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Abstract. Recently, Kanemitsu has discovered a counterexample to the long-standing conjecture that the
tangent bundle of a Fano manifold of Picard number one is (semi)stable. His counterexample is a smooth
horospherical variety. There is a weaker conjecture that the tangent bundle of a Fano manifold of Picard
number one is simple.

We prove that this weaker conjecture is valid for smooth horospherical varieties of Picard number one.
Our proof follows from the existence of an irreducible family of unbendable rational curves whose tangent
vectors span the tangent spaces of the horospherical variety at general points.

Résumé. Récemment, Kanemitsu a découvert un contre-exemple à la conjecture de longue date selon
laquelle le faisceau tangent d’une variété de Fano de nombre de Picard un est (semi) stable. Son contre-
exemple est une variété horosphérique lisse. Une conjecture plus faible affirme que le fibré tangent d’une
variété de Fano de nombre de Picard un est simple.

Nous prouvons que cette conjecture plus faible est valable pour les variétés horosphériques lisses de
nombre de Picard un. Notre preuve découle de l’existence d’une famille irréductible de courbes rationnelles
non pliables dont les vecteurs tangents engendrent les espaces tangents de la variété horosphérique en des
points généraux.
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1. Introduction

Tangent bundles of Fano manifolds have been studied from various points of view, in relation
with the existence of a Kähler–Einstein metric. For example, if X admits a Kähler–Einstein
metric, then the Lie algebra of holomorphic vector fields on X is reductive. A weaker condition,
the existence of a Hermitian–Einstein metric on the tangent bundle T X is equivalent to the
polystability of T X , and is equivalent to the stability of T X when X has Picard number one.

In this regard, when X has Picard number one, the tangent bundle T X of a Fano manifold X
has been expected to be semistable for a long time.

Conjecture 1 ([9, Conjecture 0.1]). The tangent bundle of a Fano manifold of Picard number one
is semistable.
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This conjecture has been verified in many cases (see e.g., [4, 13]). Recently, however, a coun-
terexample has been discovered by Kanemitsu ([9]): The tangent bundle of a smooth horospher-
ical variety X of Picard number one is not semistable if X is of type (Bn ,$n−1,$n), where n ≥ 4
or of type (F4,$3,$2), and is stable, otherwise. For the types of horospherical varieties of Picard
number one, see Proposition 10.

Only scalar multiplications are endomorphisms of a stable vector bundle, so that stable vector
bundles are simple. Instead of stability, we consider a weaker conjecture.

Conjecture 2. The tangent bundle of a Fano manifold of Picard number one is simple.

In this paper, we prove that Conjecture 2 is valid for any smooth horospherical variety of Picard
number one.

Theorem 3. The tangent bundle of any smooth horospherical varieties of Picard number one is
simple.

To prove Theorem 3 we use unbendable rational curves. A rational curve f : P1 → X in a
uniruled projective manifold X is said to be unbendable if the pull-back f ∗T X of the tangent
bundle T X of X is decomposed as O (2)⊕O (1)p ⊕O q for some nonnegative integers p, q . Minimal
rational curves are unbendable but the converse is not true (Remark 8). Here, by a minimal
rational curve we mean a rational curve f :P1 → X with f ∗T X being nonnegative, and the degree
of f with respect to a fixed ample line bundle is minimal among all such rational curves.

We expect unbendable rational components will play an important role in understanding the
geometry of a uniruled projective manifold X as minimal rational components did (see e.g., [6]
and [10] and references therein). When X has Picard number one, we get the simplicity of the
tangent bundle T X if there is an irreducible family of unbendable rational curves whose tangent
vectors span PTx X at a general point x in X (Proposition 5).

We prove that for a rational homogeneous variety G/P with G simple or a smooth horospher-
ical variety of Picard number one, such an unbendable rational component exists (Proposition 6
and Proposition 12). Then Theorem 3 follows from Proposition 5 and the condition that X has
Picard number one.

In relation with Conjecture 2 we ask whether there is such an unbendable rational component
for any Fano manifold of Picard number one.

Conjecture 4. A Fano manifold of Picard number one admits an irreducible family of unbendable
rational curves whose tangent vectors span the tangent spaces of the Fano manifold at general
points.

If Conjecture 4 holds, then so does Conjecture 2 by Proposition 5. Minimal rational curves
are unbendable curves, but their tangent vectors do not always generate the tangent space at a
general point. Since a Fano manifold of Picard number one is rationally connected, there exists
an irreducible family of rational curves whose tangent vectors span the tangent space at a general
point, but the restriction of the tangent bundle to rational curves in this family may have more
than one O (2)-factors, or more generally, may have O (a)-factors with a ≥ 3. The question is
whether we have an irreducible family of rational curves having both properties, rational curves
in the family are unbendable and their tangent vectors span the tangent space at a general point.

2. Unbendable rational curves

Let X be a uniruled projective manifold. We say that a rational curve f :P1 → X in X is

• unbendable if the pull-back f ∗T X of the tangent bundle T X of X is decomposed as
O (2)⊕O (1)p ⊕O q for some nonnegative integers p, q ;
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• minimal if the pull-back f ∗T X of the tangent bundle T X of X is nonnegative, and the
degree of f with respect to a fixed ample line bundle is minimal among all such rational
curves.

An irreducible component H of the Hilbert scheme of rational curves in X containing an un-
bendable (minimal, respectively) rational curve is called an unbendable (minimal, respectively)
rational component of X .

Fix an unbendable rational component H of X . For a point x ∈ X denote by Hx the sub-
scheme of H consisting of members passing through x, and define a rational map

τx : Hx 99KPTx X

by sending a rational curve [C ] ∈ Hx smooth at x to its tangent direction [TxC ] ∈ PTx X . The
closure Cx of the image of τx is called the variety of tangents at x of the family H .

Proposition 5 ([5, Theorem 2]). If X has an unbendable rational component H such that

(1) the variety of tangents at x of H is nondegenerate in the projective tangent space PTx X for
general x ∈ X ;

(2) a general point of X is joined to a point in X by a connected chain of curves in H .

then T X is simple, that is, any endomorphism of T X is a scalar multiplication.

When X has Picard number one, the condition (2) of Proposition 5 is satisfied automatically:
There is a sequence of locally closed submanifolds X 0 = {x}(X 1 ( · · ·(X m , where dimX m =
dim X , such that any point in X k can be connected to a point in X k−1 by a rational curve in H

for any 1 ≤ k ≤ m (see [7, Section 4.3] or [10, Section 3]).
For example, the moduli of semistable vector bundles of rank r and with a fixed determinant

([5]) or a wonderful group compactification ([3]) have an unbendable rational component whose
variety of tangents is nondegenerate in P(Tx X ) at a general point x ∈ X . In the first case, in fact,
a minimal rational component satisfies the desired property. However, this is not the case in
general (Remark 8), and we need to consider an unbendable rational component which is not
minimal to get the desired property.

3. Existence of unbendable rational curves

3.1. Rational homogeneous varieties

Let g be a complex simple Lie algebra. Let h be a Cartan subalgebra and ∆ = {α1, . . . ,α`} be a
system of simple roots. For each rootα, there is an element Hα in h satisfying thatα(H) = (Hα, H)
for any H ∈ h, where ( · , · ) is the Killing form of g. Then the Killing form induces a symmetric
bilinear form ( · , · ) on the set Φ of roots defined by (α,β) := (Hα, Hβ) for α,β ∈ Φ. Put hα :=
2Hα/(α,α) and α∨ := 2α/(α,α) for α ∈Φ. Then β(hα) = (β,α∨).

For a subset ∆1 ⊂∆, define a function n∆1 :Φ→Z by

n∆1 (α) = ∑
αi∈∆1

ni

for α=∑`
i=1 niαi ∈Φ. DefineΦ±

∆1
andΦ0

∆1
by

Φ±
∆1

:= {α ∈Φ :Φ : n∆1 (α) ∈Z±} and Φ0
∆1

:= {α ∈Φ : n∆1 (α) = 0}.

and put p∆1 = h⊕ (⊕α∈Φ0
∆1

∪Φ−
∆1
gα) and m∆1 = ⊕α∈Φ+

∆1
gα. Then Φ = Φ−

∆1
∪Φ0

∆1
∪Φ+

∆1
and g =

p∆1 ⊕m∆1 . Fix p= p∆1 from now on. Note that p contains the negative Borel subalgebra b := p∆.
Let G be a simply connected algebraic group with Lie algebra g and P be the subgroup of

G with Lie algebra p. For each root α, take Eα ∈ gα,E−α ∈ g−α such that (Eα,E−α) = 1. Then
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[Eα,E−α] = Hα ∈ h and Eα,E−α, Hα generate a subalgebra slα of g which is isomorphic to sl2.
Let Sα be the subgroup of G with Lie algebra slα. The Sα-orbit of o ∈ G/P is a rational curve in
G/P , denoted by Cα.

The tangent bundle T (G/P ) is the homogeneous vector bundle on G/P associated to the
representation P → GL(g/p). The tangent bundle T (G/P ) restricted to Cα is decomposed as
⊕β∈Φ+

∆1
O (β(hα)) =⊕β∈Φ+

∆1
O ((β,α∨)) (See [8, proof of Proposition 2]).

Proposition 6. Let G/P be a rational homogeneous variety. Assume that G is simple. Then
there is an unbendable rational component H whose variety Cy of tangents at any y ∈ G/P is
nondegenerate in PTy (G/P ).

Proof. Let θ be the maximal positive root of g. Since θ has nonzero coefficient in αi for any
i = 1, . . . ,`, Sθ is not contained in P∆1 for any subset ∆1 of ∆, and thus Cθ is a (nonconstant)
rational curve in G/P for any P = P∆1 . We will show that Cθ is an unbendable rational curve in
G/P . It suffices to show that (β,θ∨) ≤ 1 for all β ∈Φ+

∆1
\{θ}. To do this we will use the following two

facts:

(i) If G is not of type A, then there is i0 ∈ {1, . . . ,`} such that (αi ,θ) = 0 for all i 6= i0 in {1, . . . ,`}
and (αi0 ,θ∨) = 1.

(ii) If G is of type A, then (α j ,θ) = 0 for all j ∈ {2, . . . ,`−1} and (α1,θ∨) = (α`,θ∨) = 1.

Following the conventions in [11] for the indices of simple roots, we have i0 = 2 if G is of type
B`,D`, i0 = 1 if G is of type C`, and i0 = 6 (6,1,4,2, respectively) if G is of type E6 (E7,E8,F4,G2,
respectively). See the affine Dynkin diagram of ∆(1) in [11, Table 6], which is the diagram of the
union ∆∪ {−θ} of ∆ in [11, Table 1] and {−θ}.

If G is not of type A, then, by (i), the maximal root among roots in Φ\{θ} is θ −αi . Since
(θ−αi ,θ∨) = 2−1 = 1, we have (β,θ∨) ≤ 1 for all β ∈Φ+

∆1
\{θ}. If G is of type A, then, by (ii), among

roots in Φ\{θ}, maximal ones are either θ−α1 or θ−α`. From (θ−α1,θ∨) = (θ−α`,θ∨) = 1 it
follows that (β,θ∨) ≤ 1 for all β ∈Φ+

∆1
\{θ}.

The curve Cθ is tangent to CEθ ⊂ ToG/P . The variety Co of tangents at the base point o is
the closure of the P-orbit P.[Eθ] in P(m). We claim that Co is nondegenerate in P(g/p). Consider
the projection g → g/p. The closure of the P-orbit P.[Eθ] in P(g) is the G-orbit G .[Eθ], which is
nondegenerate in P(g) because it is the highest weight orbit. Therefore, the closure of the P-orbit
P.[Eθ] in P(g/p) is nondegenerate in P(g/p). �

Remark 7. The inequality (β,θ∨) ≤ 1 for any β ∈ Φ+\{θ} also follows from [2, Proposition 25 in
VI.1.8].

Remark 8. Take a simple root αi which is not short and consider the rational homogenous
variety G/P associated with ∆1 = ∆− {αi }. Then the rational curve Cαi is a minimal rational
curve and the variety of tangents of the minimal rational component containing [Cαi ] at a point
x ∈G/P spans a proper subspace ofPTx (G/P ) if the coefficient ofαi in θ is > 1 ([8, Proposition 1]).
Therefore, an unbendable rational curve is not necessarily a minimal rational curve.

Together with Proposition 5, Proposition 6 reproves the following result.

Proposition 9 ([1, Theorem 2.1]). Let X = G/P be a rational homogeneous variety with G being
simple. Then the tangent bundle of X is simple.

Proof. By Proposition 5 and Proposition 6, it suffices to show that a general point x in G/P is
joined to the base point o by a connected chain of curves in the unbendable rational component
H constructed in Proposition 6.

Let Σ denote the subset of G/P consisting of x ∈ G/P which are joined to o by a connected
chain of curves in H . Then the stabilizer Q of Σ in G contains the subgroup of G generated by P
and Sθ because the action of Sθ moves the point o to a point in Cθ . Thus Q contains P properly.
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Let {$1, . . . ,$`} denote the system of fundamental weights corresponding the system∆ of sim-
ple roots. Then each $ j can be written as a linear combination of αi ’s with positive coefficients
(See [11, Table 2]). By (i) and (ii) in the proof of Proposition 6, ($ j ,θ∨) is positive for any j = 1, . . . ,`.
Therefore, Cθ cannot be contained in a fiber of a nontrivial projection G/P →G/Q. Since Q/P is
not a point, G/Q is a point, that is, G is Q and Σ is G/P . �

3.2. Smooth horospherical varieties of Picard number one

For i = 1, . . . ,`, let V$i be the irreducible representation of G of highest weight $i and let v$i be a
highest weight vector of V$i . Let (G ,$i ,$ j ) denote the closure of the G-orbit of the sum [v$i +v$ j ]
in P(V$i ⊕V$ j ).

Proposition 10 ([12]). Let X be a smooth horospherical variety of Picard number one. Then, X is
either a rational homogeneous variety or one of the following:

(1) (Bn ,$n−1,$n) (n ≥ 3)
(2) (B3,$1,$3)
(3) (Cn ,$k ,$k−1) (n ≥ 2, 2 ≤ k ≤ n)
(4) (F4,$3,$2)
(5) (G2,$2,$1).

In the latter case, the automorphism group Aut0(X ) is given by G̃ nH 0(G/P,G ×P V ), where G̃ is a
reductive group with G a maximal semisimple subgroup, and the open Aut0(X )-orbit O in X is G-
equivariantly isomorphic to the total space of a homogeneous vector bundle G×P V on G/P, where
P is the maximal parabolic subgroup associated to

$n−1, $1, $k−1, $3, $2, respectively

and V is the simple P-module of highest weight λV given by

$n−1 −$n , $1 −$3, $k −$k−1, $3 −$2, $2 −$1, respectively .

Remark 11. We remark that our convention is different from that of [12]. The way of indexing
simple roots and fundamental weights is the same as in [11] in this paper while [12] follows the
convention in [2]. The isotropy subgroup P contains the negative Borel subgroup in this paper
while it contains the positive Borel subgroup in [12].

Proposition 12. Let X be a smooth horospherical variety of Picard number one. Then there is an
unbendable rational component H whose variety Cx of tangents at any x in the open Aut0(X )-
orbit O is nondegenerate in PTx X .

Proof. We will show that there is an unbendable rational component H such that for any point
x in the open Aut0(X )-orbit O , the variety of tangents of H at x is nondegenerate in PTx X . Since
G ×H 0(G/P,G ×P V ) acts on O =G ×P V transitively, we may assume that x = [o,0], where o is the
base point in G/P and 0 is the zero element in V . Identify G/P with the zero section Y of G ×P V
and let Cθ be the rational curve in G/P ' Y constructed in Proposition 6. We claim that Cθ is an
unbendable curve in O .

Let λV be the highest weight of V listed in Proposition 10. By the facts (i) and (ii) in the proof of
Proposition 6, (λV ,θ∨) is the coefficient of αi0 in the expression of λV via simple roots, α1, . . . ,α`.
For the description of $i as a linear combination of simple roots, see [11, Table 2]: The i -th
column of the matrix (At )−1 inverse to the transposed Cartan matrix A is the list of coefficients
of simple roots in $i . Let bi , j denote the (i , j )-th element of the matrix (At )−1. Then (λV ,θ∨) is
given by

b2,n−1 −b2,n , b2,1 −b2,3, b1,k −b1,k−1, b4,3 −b4,2, b2,2 −b2,1, respectively.
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Using the description of the matrix (At )−1 = (bi , j ) in [11, Table 2] we get that (λV ,θ∨) is given by

1

2
(4−2),

1

2
(2−2),

1

2
(4−4), 3−2, 2−1, respectively.

Therefore, (λV ,θ∨) is 1 or 0, and thus the vector bundle G ×P V restricted to Cθ ⊂G/P splits as
⊕m

i=1O (ai ), where
1 ≥ a1 ≥ ·· · ≥ am ≥ 0.

From this property and the nonnegativity of T Y |Cθ
, it follows that the short exact sequence

0 → T Y → T X |Y → G ×P V → 0 restricted to Cθ splits. Since T Y |Cθ
has only one O (2)-factor by

Proposition 6, we get that T X |Cθ
is also nonnegative and has only one O (2)-factor.

Now let V be the vector space spanned by

{T[o,0](aCθ) : [o,0] ∈ aCθ, a ∈G nH 0(G/P,G ×P V )}.

Then the projection of V to V is a nonzero P-stable subspace of V , and thus is the whole V
because V is an irreducible P-module. Hence the tangent directions to translates of Cθ passing
through [o,0] span T[o,0]O . �

Proof of Theorem 3. By Proposition 12, there is an unbendable rational component H whose
variety of tangents is nondegenerate in P(Tx X ) for any x ∈O . Since X has Picard number one, by
Proposition 5, any endomorphism of the tangent bundle of X is a scalar multiple. �
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