstein homological algebra exists with respect to any given
complete duality pair. In fact, this notion is too strong, and so we define semi-complete duality
pairs and develop the theory in this context. This will let us show that the Ding injective modules
are the right side of a complete cotorsion pair over any ring R. As in [10], a module N is said to be
Ding injective if N = Z0E for some exact complex of injectives E such that HomR (A,E) remains
exact for all FP-injective (absolutely pure) modules A. Throughout, we let R denote a ring with
identity, and let R◦ := Rop denote its opposite ring.
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The techniques go back to [1] where the so-called level and absolutely clean modules played
the central role in the AC-Gorenstein homological algebra that was developed there. In hindsight,
the theory has good properties, enough to give both a projective and injective stable homotopy
category on R-modules, simply because we have a (semi-)complete duality pair (L ,A ) where
L is the class of level R-modules and A is the class of absolutely clean R◦-modules. Here, the
central feature of being a duality pair is that a module M is level (resp. absolutely clean) if and
only if M+ = HomZ(M ,Q/Z) is absolutely clean (resp. level). One purpose of this paper is to
give the definition of a semi-complete duality pair for a general ring R and to show that the
arguments and theory of [1] carry over to any semi-complete duality pair. This gives a unified
theory encompassing everything in [1, 17, 22]. However, we also consider the semi-complete
duality pair D = (〈Flat〉,〈Inj〉) which is the (definable) duality pair generated by R. Here the
theory is in agreement with two important results recently shown by Jan Šaroch and Jan Št’ovíček
in [28] — The Gorenstein flat cotorsion pair, and the projectively coresolved Gorenstein flat
cotorsion pair, are complete over any ring. See Corollary 45(3). But what is new is that we get
completeness of the Ding injective cotorsion pair this way, again over any ring. The Ding modules
were introduced and studied by Nanqing Ding and coauthors and later named after Ding in [10].

In the process, we came across the following general theorem. We then obtain the results we
want for duality pairs, and the various applications, as a corollary. To state the theorem, given
a class of R-modules B, we say an R-module N is Gorenstein B-injective if N = Z0E for some
exact Hom(B, · )-acyclic complex of injective R-modules E . That is, both E and Hom(B ,E) are
exact (acyclic) complexes for all B ∈ B. Those familiar with Gorenstein homological algebra will
guess the definitions of the other concepts below, but see Definitions 16, 28, 32, and 35 for precise
definitions.

Theorem 1. Let B be a class of R◦-modules containing all the injective modules. Assume there
exists a set (not just a class) S ⊆B such that each B ∈B is a transfinite extension of modules in S .

(1) There is a cofibrantly generated injective abelian model structure on R◦-Mod, the Goren-
stein B-injective model structure, whose fibrant objects are the Gorenstein B-injective
modules.

(2) There is a cofibrantly generated projective abelian model structure on R-Mod, the projec-
tively coresolved Gorenstein B-flat model structure, whose cofibrant objects are the pro-
jectively coresolved Gorenstein B-flat modules.

(3) There is a cofibrantly generated abelian model structure on R-Mod, the Gorenstein B-
flat model structure, whose cofibrant objects (resp. trivially cofibrant objects) are the
Gorenstein B-flat modules (resp. flat modules). This model structure shares the same class
of trivial objects as the projective model structure.

Each of these is Quillen equivalent to a model structure on chain complexes; See Theorem 26
and Theorem 40. For the injective case, it also follows that the Gorenstein B-injective modules
are the right side of a perfect cotorsion pair.

Now if D= (L ,A ) is a semi-complete duality pair, see Definition 7, then it follows from work
of Holm-Jørgensen that the class A possesses a set S as in Theorem 1. As a corollary, and by
combining with [1, Theorem A.6] for part (2), we get the following in Corollary 41.

Corollary 2. The following abelian model structures are induced by any semi-complete duality
pair D= (L ,A ).

(1) The GorensteinD-injective model structure exists on R◦-Mod. It is a cofibrantly generated
injective abelian model structure whose fibrant objects are the Gorenstein A -injective R◦-
modules.

(2) The Gorenstein D-projective model structure exists on R-Mod. It is a cofibrantly gen-
erated projective abelian model structure whose cofibrant objects are the Gorenstein
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L -projective R-modules, equivalently, the projectively coresolved Gorenstein A -flat R-
modules.

(3) The Gorenstein D-flat model structure exists on R-Mod. It is a cofibrantly generated
abelian model structure whose cofibrant objects (resp. trivially cofibrant objects) are the
Gorenstein A -flat modules (resp. flat modules). Moreover, the trivial objects in this model
structure coincide with those in the Gorenstein D-projective model structure.

Our main application, which stems from the semi-complete duality pair D = (〈Flat〉,〈Inj〉),
appears in Theorem 44. It proves that the Ding injective modules form an enveloping class over
any ring R, and that they are the fibrant objects of a cofibrantly generated model structure on
R-Mod.

But in fact we are now able to obtain a relative homological algebra, for any ring R, and for
each positive integer 1 ≤ n ≤∞, from a (semi-)complete duality pair Dn . See Corollary 45. This
includes everything from the AC-Gorenstein homological algebra of [1] (n = ∞), to the above
Ding injectives and Saroch and Stovicek’s (projectively coresolved) Gorenstein flats from [28]
(n = 1).

Conventions. Throughout the paper R denotes a ring with identity. Its opposite ring, Rop, will
be denoted more succinctly by R◦. Recall that a left (resp. right) R-module is equivalent to a right
(resp. left) R◦-module. Our convention throughout the entire paper is that the term R-module,
with the side left unspecified, may be fixed to mean either left or right R-module as the reader
desires. But then one should realize that the term R◦-module means a swap of sides with respect
to that choice. In other words, if we fix R-module to mean right R-module, then “M is an R◦-
module” is just our way of saying M is a left R-module.

2. Symmetric and semi-complete duality pairs

Recall that for a given R-module M , its character module is defined to be the R◦-module M+ =
HomZ(M ,Q/Z).

Definition 3 ([20, Definition 2.1]). A duality pair over R is a pair (M ,C ), where M is a class of
R-modules and C is a class of R◦-modules, satisfying the following conditions:

(1) M ∈M if and only if M+ ∈C .
(2) C is closed under direct summands and finite direct sums.

A duality pair (M ,C ) is called perfect if M contains the module R, and is closed under coproducts
and extensions.

The canonical example of a duality pair is when we take F to be the class of all flat R-
modules and I to be the class of all injective R◦-modules. The following is the main result
concerning perfect duality pairs. It is that they induce perfect cotorsion pairs in the sense of [18,
Definition 2.3.1].

Theorem 4 ([20, Theorem 3.1]). Let (M ,C ) be a duality pair. Then the following hold:

(1) M is closed under pure submodules, pure quotients, and pure extensions.
(2) If (M ,C ) is perfect, then (M ,M⊥) is a perfect cotorsion pair.

The following definition comes from [17] but it was only stated there for commutative rings. It
combines Holm and Jørgensen’s above definition with a similar notion defined in [1, Appendix A].

Definition 5. By a symmetric duality pair {L ,A } we mean:

(1) L is a class of R-modules.
(2) A is a class of R◦-modules.
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(3) (L ,A ) and (A ,L ) are each duality pairs.

An example of a symmetric duality pair is obtained by taking L to be the class of all level
R-modules and A to be the class of all absolutely clean R◦-modules [1]. Theorem 6 below is a
very useful result concerning symmetric duality pairs. It is a generalization of [1, Theorem A.6]
where it was proved for complexes of projectives. However, as suggested in [7, Remark 3.9], the
proof works for complexes of pure-projective R-modules because of Stovicek’s work on chain
complexes of pure-projectives. Recall that an R-module M is pure-projective if it is projective
with respect to the class of all pure short exact sequences. This is the case if and only if M is a
direct summand of a direct sum of finitely presented modules. In particular, projective modules
and finitely presented modules are examples of pure-projective modules.

Theorem 6. Let {L ,A } be a symmetric duality pair with R-modules in L and R◦-modules in A .

(1) Assume P is a chain complex of pure-projective R-modules. Then the tensor product of P
with any R◦-module A ∈ A yields an exact complex if and only if HomR (P,L) is an exact
complex for all L ∈L . That is, P is A ⊗-acyclic if and only if it is Hom( · ,L )-acyclic.

(2) Assume Q a chain complex of pure-projective R◦-modules. Then the tensor product of Q
with any R-module L ∈ L yields an exact complex if and only if HomR◦ (Q, A) is an exact
complex for all A ∈A . That is, Q is L ⊗-acyclic if and only if it is Hom( · ,A )-acyclic.

Proof. Tensor products must be written on a particular side depending on the choice of R-
module to mean left R-module versus right R-module. So for definiteness, let us assume that L is
a class of left R-modules and A a class of right R-modules. (Of course, versions of our argument
still hold if we swap this choice.) So we are given a chain complex P of pure-projective left R-
modules and we wish to show that A ⊗R P is exact for all A ∈ A if and only if HomR (P,L) for all
L ∈L .

(⇐=). By adjoint associativity [6, Theorem 2.1.10] we have

HomZ(A⊗R P,Q/Z) ∼= HomR (P, A+).

So since (A ,L ) is a duality pair it is easy to argue that if HomR (P,L) is exact for all L ∈ L , then
A⊗R P is exact for all A ∈A .

(=⇒). Suppose A ⊗R P is exact for all A ∈ A . Then for any L ∈ L , we see L+⊗R P is exact since
(L ,A ) is a duality pair. Using the above adjoint associativity again we conclude that Hom(P,L++)
is exact whenever L ∈ L . In other words, Hom(P,K ) is exact whenever K ∈ L ++ and we note
L ++ ⊆L since {L ,A } is a symmetric duality pair.

But for any L, the natural map L −→ L++ is a pure monomorphism [6, Proposition 5.3.9]. So if
L ∈L , the quotient L++/L is also in L since L is closed under pure quotients by Theorem 4. We
can therefore create a pure exact resolution of L ∈ L by elements of L ++. That is, we can find a
pure exact chain complex X where Xi = 0 for i > 0, X0 = L, and each of the Xi for i < 0 is in L ++.
From this we can easily construct a short exact sequence

0 −→ S0L −→ X̃ −→ Y −→ 0,

which we note is degreewise pure, has Y as a pure exact complex (of modules in L ), and has X̃
bounded above with entries in L ++.

Since P has pure-projective components, applying Hom(P, · ) yields another short exact se-
quence

0 −→ Hom(P,S0L) −→ Hom(P, X̃ ) −→ Hom(P,Y ) −→ 0.

By Stovicek’s [30, Theorem 5.4], any chain map from a chain complex of pure-projectives to
a pure exact complex must be null homotopic. In other words, Hom(P,Y ) must be an exact
complex. Moreover, Hom(P,S0L) = HomR (P,L), so to complete the proof it will suffice to show
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that Hom(P, X̃ ) is exact. But if Z is any bounded complex with entries in L ++, then we can prove
Hom(P, Z ) is exact by induction on the number of nonzero entries in Z . Now, like any bounded
above complex, X̃ is the inverse limit of its truncations X̃ −n for n ∈ Z, where (X̃ −n)i = X̃i for
i ≥ −n and is 0 otherwise. This is a very simple inverse limit, in fact, it is an “inverse transfinite
extension” (dual of transfinite extension) of the spheres Si (X̃i ) on its components X̃i . One must
check that Hom(P, X̃ ) = lim←−−Hom(P, X̃ −n) and that Hom(P, X̃ ) is an exact complex, completing the
proof. �

Referring to Definition 3, let us call (M ,C ) a semi-perfect duality pair if it has all the properties
required to be a perfect duality pair except that M may not be closed under extensions.

Definition 7. By a semi-complete duality pair (L ,A ) we mean that {L ,A } is a symmetric duality
pair with (L ,A ) being a semi-perfect duality pair. In this case, we call L the projective class and
A the injective class. If (L ,A ) is indeed perfect, then we call it a complete duality pair.

Remark 8. If (L ,A ) is a semi-complete duality pair then L contains not just all projective R-
modules, but also all flat R-modules by the argument in [17, Proposition 2.3]. On the other hand,
A must contain all absolutely pure (i.e. FP-injective) R◦-modules. Indeed suppose A is absolutely
pure and embed it into an injective I . Note the monomorphism A ,→ I is necessarily pure. The
argument in [17, Proposition 2.3] shows that I ∈ A . But since (A ,L ) is also a duality pair we
conclude from Theorem 4(1) that A ∈A .

2.1. Examples of (semi-)complete duality pairs

Several classes of examples of duality pairs are given throughout [1,3,20]. We give a brief summary
here of those that are (semi-)complete duality pairs. We refer the reader to the original sources
for more detailed references and unexplained terminology.

Example 9. Let R be any ring and let L be the class of all level R-modules and A the class of all
absolutely clean R◦-modules [1]. Then the level duality pair, (L ,A ), is a complete duality pair.
Note then that a noncommutative ring R admits two level duality pairs - one where L is the class
of left R-modules and one where L is the class of right R-modules.

Example 10. Let n be a natural number satisfying 2 ≤ n ≤ ∞. In [3], Bravo and Pérez give n-
analogs to the level duality pairs. Here we let FP n-Flat denote their class of all FPn-flat R-
modules, and FP n-Inj their class of all FPn-injective R◦-modules. It is shown in [3, Corollary 3.7]
that we have a complete duality pair (FP n-Flat,FP n-Inj). The class of FPn-flat modules always
sits between the usual class of flat modules (n = 1) and the class of level modules (n =∞), and
the difference is only significant for non-coherent rings. See [3] for details.

Example 11. Many commutative rings R have some interesting complete duality pairs attached
to them. We refer the reader to the original source [20] and to the summary given in [17]. Depend-
ing on the hypotheses on the ring, there may be the Auslander–Bass duality pair (A C

0 ,BC
0 ), the

C -Gorenstein flat dimension duality pairs (GFC
n ,GIC

n ) (where C is a dualizing complex), or the
depth-width duality pairs (Dn ,Wn).

Example 12. We see in [8, Remark 2.12] that, given any ring R, it generates a semi-complete
duality pair (〈R〉,〈R+〉) where 〈R〉 is the definable class (meaning it is closed under products, direct
limits, and pure submodules) generated by R, and 〈R+〉 is the definable class generated by R+.
Moreover, they show

D= (〈R〉,〈R+〉) = (〈Flat〉,〈Inj〉)
where 〈Flat〉 is the definable class generated by the class of all flat R-modules and 〈Inj〉 is the
definable class generated by the class of all injective R◦-modules. Alternatively, using results
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from [26], it is shown very succinctly in [4, Lemmas 5.5–5.7] that D = (〈Flat〉,〈Inj〉) is a semi-
complete duality pair. Moreover, 〈Inj〉 is precisely the class of all R◦-modules M fitting into a short
exact sequence

0 −→ A −→ B −→ M −→ 0

where A and B are FP-injective (absolutely pure) R◦-modules. Note that any such short exact
sequence is necessarily pure.

As in [10], a module N is said to be Ding injective if N = Z0E for some exact complex of
injectives E such that Hom(A,E) remains exact for all FP-injective (absolutely pure) modules A.

As in [28], a module N is said to be projectively coresolved Gorenstein flat if N = Z0P for some
exact complex of projectives P which remains exact upon tensoring with any injective module I .
So these are like the usual Gorenstein flat modules we know from [6], but defined via a complex
of projectives, not just a complex of flats.

We have the following results.

Proposition 13. Consider the semi-complete duality pair D= (〈Flat〉,〈Inj〉) over any ring R.

(1) An R◦-module N = Z0E is Ding injective if and only if it is Gorenstein 〈Inj〉-injective in the
sense of Definition 16. It just means that Hom(M ,E) even remains exact for all M ∈ 〈Inj〉.

(2) An R-module N = Z0F is Gorenstein flat if and only if it is Gorenstein 〈Inj〉-flat in the sense
of Definition 32. It means that the complex of flats F even remains exact upon tensoring it
with any M ∈ 〈Inj〉. In particular, this is true for any projectively coresolved Gorenstein flat
module N = Z0P.

Proof. Since 〈Inj〉 contains all FP-injective modules, any Gorenstein 〈Inj〉-injective is Ding injec-
tive. On the other hand, suppose N = Z0E is Ding injective. We must show that Hom(M ,E) re-
mains exact for all M ∈ 〈Inj〉. But again, any such M sits in a short exact sequence

0 −→ A −→ B −→ M −→ 0

where A and B are FP-injective (absolutely pure) R◦-modules. Applying the functor Hom( · ,E)
yields, because each En is injective, a short exact sequence of complexes

0 −→ Hom(M ,E) −→ Hom(B ,E) −→ Hom(A,E) −→ 0.

Since Hom(B ,E) and Hom(A,E) are both exact, it follows that Hom(M ,E) is also exact.
The fact for the Gorenstein flats (and projectively resolved) is proved similarly. But here one

must first use [7, Lemma 5.3] (a fact first proved by Ding and Mao in [23, Lemma 2.8]) and the fact
that the pure exact sequence ending in M ∈ 〈Inj〉 will remain exact when tensored with any (flat)
module. �

So now by Theorem 6 ([1, Theorem A.6]) we have established the footnote in [28, p. 21].
It includes a different proof of Saroch and Stovicek’s [28, Theorem 4.4], that all projectively
coresolved Gorenstein flat modules are Gorenstein projective. In fact, they are Ding projective
in the sense of [10]:

Corollary 14 ([28, Theorem 4.4/Corollary 4.5]). An R-module N = Z0P is projectively coresolved
Gorenstein flat if and only if the complex P in the definition satisfies that HomR (P,L) remains exact
for all L ∈ 〈Flat〉.
Remark 15. We note that Corollary 14 was also proved by Estrada–Iacob–Pérez in [8,
Lemma 2.11/Remark 2.12]; again by using that (〈Flat〉,〈Inj〉) is a symmetric duality pair and
applying [1, Appendix A.6].
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3. Relative Gorenstein injective and projective modules

Throughout this section, we let B denote a class of R-modules and we assume B contains all
injective R-modules.

We will prove a series of lemmas generalizing well-known results for the usual Gorenstein
injectives. Their proofs depend only on the definition of a Gorenstein B-injective module, given
below. Note that when B is the class of all injectives, then the definition recovers the usual
Gorenstein injective modules.

Definition 16. We will say that a chain complex X of R-modules is Hom(B, · )-acyclic if
Hom(B , X ) is an exact complex of abelian groups for all B ∈ B. If X itself is also exact we will say
that X is an exact Hom(B, · )-acyclic complex. We say an R-module N is Gorenstein B-injective if
N = Z0E for some exact Hom(B, · )-acyclic complex of injective R-modules E.

Notation. We let GI B denote the class of all Gorenstein B-injective R-modules, and we set
W = ⊥GI B .

We note that W is precisely the class of all modules W such that HomR (W,E) remains exact for
all exact Hom(B, · )-acyclic complexes of injectives E . Indeed it follows from the definition that
W ∈W if and only if Ext1

R (W, ZnE) = 0 for all n and all such E , and this is equivalent to HomR (W,E)
being exact. In particular, B ⊆W .

Lemma 17. The following are equivalent.

(1) N ∈GI B .
(2) There exists an exact and Hom(B, · )-acyclic complex · · · → E1 → E0 → N → 0 with each Ei

injective, and Exti
R (B , N ) = 0 for any B ∈B, for any i ≥ 1.

(3) There is a short exact sequence 0 −→ N ′ −→ E −→ N −→ 0 with E injective and N ′ ∈GI B .

Proof. (1) ⇒ (2). It follows from the definition of Gorenstein B-injective modules, since
Exti

R (B , N ) = H−i Hom(B ,E) = 0, where E is an exact and Hom(B, · ) acyclic complex of in-
jectives, such that N = Z0E .

(2) ⇒ (1). Let 0 → N → E−1 → E−2 → ··· be an injective resolution of N . Pasting it with the
complex · · · → E1 → E0 → N → 0 we obtain an exact complex of injectives E such that N = Z0E .
By hypothesis, E remains exact when applying a functor Hom(B , · ) with B ∈B.

(1) ⇒ (3). It is clear.

(3) ⇒ (1). We imitate the argument from [31, Lemma 2.5]. Briefly, note that Exti
R (B , N ) = 0 for

all B ∈ B. Since N ′ ∈ GI B , we may extend to the left to get a Hom(B, · )-acyclic resolution of
injectives. Then we may paste this with any usual injective resolution of N . The resulting exact
complex of injectives will be Hom(B, · )-acyclic because Exti

R (B , N ) = 0 for all B ∈B. �

Lemma 18. W
⋂

GI B is the class of injective modules.

Proof. Let G ∈W
⋂

GI B . By definition there is an exact sequence

0 →G ′ → I →G → 0

with G ′ ∈GI B , and with I an injective module. Since G ∈W , we have that E xt 1
R (G ,G ′) = 0. So the

sequence is split exact, and therefore G is injective.
On the other hand, W contains every module in B. (This was shown in the paragraph just

before Lemma 17.) Since B contains all injective modules we conclude W
⋂

GI B is exactly the
class of all injective modules. �

Lemma 19. The class GI B is closed under direct products and direct summands.
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Proof. It follows immediately from the definition that GI B is closed under direct products.
A direct argument we learned from Marco Pérez will work in this context to prove GI B is

closed under direct summands; see [2, Proposition 5.2]. �

Lemma 20. The class GI B is injectively coresolving. That is, it contains the injectives and for
any short exact sequence 0 −→ N ′ −→ N −→ N ′′ −→ 0 with N ∈ GI B , we have N ∈ GI B if and only if
N ′′ ∈GI B .

Proof. The proof for closure under extensions follows just like the dual of the argument given
in [5, Lemma 3.1].

Next assume N ′, N ∈ GI B . Write a short exact sequence 0 −→ N ′ −→ I −→G −→ 0 with I injective
and G ∈GI B Construct the pushout diagram below:

0 0y y
0 −−−−−→ N ′ −−−−−→ N −−−−−→ N ′′ −−−−−→ 0y y ∥∥∥
0 −−−−−→ I −−−−−→ P −−−−−→ N ′′ −−−−−→ 0y y

G Gy y
0 0

The second row splits since I is injective, forcing N ′′ to be a direct summand of P . But P ∈GI B

from the closure under extensions we just proved. Thus N ′′ ∈GI B , by Lemma 19. �

Remark 21. Alternatively, one can prove the coresolving property and closure under direct sum-
mands by imitating the (dual of) the arguments in [31, Theorem 2.6], and citing [19, Proposi-
tion 1.4].

Lemma 22. The class W is thick, meaning it is closed under direct summands and satisfies the 2
out of 3 property on short exact sequences.

Proof. It is automatic that W is closed under direct summands and extensions since it is defined
as an Ext-orthogonal. In fact, by [9, Lemma 1.2.9], since GI B has been shown to be an injectively
coresolving class, we may conclude that W = ⊥GI B is a projectively resolving class, and, that
Exti

R (W, N ) = 0 for all W ∈W and N ∈GI B and i ≥ 1.
Now consider a short exact sequence 0 −→W ′ −→W −→W ′′ −→ 0 with W ′,W ∈W . It is only left to

show that Ext1
R (W ′′, N ) = 0 for all N ∈ GI B . We follow Holm’s argument from [12, Lemma 3.5].

First, for any such N , applying Hom( · , N ) and looking at the resulting long exact sequence in
Ext we get ExtÊ2

R (W ′′, N ) = 0. To see that Ext1
R (W ′′, N ) = 0 for every N ∈ GI B , write a short exact

sequence 0 → N ′ → E → N → 0, where E is injective and N ′ ∈ GI B . Applying HomR (W ′′, · ) to
this sequence gives Ext1

R (W ′′, N ) ∼= Ext2
R (W ′′, N ′), which is zero by what we just proved. �

An abelian model structure in the sense of [21] is called injective if all objects of the category are
cofibrant. We refer the reader to [12] for definitions. However, we point out that an injective model
structure on R-Mod is nothing more than a triple (All,W ,F ) of classes of R-modules where W is
a thick class and (W ,F ) is a complete cotorsion pair with W ∩F equaling the class of all injective
R-modules.
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Proposition 23. Let B be a class of modules containing the injectives. Suppose every module M
has a special GI B-preenvelope. Then (All,W ,GI B) is an injective abelian model structure on
R-Mod. In particular, (W ,GI B) is an hereditary cotorsion pair, and in fact, it is a perfect cotorsion
pair.

Proof. To see that (W ,GI B) is a cotorsion pair (with enough injectives) we only need to show
W ⊥ ⊆ GI B . Given any M ∈ W ⊥, write a special GI B-preenvelope 0 −→ M −→ N −→ W −→ 0. So
W ∈ W and N ∈ GI B . Since M ∈ W ⊥, the sequence splits, making M a direct summand of N .
Therefore M ∈GI B by Lemma 19.

Since (W ,GI B) is a cotorsion pair with enough injectives, it also has enough projectives by
the Salce trick [6, Proposition 7.1.7]. Thus we have a complete cotorsion pair.

By Lemma 22 the class W is thick. So by [15, Proposition 3.1], W is closed under direct limits.
Any complete cotorsion pair whose left side is closed under direct limits is a perfect cotorsion
pair, by [6, Theorem 7.2.6]. It is now clear too that (All,W ,GI B) is an injective abelian model
structure, by Lemma 18. �

In addition, using Šaroch and Št’ovíček’s [28, Theorem 5.6] we can see that, in any case,
(W ,GI B) is at least always a cotorsion pair. We don’t use the following result in this paper, but
point it out for its own interest; it generalizes [22, Proposition 2].

Proposition 24. Let B be a class of modules containing the injectives. Then (W ,GI B) is always
an hereditary cotorsion pair with W thick.

Proof. For any class C , we have C ⊥ = (⊥(C ⊥))⊥, so we have a cotorsion pair (W ,W ⊥), where
W = ⊥GI B . We automatically have GI B ⊆W ⊥, and we wish to show that W ⊥ ⊆GI B .

As pointed out the proof of Lemma 22, W is a projectively resolving class. Therefore, by [9,
Lemma 1.2.8], W ⊥ is an injectively coresolving class and Exti

R (W, N ) = 0 for all W ∈W and N ∈W ⊥
and i ≥ 1. So by Lemma 17, we only need to show that any N ∈ W ⊥ admits a Hom(B, · )-acyclic
complex

· · · −→ E2 → E1 → E0 → N → 0

with each Ei injective. But note that any N ∈ W ⊥ must be Gorenstein injective, because
(⊥GI B)⊥ ⊆ (⊥GI )⊥ = GI , with the equality by [28, Theorem 5.6]. So we have a short exact
sequence

0 −→ N0 −→ E0 −→ N −→ 0 (∗)

with E0 injective and N0 Gorenstein injective. Let W ∈ W be arbitrary, and we will show that
Ext1

R (W, N0) = 0. This will complete the proof, because repeating the argument ad infinitum
produces the desired Hom(B, · )-acyclic injective resolution. Write a short exact sequence

0 −→W −→ I −→W ′ −→ 0 (∗∗)

with I injective. Then W ′ ∈W by Lemma 22. Applying Hom(W ′, · ) to (∗) we get

0 = Ext1
R (W ′, N ) −→ Ext2

R (W ′, N0) −→ Ext2
R (W ′,E0) = 0

and so Ext2
R (W ′, N0) = 0. On the other hand, applying Hom( · , N0) to (∗∗) we get

0 = Ext1
R (I , N0) −→ Ext1

R (W, N0) −→ Ext2
R (W ′, N0) = 0

and so Ext1
R (W, N0) = 0. �

Proposition 25. Let B be any class of modules for which there exists a set (not just a class) S ⊆B

such that each B ∈ B is a transfinite extension of modules in S . Then there is a cofibrantly
generated injective abelian model structure on the category of chain complexes whose fibrant
objects are the exact Hom(B, · )-acyclic complexes of injectives. We call this the exact Hom(B, · )-
acyclic injective model structure.
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Proof. A detailed argument is given in [17, Lemma 3.3] for commutative rings, but it certainly
holds for noncommutative rings too. It shows this to be a consequence of [1, Theorem 4.1]. The
point is that one can easily check that a complex I of injective modules is exact and Hom(B, · )-
acyclic if and only if Hom(R ⊕B , I ) is exact, where B is the single “test module” B =⊕

N∈S N . �

Theorem 26. Let B be a class of modules containing the injectives. Assume there exists a set (not
just a class) S ⊆ B such that each B ∈ B is a transfinite extension of modules in S . Then there
is a cofibrantly generated injective abelian model structure on R-Mod, the Gorenstein B-injective
model structure, whose fibrant objects are the Gorenstein B-injectives. In particular, (W ,GI B) is
a complete hereditary cotorsion pair in R-Mod, cogenerated by a set. In fact, it is a perfect cotorsion
pair.

The sphere functor S0( · ) : R-Mod −→ Ch(R) is a left Quillen equivalence from the Gorenstein
B-injective model structure to the exact Hom(B, · )-acyclic injective model structure.

Proof. We apply Proposition 23. For any object M , we can take a fibrant replacement of S0(M) in
the exact Hom(B, · )-acyclic model structure. It is precisely a short exact sequence

0 −→ S0(M) −→ I −→ X −→ 0

in which I is an exact Hom(B, · )-acyclic complex of injectives and X is trivial in the exact
Hom(B, · )-acyclic model structure. By the snake lemma, we get a short exact sequence

0 −→ M −→ Z0I −→ Z0X −→ 0.

Z0I is Gorenstein B-injective by definition. By the argument in [17, Lemma 4.4] we also get
Z0X ∈W .

The functor S0( · ) : R-Mod −→ Ch(R) is left adjoint to the cycle functor Z0( · ) and is a Quillen
adjunction from the Gorenstein B-injective model structure to the exact Hom(B, · )-acyclic
injective model structure. The argument from [1, Theorem 5.8] generalizes to show that it is
indeed a Quillen equivalence �

Corollary 27. The full subcategory GI B ⊆ R-Mod is a Frobenius category whose projective-
injective objects are precisely the usual injective R-modules. The canonical functor γ : R-Mod −→
Ho(R-Mod) takes all projective modules and all modules in B to 0, and we have a triangulated
equivalence to the stable category

Ho(R-Mod) ∼= St(GI B).

Moreover, these are well-generated triangulated categories.

Proof. The canonical functor γ takes precisely W to 0, and W contains B, and certainly all
projectives. The cotorsion pair (W ,GI B) is hereditary in the sense that W is closed under
taking cokernels of monomorphisms. Thus the Frobenius equivalence follows from a general
result about hereditary abelian model structures [13, Theorem 4.3]. We also point out that the
homotopy category is a well generated category in the sense of [24]. Indeed once we have a
cofibrantly generated model structure on a locally presentable (pointed) category, a main result
from [27] is that its homotopy category is well generated. �

3.1. Gorenstein B-projective modules

Much of what we have done above has a projective dual. To describe, let B denote a class
of modules, but now assume it contains all of the projective modules (instead of the injective
modules).

Definition 28. We say an R-module M is Gorenstein B-projective if M = Z0Q for some exact and
Hom( · ,B)-acyclic complex of projective R-modules Q.
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Notation. We let GP B denote the class of all Gorenstein B-projective R-modules, and we set
V =GP ⊥

B
.

We leave it to the reader to formulate and verify the duals of the sequence of Lemmas 17–
22. We get the following result, dual to Proposition 23. But note that we don’t get a perfect
cotorsion pair. For the Gorenstein B-injectives, that conclusion relies on [15, Proposition 3.1]
and [6, Theorem 7.2.6]; we don’t have duals for those.

Proposition 29 (Dual of Proposition 23). Let B be a class of modules containing the projectives.
Suppose every module M has a special GP B-precover. Then (GP B ,V ) is a complete hereditary
cotorsion pair. In fact, (GP B ,V ,All) is a projective abelian model structure on R-Mod.

There is however a dual for Proposition 24. Note that the proof of Proposition 24 only uses
that the Gorenstein injectives are the right side of a cotorsion pair (not completeness). It was just
shown in [4, Corollary 3.4] that the Gorenstein projectives are the left half of a cotorsion pair, and
this will give us the dual of Proposition 24. However, this is shown directly in [4, Theorem 3.3]!

So this is as far as we know how to go by working straight from the definition of the Gorenstein
B-projectives. However, IF we can build the projective model structure on Ch(R) that is dual to
the one in Proposition 25, then the dual of Theorem 26 and its Corollary 27 will hold by duality
arguments. We make a precise statement for later use.

Theorem 30 (Dual of Theorem 26). Let B be a class of modules containing the projectives. Sup-
pose we have constructed a projective abelian model structure on the category of chain complexes
whose cofibrant objects are the exact Hom( · ,B)-acyclic complexes of projectives. Call this the ex-
act Hom( · ,B)-acyclic projective model structure. Then there is a projective abelian model struc-
ture on R-Mod, the Gorenstein B-projective model structure, in which the cofibrant objects are
the Gorenstein B-projectives. In particular, (GP B ,V ) is a complete hereditary cotorsion pair in
R-Mod.

In this case, the sphere functor S0( · ) : R-Mod −→ Ch(R) is a right Quillen equivalence from the
Gorenstein B-projective model structure to the exact Hom( · ,B)-acyclic projective model structure.

Proof. Let us just comment on how the proof of Theorem 26 dualizes. A main point is that the
functor S0( · ) : R-Mod −→ Ch(R) is also right adjoint, to the functor X 7→ X0/B0X . The idea is to
apply Proposition 29. So for any object M , we take a short exact sequence

0 −→ X −→ P −→ S0(M) −→ 0

where P is an exact Hom( · ,B)-acyclic complex of projectives and X is trivial in the exact
Hom( · ,B)-acyclic model structure. By the snake lemma, we get a short exact sequence

0 −→ X0/B0X −→ P0/B0P −→ M −→ 0.

P0/B0P ∼= Z−1P is Gorenstein B-projective by definition. The argument of [17, Lemma 4.4]
dualizes, and we get X0/B0X ∈ V . So Proposition 29 applies.

Again, the functor S0( · ) : R-Mod −→ Ch(R) is right adjoint to the functor X 7→ X0/B0X . The
argument from [1, Theorem 8.8] generalizes to show that they form a Quillen equivalence from
the exact Hom( · ,B)-acyclic projective model structure to the Gorenstein B-projective model
structure. �

Remark 31. In the above scenario of Theorem 30, the dual of Corollary 27 also holds. However,
the conclusion that the homotopy category is well-generated is dependent on showing the model
structure to be cofibrantly generated.
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4. Relative Gorenstein flat and projectively coresolved modules

We again let B denote a class of modules containing all injective modules. However, we now
assume that all the modules in B are R◦-modules, where R◦ denotes the oppose ring Rop. The
following notion of Gorenstein B-flat module was studied in [8].

Definition 32. We will say that a chain complex X of R-modules is B⊗-acyclic if the tensor
product of X with any B ∈ B yields an exact complex of abelian groups. If X itself is also exact
we will say that X is an exact B⊗-acyclic complex. We say an R-module N is Gorenstein B-flat if
N = Z0F for some exact B⊗-acyclic complex of flat R-modules F .

Notation. We let GFB denote the class of all Gorenstein B-flat R-modules. We set GC B =
GF⊥

B
and call this the class of all Gorenstein B-cotorsion modules.

Estrada–Iacob–Pérez show that GFB is a Kaplansky class and closed under direct limits, and
that gives us the following result.

Proposition 33 ([8, Corollary 2.20]). Suppose the class GFB is closed under extensions. Then
(GFB ,GC B) is a perfect hereditary cotorsion pair, cogenerated by a set.

Now let (F ,C ) denote Enochs’ flat cotorsion pair. Here F denotes the class of all flat R-
modules and C the class of all cotorsion R-modules. It is then shown in [8, Proposition 3.1] that
GFB ∩GC B =F ∩C , as long as GFB is closed under extensions. Applying [11, Theorem 1.2],
it proves the following.

Theorem 34 ([8, Theorem 3.2]). Let B be a class of R◦-modules containing the injectives. Assume
that the Gorenstein B-flat modules are closed under extensions. Then there is a cofibrantly gener-
ated abelian model structure on R-Mod, the Gorenstein B-flat model structure, corresponding to
the cotorsion pairs (GFB ,GC B) and (F ,C ).

We will see below in Proposition 37 that, as in [28, Theorem 4.11] and [8, Theorem 2.14], closure
under extensions comes free for the classes B we will consider in this paper. In particular, this is
the case whenever B is the injective class for some semi-complete duality pair. More generally,
when B satisfies the hypotheses of Theorem 40.

4.1. Projectively coresolved Gorenstein B-flat modules

B still denotes a class of R◦-modules containing all injectives. The following relative version of
Šaroch and Št’ovíček’s projectively coresolved Gorenstein flat modules was studied in [8].

Definition 35. We say an R-module N is projectively coresolved Gorenstein B-flat if N = Z0Q
for some exact B⊗-acyclic complex of projective R-modules Q.

Notation. We let P GFB denote the class of all projectively coresolved Gorenstein B-flat R-
modules, and we set V =P GF⊥

B
.

Lemma 36. The class V := P GF⊥
B

equals the class of all R-modules V such that HomR (Q,V ) is
acyclic for every exact and B⊗-acyclic complex of projectives Q. Equivalently, Ext1

Ch(R)(Q,S0V ) = 0
for all such Q.

Proof. Note that the class of all exact B⊗-acyclic complexes of projectives Q, is closed under
suspensions. So we have that V ∈ P GF⊥

B
if and only if we have Ext1

R (ZnQ,V ) = 0 for all such Q.
Since Q is an exact complex of projectives, this happens if and only if HomR (Q,V ) is exact for all
such Q. But HomR (Q,V ) = Hom(Q,S0V ), and since Q is a complex of projectives this complex is
exact if and only if Ext1

Ch(R)(Q,S0V ) = 0 for all such Q. �
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Next we have an analog of Proposition 23 for the class of P GFB modules:

Proposition 37 (Analog of Proposition 23). Let B be a class of R◦-modules containing the in-
jectives. Suppose every module M has a special P GFB-precover. Then (P GFB ,V ) is a com-
plete hereditary cotorsion pair. In fact, (P GFB ,V ,All) is a projective abelian model structure on
R-Mod.

Moreover, Gorenstein B-flat modules are closed under extensions and (GFB ,V ,C ) is a cofi-
brantly generated abelian model structure on R-Mod. That is, the Gorenstein B-flat model struc-
ture of Theorem 34 exists and shares the same class of trivial objects as the projective model struc-
ture.

Proof. We show that ⊥V ⊆ P GFB , and therefore (P GFB ,V ) is a cotorsion pair. Let M ∈ ⊥V .
Consider an exact sequence 0 → A → D → M → 0 with D ∈ P GFB and A ∈ V = P GF⊥

B
.

Since Ext1
R (M , A) = 0 we have D ∼= A ⊕M , so M ∈P GFB . Indeed P GFB is closed under direct

summands for the following reason. It is shown in [8, Theorem 2.10] that P GFB is a resolving
class, (as long as B contains all the injective modules). It is clearly closed under direct sums as
well. Therefore, P GFB is closed under direct summands by [19, Proposition 1.4]. Therefore,
(P GFB ,V ) is a cotorsion pair with enough projectives. Therefore, it also has enough injectives
by the Salce trick [6, Proposition 7.1.7]. So (P GFB ,V ) is a complete cotorsion pair.

The pair is hereditary: if N ∈ P GFB then, by definition, there is an exact sequence 0 →
N ′ → P → N → 0 with P projective and N ′ ∈ P GFB . Then for any V ∈ V , the exact sequence
0 = Ext1

R (N ′,V ) → Ext2
R (N ,V ) → Ext2

R (P,V ) = 0 gives that Ext2
R (N ,V ) = 0. Similarly, Exti

R (N ,V ) = 0
for all i ≥ 1, and all V ∈ V .

Any right orthogonal class, in particular V , is closed under direct summands. The fact that the
class V has the 2 out of 3 property on short exact sequences follows from Lemma 36: For every
exact and B⊗-acyclic complex of projectives Q, apply the functor HomR (Q, · ) to any short exact
sequence of R-modules. The 2 out of 3 property for exactness of cochain complexes gives the
result.

Since we have (P GFB ,V ) is a complete cotorsion pair and V is thick, we will get the
projective abelian model structure (P GFB ,V ,All) by applying [1, Proposition 3.4], once we see
that V contains all projective modules. But every module in P GFB is a projectively coresolved
Gorenstein flat module in the sense of Šaroch and Št’ovíček [28], because we are assuming B

contains all injectives. A key result they show in [28, Theorem 4.4] (see Corollary 14) is that
every such module is Gorenstein projective. It follows that V contains all projective modules.
So (P GFB ,V ,All) is a projective abelian model structure on R-Mod.

In fact, it follows from Šaroch and Št’ovíček’s [28, Theorem 4.4] (see Corollary 14) that V

contains all flat modules. Therefore, the claim that V is also the class of trivial objects in the
Gorenstein B-flat model structure will follow immediately from [12, Proposition 3.2] combined
with [14, Lemma 2.3(1)], once we show GFB ∩V = F , where F is the class of all flat modules.
Below we do this by adapting the argument from [7, Proposition 5.2].

From the above comments we have F ⊆ GFB ∩ V , so we focus on showing the reverse
containment GFB∩V ⊆F . So let M ∈GFB∩V , and write it as M = Z0F where F is an exact B⊗-
acyclic complex of flat modules. From [1, Corollary 6.4] or [29, Theorem 4.2(1)/Proposition 1.7]
we have a complete cotorsion pair (d wP̃ , (d wP̃ )⊥), where d wP̃ is the class of all complexes of
projectives. So we may write a short exact sequence

0 −→ F −→W −→ P −→ 0

with W ∈ (d wP̃ )⊥ and P ∈ d wP̃ . But then using Neeman’s result from [25] (a statement in
the notation we are using is also given in [7, Lemma 4.3]), one easily argues that W ∈ F̃ , the
class of all exact complexes with all cycle modules flat. Since F and W are each exact, we see
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that P is exact too. Moreover, the short exact sequence is split in each degree, so tensoring
with any B ∈ B, yields another short exact sequence. So since F and W are each exact and
B⊗-acyclic complexes, it follows that P is an exact B⊗-acyclic complex too. Therefore Z0P is
a projectively coresolved Gorenstein B-flat module. Note that by the snake lemma we get a short
exact sequence 0 −→ Z0F −→ Z0W −→ Z0P −→ 0. By the hypothesis, M = Z0F ∈ V , and so we conclude
that this sequence splits. Since Z0W is flat, so is the direct summand Z0F , proving GFB∩V ⊆F .

It remains to see that the Gorenstein B-flat modules are closed under extensions. The reader
can verify that Šaroch and Št’ovíček’s characterizations of Gorenstein flat modules given in [28,
Theorem 4.11] generalize to any class B containing the injectives and such that (P GFB ,V )
is a complete cotorsion pair. See also [8, Theorem 2.14]; the proof of Estrada–Iacob–Pérez also
illustrates that the characterizations hold whenever B contains the injectives and (P GFB ,V )
is a complete cotorsion pair. We state these characterizations in a Remark below. One of the
characterizations that carry over is that a module M is Gorenstein B-flat if and only if it is in the
class ⊥(C ∩V ), where C is the class of cotorsion modules. This class is closed under extensions,
so Theorem 34 applies. �

Here is the promised Remark concerning [28, Theorem 4.11].

Remark 38. In addition to our blanket assumption that B contains all injectives, suppose we
know (P GFB ,V ) is a complete cotorsion pair. Then the following conditions are equivalent for
an R-module M .

(1) M is Gorenstein B-flat.
(2) There is a short exact sequence of modules

0 → F → L → M → 0

with F flat and L ∈ P GFB , which is also HomR ( · ,C )-acyclic, where C is the class of
cotorsion modules.

(3) Ext1
R (M ,C ) = 0 for every C ∈C ∩V . That is, M ∈ ⊥(C ∩V ).

(4) There is a short exact sequence of modules

0 → M → F → L → 0

with F flat and L ∈P GFB .

Proposition 39 (Analog of Proposition 25). Let B be any class of R◦-modules for which there
exists a set (not just a class) S ⊆B such that each B ∈B is a transfinite extension of modules in S .
Then there is a cofibrantly generated projective abelian model structure on the category of chain
complexes whose cofibrant objects are the exact B⊗-acyclic complexes of projectives. We call this
the exact B⊗-acyclic projective model structure.

Proof. This follows from [1, Theorem 6.1]. One can check that a complex P of projective mod-
ules is exact and B⊗-acyclic if and only if it is exact upon tensoring with R ⊕B , where B is the
single “test module” B = ⊕

N∈S N . Therefore, we get from [1, Theorem 6.1], a cofibrantly gen-
erated abelian model structure on Ch(R), where the cofibrant objects are the exact B⊗-acyclic
complexes of projectives. �

Theorem 40 (Analog of Theorem 26). Let B be a class of R◦-modules containing the injectives.
Assume there exists a set (so again, not just a class) S ⊆ B such that each B ∈ B is a transfinite
extension of modules in S . Then there is a cofibrantly generated projective abelian model structure
on R-Mod, the projectively coresolved Gorenstein B-flat model structure, whose cofibrant objects
are the projectively coresolved Gorenstein B-flat modules. In particular, (P GFB ,V ) is a complete
hereditary cotorsion pair, cogenerated by a set.
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Moreover, the Gorenstein B-flat model structure of Theorem 34 exists and shares the same class
V of trivial objects as the projective model structure.

Finally, the sphere functor S0( · ) : R-Mod −→ Ch(R) is a right Quillen equivalence from the
Gorenstein B-flat (resp. projectively coresolved) model structure to the exact B⊗-acyclic flat (resp.
projective) model structure.

Proof. By Proposition 37 we only need to show every module M has a special P GFB-precover.
But by Proposition 39 we have the exact B⊗-acyclic projective model structure on chain com-
plexes. So for any object M , we can find a short exact sequence

0 −→ X −→Q −→ S0(M) −→ 0

where Q is an exact B⊗-acyclic complex of projectives and X is trivial in the exact B⊗-acyclic
projective model structure. By the snake lemma, we get a short exact sequence

0 −→ X0/B0X −→Q0/B0Q −→ M −→ 0

and Q0/B0Q ∼= Z−1Q is projectively coresolved Gorenstein B-flat, by definition. So our goal is to
show X0/B0X ∈ V . It follows from Lemma 36 that X0/B0X ∈ V if and only if S0(X0/B0X ) is trivial
in the exact B⊗-acyclic projective model structure. So the plan is to show below that S0(X0/B0X )
is trivial.

But first we note that any bounded above complex of projective modules is trivial in the
exact B⊗-acyclic projective model structure, and, any bounded below exact complex is also
trivial. Indeed for any projective module P , we deduce that Sn(P ) is trivial from Šaroch and
Št’ovíček’s [28, Theorem 4.4] (see Corollary 14) combined with the above Lemma 36. It follows
that any bounded above complex of projective modules must also be trivial; for example, see [16,
Lemma 2.3]. On the other hand, one easily verifies that for any module N , the disk complex Dn(N )
is also trivial. So [16, Lemma 2.3] also tells us that any bounded below exact complex is trivial.

With these observations we will argue that S0(X0/B0X ) is trivial. Indeed one can see that the
complex X has a subcomplex A ⊆ X , where A is the shown bounded below exact complex: · · · −→
X2 −→ X1 −→ B0X −→ 0. As noted above, this complex is trivial, and since X is trivial the quotient
X /A is trivial too. We note that this quotient is the complex 0 −→ X0/B0X −→ X−1 −→ X−2 −→ ·· · ,
which in turn has another obvious subcomplex 0 −→ 0 −→ X−1 −→ X−2 −→ ·· · . This is a bounded
above complex of projective modules and therefore it too is trivial. This in turn implies the
corresponding quotient complex, which is S0(X0/B0X ), is trivial. This completes the proof that
the short exact sequence

0 −→ X0/B0X −→Q0/B0Q −→ M −→ 0

is a special P GFB-precover of M , and gives us the projective model structure corresponding to
the Hovey triple (P GFB ,V ,All). The construction from [1, Theorem 6.1] shows that the class of
all exact B⊗-acyclic complexes of projectives is filtered by a set of such complexes. The filtrations
descend to a filtration on the cycles and it follows that (P GFB ,V ) is cogenerated by a set. This
in turn translates to a cofibrantly generated model structure by [21, Section 6].

Again, the functor S0( · ) : R-Mod −→ Ch(R) is right adjoint to the functor X 7→ X0/B0X . By [7,
Theorem 4.2] we have the exact B⊗-acyclic flat model structure on chain complexes. We can
adapt the proof of [7, Proposition 5.5] to show that these functors provide a Quillen equivalence
between the flat model structures. (The proof for the projective model structures is similar. In
fact, the proof for the flat case is more difficult and the proof in [7, Proposition 5.5] relies on the
existence of projective models.) Indeed the argument there shows that X 7→ X0/B0X preserves
cofibrations and trivial cofibrations, making it a left Quillen functor. To show that X 7→ X0/B0X is
a Quillen equivalence in the flat case boils down to showing the following:
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(i) If X
f−→ Y is a chain map between two exact B⊗-acyclic complexes of flats for which the

induced map X0/B0X
f̄−→ Y0/B0Y is a weak equivalence, then f itself must be a weak

equivalence.
(ii) For all cotorsion modules C , and short exact sequences 0 −→ X −→ F −→ S0C −→ 0 with F in

the class BF̃ of all exact B⊗-acyclic complexes of flats, and X ∈ BF̃⊥, then the induced
short exact sequence 0 −→ X0/B0X −→ F0/B0F −→C −→ 0 must have X0/B0X ∈ V .

Note that what is required to be shown for (ii) is exactly the same type of argument we did above
where we showed that each module M has a special P GFB-precover. In fact, the argument
above will work, even with C not assumed to be cotorsion, by again using Šaroch and Št’ovíček’s
nontrivial fact from [28, Theorem 4.4] (see Corollary 14) that V contains all flat modules. (The
projective and flat models share the same class of trivial objects and each sphere complex Sn(F )
is trivial whenever F is flat, by their result.) To prove the above statement (i), the proof given
in [7, Proposition 5.5] will readily adapt and yet again uses this fact that the thick class V of trivial
objects contains all flat modules. �

Note that Theorems 26 and 40 combine to prove Theorem 1 from the Introduction.

5. Gorenstein modules relative to a complete duality pair

In this section we let D = (L ,A ) denote a semi-complete duality pair with R-modules in the
projective class L and R◦-modules in the injective class A .

Corollary 41. The following abelian model structures are induced by D= (L ,A ).

(1) The GorensteinD-injective model structure exists on R◦-Mod. It is a cofibrantly generated
injective abelian model structure whose fibrant objects are the Gorenstein A -injective R◦-
modules.

(2) The Gorenstein D-projective model structure exists on R-Mod. It is a cofibrantly gen-
erated projective abelian model structure whose cofibrant objects are the Gorenstein
L -projective R-modules, equivalently, the projectively coresolved Gorenstein A -flat R-
modules.

(3) The Gorenstein D-flat model structure exists on R-Mod. It is a cofibrantly generated
abelian model structure whose cofibrant objects (resp. trivially cofibrant objects) are the
Gorenstein A -flat modules (resp. flat modules). Moreover, the trivial objects in this model
structure coincide with those in the Gorenstein D-projective model structure.

Remark 42. Each model structure is Quillen equivalent to a model structure on chain complexes
as described in Theorems 26 and 40.

Proof. Gorenstein L -projective R-modules are equivalent to projectively coresolved Gorenstein
A -flat R-modules by Theorem 6. So considering what we have shown in Theorem 26, Theo-
rem 30, Theorem 40, and Theorem 34, we only need to show that the injective class A contains
a set S for which every module in A is built up as a transfinite extension of modules in S . But
A is closed under pure submodules and pure quotients by Holm and Jørgensen’s Theorem 4. It
follows from a standard argument that there exists a set S as desired. For example, see [1, Propo-
sition 2.8]. �

We noted in Theorem 26 that (W ,GI B) is always a perfect cotorsion pair. On the other hand,
in the context of Proposition 37, it follows from [8, Proposition 2.19] that (GFB ,GC B) is always
a perfect cotorsion pair. In particular, we get the following corollary.
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Corollary 43. WheneverD= (L ,A ) is a semi-complete duality pair, then we have (W ,GI A ) and
(GFA ,GC A ) are each perfect cotorsion pairs.

By applying Corollary 41 to the duality pair D = (〈Flat〉,〈Inj〉) from Proposition 13 we get the
following theorem.

Theorem 44. The Ding injective cotorsion pair is a perfect cotorsion pair over any ring R. The
Ding injectives form the class of fibrant objects of a cofibrantly generated injective abelian model
structure on the category of modules over a ring. Therefore its homotopy category is a well-
generated triangulated category.

In fact we have proved the following.

Corollary 45. Let R be any ring and n ≥ 1 be a natural number. We have the following special
cases of interest, where all classes of modules mentioned are parts of complete cotorsion pairs, and
the injective and flat pairs are perfect cotorsion pairs.

(1) Set D∞ := (L ,A ) to be the level-absolutely clean duality pair of Example 9. Then the
classes of modules in Corollary 41 correspond to the Gorenstein AC-injectives, the Goren-
stein AC-projectives, and the Gorenstein AC-flats.

(2) For n ≥ 2, set Dn := (FP n−Flat,FP n-Inj) to be the Bravo and Pérez duality pairs of Ex-
ample 10. Then the classes of modules in Corollary 41 correspond to what we call Goren-
stein FP n-injective, Gorenstein FP n-projective, and Gorenstein FP n-flat modules.

(3) For n = 1, set D1 := (〈Flat〉,〈Inj〉) to be the duality pair of Example 12. Then the classes
of modules in Corollary 41 correspond to the Ding injectives, the projectively coresolved
Gorenstein flats, and the usual Gorenstein flats.
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