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1. Motivations

In the literature [1, Section 6.4], the function

Γ(z) =
∫ ∞

0
t z−1 e−t dt , ℜ(z) > 0

and its logarithmic derivative ψ(z) = [lnΓ(z)]′ = Γ′(z)
Γ(z) are called Euler’s gamma function and

digamma function respectively. Moreover, the functions ψ′(z), ψ′′(z), ψ′′′(z), and ψ(4)(z) are
known as the trigamma, tetragamma, pentagamma, and hexagamma functions respectively. As a
set, all the derivatives ψ(k)(z) for k ∈N0 = {0}∪N are known as polygamma functions.

Recall from Chapter XIII in [13], Chapter 1 in [36], and Chapter IV in [40] that, if a function
f (x) on an interval I has derivatives of all orders on I and satisfies (−1)n f (n)(x) ≥ 0 for x ∈ I and
n ∈N0, then we call f (x) a completely monotonic function on I .

In [28, Theorem 1.1] and [27, Theorem 3], among other things, the function

[ψ′(x)]2 +λψ′′(x)

was proved to be completely monotonic on (0,∞) if and only if λ ≤ 1. In [9, Theorem 1], it was
proved that, among the functions

fm,n(x) =[
ψ(m)(x)

]2+ψ(n)(x), m,n ∈N, x ∈ (0,∞),
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90 F. Qi

(1) the functions

f1,2(x) = [ψ′(x)]2 +ψ′′(x)

and

fm,2n−1(x) =[
ψ(m)(x)

]2+ψ(2n−1)(x)

are completely monotonic on (0,∞), but the complete monotonicity of fm,2n−1(x) is
trivial;

(2) the functions

fm,2n(x) =[
ψ(m)(x)

]2+ψ(2n)(x)

for (m,n) 6= (1,1) are not monotonic and does not keep the same sign on (0,∞).

For k ∈N and x ∈ (0,∞), let

Fk,ηk
(x) =ψ(2k)(x)+ηk

[
ψ(k)(x)

]2 and Fk,ϑk
(x) = ψ(2k)(x)

[(−1)k+1ψ(k)(x)]ϑk
.

In [20, Theorem 3.2], the author proved the following conclusions:

(1) if and only if ηk ≥ 1
2

(2k)!
(k−1)!k ! , the function Fk,ηk

(x) is completely monotonic on (0,∞);
(2) if and only if ηk ≤ 0, the function −Fk,ηk

(x) is completely monotonic on (0,∞);
(3) if and only if ϑk ≥ 2, the function Fk,ϑk

(x) is decreasing on (0,∞);
(4) if and only if ϑk ≤ 2k+1

k+1 , the function Fk,ϑk
(x) is increasing on (0,∞);

(5) the following limits are valid:

lim
x→0+

Fk,ϑk
(x) =



− (2k)!

[(k)!](2k+1)/(k+1)
, ϑk = 2k +1

k +1

0, ϑk > 2k +1

k +1

−∞, ϑk < 2k +1

k +1

and

lim
x→∞Fk,ϑk

(x) =


− (2k −1)!

[(k −1)!]2 , ϑk = 2

−∞, ϑk > 2

0, ϑk < 2;

(6) the double inequality

−1

2

(2k)!

(k −1)!k !
< ψ(2k)(x)

[(−1)k+1ψ(k)(x)]2
< 0

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot be
replaced by any greater and less numbers respectively.

Letα= (α1,α2, . . . ,αn) and β= (β1,β2, . . . ,βn) ∈Rn . A n-tupleα is said to strictly majorize β (in
symbolsαÂβ) if

(
α[1],α[2], . . . ,α[n]

) 6= (
β[1],β[2], . . . ,β[n]

)
,
∑k

i=1α[i ] ≥∑k
i=1β[i ] for 1 ≤ k ≤ n−1, and∑n

i=1αi =∑n
i=1βi , where α[1] ≥α[2] ≥ ·· · ≥α[n] and β[1] ≥β[2] ≥ ·· · ≥β[n] are rearrangements of α

and β in a descending order. See [12, p. 8, Definition A.1] or closely related texts and references in
the papers [5, 35, 37, 47].

Theorem 1 ( [20, Theorem 3.1]). Let p, q,m,n ∈N0 satisfying (p, q) Â (m,n) and let

Fp,m,n,q ;c (x) =
{∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− c

∣∣ψ(p)(x)
∣∣, q = 0∣∣ψ(m)(x)

∣∣∣∣ψ(n)(x)
∣∣− c

∣∣ψ(p)(x)
∣∣∣∣ψ(q)(x)

∣∣, q ≥ 1

for c ∈R and x ∈ (0,∞). Then
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(1) for q ≥ 0, if and only if

c ≤


(m −1)!(n −1)!

(p −1)!
, q = 0

(m −1)!(n −1)!

(p −1)!(q −1)!
, q ≥ 1,

the function Fp,m,n,q ;c (x) is completely monotonic in x ∈ (0,∞);
(2) for q ≥ 1, if and only if c ≥ m!n!

p !q ! , the function −Fp,m,n,q ;c (x) is completely monotonic in
x ∈ (0,∞);

(3) the double inequality

− (m +n −1)!

(m −1)!(n −1)!
< ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
< 0 (1)

for m,n ∈N and the double inequality

(m −1)!(n −1)!

(p −1)!(q −1)!
< ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
< m!n!

p !q !
(2)

for m,n, p, q ∈N with p > m ≥ n > q ≥ 1 and m +n = p +q are valid on (0,∞) and sharp
in the sense that the lower and upper bounds cannot be replaced by any larger and smaller
scalars respectively.

In [16, Remark 6.2], the preprint of the formally published paper [20], the author guessed that,

(1) for m,n ∈N, the function

Qm,n(x) = ψ(m+n)(x)

ψ(m)(x)ψ(n)(x)
(3)

should be decreasing on (0,∞);
(2) for m,n, p, q ∈N such that (p, q) Â (m,n), the function

Qm,n;p,q (x) = ψ(m)(x)ψ(n)(x)

ψ(p)(x)ψ(q)(x)
(4)

should be decreasing on (0,∞).

It is clear that Qk,k (x) =Fk,2(x) for k ∈N, which is decreasing on (0,∞).
In this paper, we aim to confirm these two guesses. We also supply an alternative proof of

Theorem 1.

2. Lemmas

The following lemmas are necessary in this paper.

Lemma 2 ( [3, p. 10–11, Theorem 1.25]). For a,b ∈Rwith a < b, let f (x) and g (x) be continuous

on [a,b], differentiable on (a,b), and g ′(x) 6= 0 on (a,b). If the ratio f ′(x)
g ′(x) is increasing on (a,b), then

both f (x)− f (a)
g (x)−g (a) and f (x)− f (b)

g (x)−g (b) are increasing in x ∈ (a,b).

Lemma 3 ( [1, p. 260, 6.4.1]). The integral representation

ψ(n)(z) = (−1)n+1
∫ ∞

0

t n

1−e−t e−zt dt (5)

is valid for ℜ(z) > 0 and n ≥ 1.

C. R. Mathématique — 2022, 360, 89-101
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Lemma 4 (Convolution theorem for the Laplace transforms [40, p. 91–92]). Let the functions
fk (t ) for k = 1,2 be piecewise continuous in arbitrary finite intervals included in (0,∞). If there
exist some constants Mk > 0 and ck ≥ 0 such that the inequalities | fk (t )| ≤ Mk eck t for k = 1,2 are
valid, then ∫ ∞

0

[∫ t

0
f1(u) f2(t −u)du

]
e−st dt =

∫ ∞

0
f1(u)e−su du

∫ ∞

0
f2(v)e−sv dv.

Lemma 5 ( [43, Lemma 4] and [45, Section 3]). Let the functions A(x) and B(x) 6= 0 be defined
on (0,∞) such that their Laplace transforms exist. If the ratio A(x)

B(x) is increasing, then the ratio∫ ∞
0 A(x)e−xt dx∫ ∞
0 B(x)e−xt dx

is decreasing on (0,∞).

Lemma 6. Let

g (t ) =


t

1−e−t , t 6= 0;

1, t = 0.

Then the following conclusions are valid.

(1) The function g (t ) is infinitely differentiable on (−∞,∞), increasing from (−∞,∞) onto
(0,∞), convex on (−∞,∞), and logarithmically concave on (−∞,∞).

(2) For fixed s ∈ (0,1), the ratio g s (t )
g (st ) is decreasing in t from (0,∞) onto (0,1).

(3) For s ∈ (
0, 1

2

)
and t ∈ (0,∞), the mixed second-order partial derivative

∂2 ln[g (st )g ((1− s)t )]

∂s∂t
> 0. (6)

Proof. The differentiability, monotonicity, and convexity of g (t ) come from utilization of [22,
Lemma 2.3].

Direct computation yields

[ln g (t )]′′ = [ln g (−t )]′′ =−e2t −et
(
t 2 +2

)+1

(et −1)2t 2

=− 1

(et −1)2t 2

∞∑
k=4

[2k − (k −1)k −2]
t k

k !
< 0

on (0,∞). Hence, the function g (t ) is logarithmically concave on (−∞,∞). See also the proof
of [16, Lemma 2.3].

It is straightforward that

lim
t→0

g s (t )

g (st )
= limt→0 g s (t )

limt→0 g (st )
= 1s

1
= 1

and

lim
t→∞

g s (t )

g (st )
= limt→∞[g (t )/t ]s

limt→∞[g (st )/st ]
lim

t→∞
t s

st
= 1

s
lim

t→∞
1

t 1−s = 0.

The first derivative of the ratio g s (t )
g (st ) is

d

dt

[ g s (t )

g (st )

]
= sg s (t )

g (st )

[ g ′(t )

g (t )
− g ′(st )

g (st )

]
.

Hence, for arriving at decreasing property of the ratio g s (t )
g (st ) , it is sufficient to show that the

ratio g ′(t )
g (t ) is decreasing on (0,∞). For this, it is sufficient to show that the function g (t ) is

logarithmically concave on (0,∞). This requirement has been verified in last paragraph.
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By Lemma 2, straightforward differentiation gives

∂ ln[g (st )g ((1− s)t )]

∂t
= 1

t

t +2et +2−est [(1− s)t +2]−e(1−s)t (st +2)

(est −1)[e(1−s)t −1]
,

lim
s→0

[
t +2et +2−est [(1− s)t +2]−e(1−s)t (st +2)

]= lim
s→0

(
(est −1)[e(1−s)t −1]

)= 0,

[t +2et +2−est [(1− s)t +2]−e(1−s)t (st +2)]′s
[(est −1)(e(1−s)t −1)]′s

= et (st +1)−e2st [(1− s)t +1]

et −e2st ,

lim
s→1/2

(
et (st +1)−e2st [(1− s)t +1]

)= lim
s→1/2

(
et −e2st )= 0,

and (
et (st +1)−e2st [(1− s)t +1]

)′
s

(et −e2st )′s
= 1

2
− e(1−2s)t −(1−2s)t −1

2t

is increasing in s ∈ [
0, 1

2

]
. This means that the partial derivative ∂ ln[g (st )g ((1−s)t )]

∂t is increasing
in s ∈ [

0, 1
2

]
for fixed t > 0. As a result, the inequality (6) is valid. The proof of Lemma 6 is

complete. �

Lemma 7 ( [20, Lemma 2.1]). For k ∈N, we have the limits

lim
x→0+

[
xkψ(k−1)(x)

]= (−1)k (k −1)! (7)

and
lim

x→∞
[
xkψ(k)(x)

]= (−1)k−1(k −1)!. (8)

Lemma 8. For m,n, p, q ∈N such that (p, q) Â (m,n), the function

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1

is increasing in s ∈ (
0, 1

2

)
.

Proof. Direct computation yields

sm−1(1− s)n−1 + (1− s)m−1sn−1

sp−1(1− s)q−1 + (1− s)p−1sq−1 =
( 1

s −1
)n−1 + ( 1

s −1
)m−1( 1

s −1
)q−1 + ( 1

s −1
)p−1

= zn−1 + zm−1

zq−1 + zp−1 = zn−q + zm−q

1+ zp−q

and

d

dz

( zb + zc

1+ za

)
=

(
bzb + czc

)
(1+ za)−aza

(
zb + zc

)
z(1+ za)2

= bzb
(
1− z2c

)+ czc
(
1− z2b

)
z(1+ za)2

< 0,

where z = 1
s − 1 ∈ (1,∞) and a = p − q > b = m − q ≥ c = n − q > 0 with a = b + c. The proof of

Lemma 8 is complete. �

Lemma 9. Let the functions U (x), V (x) > 0, and W (x, t ) > 0 be integrable in x ∈ (a,b). If the ratios
∂W (x,t )/∂t

W (x,t ) and U (x)
V (x) are both increasing or both decreasing in x ∈ (a,b), then the ratio

R(t ) =
∫ b

a U (x)W (x, t )dx∫ b
a V (x)W (x, t )dx

is increasing in t ; if one of the ratios ∂W (x,t )/∂t
W (x,t ) and U (x)

V (x) are increasing and the other is decreasing
in x ∈ (a,b), then the ratio R(t ) is decreasing in t .

C. R. Mathématique — 2022, 360, 89-101
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Proof. Direct differentiation gives

R ′(t ) =

[ ∫ b
a U (x) ∂W (x,t )

∂t dx
∫ b

a V (x)W (x, t )dx

−∫ b
a U (x)W (x, t )dx

∫ b
a V (x) ∂W (x,t )

∂t dx

]
[∫ b

a V (x)W (x, t )dx
]2

=

[ ∫ b
a

∫ b
a U (x) ∂W (x,t )

∂t V (y)W (y, t )dxdy

−∫ b
a

∫ b
a U (x)W (x, t )V (y) ∂W (y,t )

∂t dxdy

]
[∫ b

a V (x)W (x, t )dx
]2

=
∫ b

a

∫ b
a U (x)V (y)W (x, t )W (y, t )

[ ∂W (x,t )/∂t
W (x,t ) − ∂W (y,t )/∂t

W (y,t )

]
dxdy[∫ b

a V (x)W (x, t )dx
]2

=

∫ b
a

∫ b
a

([U (x)
V (x) −

U (y)
V (y)

][ ∂W (x,t )/∂t
W (x,t ) − ∂W (y,t )/∂t

W (y,t )

]
×V (x)V (y)W (x, t )W (y, t )

)
dxdy

2
[∫ b

a V (x)W (x, t )dx
]2

.

The proof of Lemma 9 is complete. �

Lemma 10 ( [40, p. 161, Theorem 12b]). A function f (x) is completely monotonic on (0,∞) if and
only if

f (x) =
∫ ∞

0
e−xt dσ(t ), x ∈ (0,∞), (9)

where σ(s) is non-decreasing and the integral in (9) converges for x ∈ (0,∞).

3. Decreasing property of a ratio defined by three polygamma functions

In this section, we prove that the function Qm,n(x) defined in (3) is decreasing.

Theorem 11. For m,n ∈ N, the function Qm,n(x) defined in (3) is decreasing from (0,∞) onto(− (m+n−1)!
(m−1)!(n−1)! ,0

)
. Consequently, the double inequality (1), that is,

− (m +n −1)!

(m −1)!(n −1)!
<Qm,n < 0, m,n ∈N,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot be replaced by
any larger and smaller numbers respectively.

Proof. By virtue of the integral representation (5), we can rearranged Qm,n(x) as

Qm,n(x) =−
∫ ∞

0 t m+n−1g (t )e−xt dt∫ ∞
0 t m−1g (t )e−xt dt

∫ ∞
0 t n−1g (t )e−xt dt

.

By Lemma 4, we obtain

Qm,n(x) =−
∫ ∞

0 t m+n−1g (t )e−xt dt∫ ∞
0

[∫ t
0 um−1(t −u)n−1g (u)g (t −u)du

]
e−xt dt

.

By Lemma 5, we only need to prove the ratio

Pm,n(t ) = t m+n−1g (t )∫ t
0 um−1(t −u)n−1g (u)g (t −u)du

= t m+n−1g (t )

t m+n−1
∫ 1

0 sm−1(1− s)n−1g (st )g ((1− s)t )ds

= 1∫ 1
0 sm−1(1− s)n−1 g (st )

g s (t )
g ((1−s)t )

g 1−s (t )
ds

C. R. Mathématique — 2022, 360, 89-101
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is decreasing on (0,∞). Hence, it suffices to show that the ratio g (st )
g s (t ) for fixed s ∈ (0,1) is increasing

in t ∈ (0,∞). This increasing property of g (st )
g s (t ) has been proved in Lemma 6 in this paper. As a

result, the function Qm,n(x) defined in (3) is decreasing on (0,∞).
Making use of the limits (7) and (8) in Lemma 7 yields

lim
x→0+

Qm,n(x) = (limx→0+ x) limx→0+
[
xm+n+1ψ(m+n)(x)

]
limx→0+ [xm+1ψ(m)(x)] limx→0+ [xn+1ψ(n)(x)]

= 0

and

lim
x→∞Qm,n(x) = limx→∞

[
xm+nψ(m+n)(x)

]
limx→∞[xmψ(m)(x)] limx→∞[xnψ(n)(x)]

= (−1)m+n−1(m +n −1)!

(−1)m−1(m −1)!(−1)n−1(n −1)!

=− (m +n −1)!

(m −1)!(n −1)!
.

The proof of Theorem 11 is complete. �

4. Decreasing property of a ratio defined by four polygamma functions

In this section, we prove that the function Qm,n;p,q defined in (4) is decreasing.

Theorem 12. For m,n, p, q ∈N with the majorizing relation (p, q) Â (m,n), the ratio Qm,n;p,q (x)
defined in (4) is decreasing from (0,∞) onto the interval

( (m−1)!(n−1)!
(p−1)!(q−1)! , m!n!

p !q !

)
. Consequently, for

m,n, p, q ∈Nwith (p, q) Â (m,n), the double inequality (2), that is,

(m −1)!(n −1)!

(p −1)!(q −1)!
<Qm,n;p,q (x) < m!n!

p !q !
,

is valid on (0,∞) and sharp in the sense that the lower and upper bounds cannot be replaced by
any larger and smaller scalars respectively.

Proof. By the limits (7) and (8) in Lemma 7, we obtain

lim
x→0+

Qm,n;p,q (x) = limx→0+
[
xm+1ψ(m)(x)

]
limx→0+

[
xn+1ψ(n)(x)

]
limx→0+

[
xp+1ψ(p)(x)

]
limx→0+

[
xq+1ψ(q)(x)

]
= (−1)m+1m!(−1)n+1n!

(−1)p+1p !(−1)q+1q !

= m!n!

p !q !

and

lim
x→∞Qm,n;p,q (x) = limx→∞

[
xmψ(m)(x)

]
limx→∞

[
xnψ(n)(x)

]
limx→∞

[
xpψ(p)(x)

]
limx→∞

[
xqψ(q)(x)

]
= (−1)m−1(m −1)!(−1)n−1(n −1)!

(−1)p−1(p −1)!(−1)q−1(q −1)!

= (q −1)!(n −1)!

(p −1)!(q −1)!
.

Making use of the integral representation (5) yields

Qm,n;p,q (x) =
∫ ∞

0 t m−1g (t )e−xt dt
∫ ∞

0 t n−1g (t )e−xt dt∫ ∞
0 t p−1g (t )e−xt dt

∫ ∞
0 t q−1g (t )e−xt dt

.
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Utilizing Lemma 4 gives

Qm,n;p,q (x) =
∫ ∞

0

[∫ t
0 um−1(t −u)n−1g (u)g (t −u)du

]
e−xt dt∫ ∞

0

[∫ t
0 up−1(t −u)q−1g (u)g (t −u)du

]
e−xt dt

.

Employing Lemma 5 tells us that, it suffices to prove the increasing property in t of the ratio∫ t
0 um−1(t −u)n−1g (u)g (t −u)du∫ t
0 up−1(t −u)q−1g (u)g (t −u)du

=
∫ 1

0 sm−1(1− s)n−1g (st )g ((1− s)t )ds∫ 1
0 sp−1(1− s)q−1g (st )g ((1− s)t )ds

=
∫ 1/2

0

[
sm−1(1− s)n−1 + (1− s)m−1sn−1

]
g (st )g ((1− s)t )ds∫ 1/2

0 [sp−1(1− s)q−1 + (1− s)p−1sq−1]g (st )g ((1− s)t )ds

=
∫ 1/2

0 φm,n(s)ϕ(s, t )ds∫ 1/2
0 φp,q (s)ϕ(s, t )ds

,

where

φi , j (s) = si−1(1− s) j−1 + (1− s)i−1s j−1 and ϕ(s, t ) = g (st )g ((1− s)t ). (10)

Lemma 8 implies that the ratio
φm,n (s)
φp,q (s) is increasing in s ∈ (

0, 1
2

)
for (p, q) Â (m,n). Further making

use of the inequality (6) in Lemma 6 and utilizing Lemma 9 reveal that the function Qm,n;p,q (x) is
decreasing in x ∈ (0,∞). The proof of Theorem 12 is complete. �

5. An alternative proof of Theorem 1

In this section, we supply an alternative proof of Theorem 1.
For q = 0, we have

Fp,m,n,0;c (x) = ∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− c
∣∣ψ(p)(x)

∣∣
=

∫ ∞

0

t m

1−e−t e−xt dt
∫ ∞

0

t n

1−e−t e−xt dt − c
∫ ∞

0

t p

1−e−t e−xt dt

=
∫ ∞

0

[∫ t

0
um−1(t −u)n−1g (u)g (t −u)du − ct m+n−1g (t )

]
e−xt dt

=
∫ ∞

0

[∫ 1

0
sm−1(1− s)n−1 g (st )g ((1− s)t )

g (t )
ds − c

]
t m+n−1g (t )e−xt dt ,

where we used the integral representation (5) and Lemma 4. From the second property in
Lemma 6, it follows that the function∫ 1

0
sm−1(1− s)n−1 g (st )g ((1− s)t )

g (t )
ds

is decreasing in t ∈ (0,∞) and has the limits

∫ 1

0
sm−1(1− s)n−1 g (st )g ((1− s)t )

g (t )
ds →


∫ 1

0
sm−1(1− s)n−1ds, t → 0;

∞, t →∞.

Consequently, basing on Lemma 10, we see that, if and only if

c ≤
∫ 1

0
sm−1(1− s)n−1ds = B(m,n) = (m −1)!(n −1)!

(m +n −1)!
,

the function Fp,m,n,0;c (x) is completely monotonic on (0,∞).
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For q ≥ 1, we have

Fp,m,n,q ;c (x) = ∣∣ψ(m)(x)
∣∣∣∣ψ(n)(x)

∣∣− c
∣∣ψ(p)(x)

∣∣∣∣ψ(q)(x)
∣∣

=
∫ ∞

0
t m−1g (t )e−xt dt

∫ ∞

0
t n−1g (t )e−xt dt − c

∫ ∞

0
t p−1g (t )e−xt dt

∫ ∞

0
t q−1g (t )e−xt dt

=
∫ ∞

0

[∫ t

0
um−1(t −u)n−1g (u)g (t −u)du

]
e−xt dt

− c
∫ ∞

0

[∫ t

0
up−1(t −u)q−1g (u)g (t −u)du

]
e−xt dt

=
∫ ∞

0

[
t m+n−1

∫ 1

0
sm−1(1− s)n−1g (st )g ((1− s)t )ds

− ct p+q−1
∫ 1

0
sp−1(1− s)q−1g (st )g ((1− s)t )ds

]
e−xt dt

=
∫ ∞

0

[∫ 1
0 sm−1(1− s)n−1g (st )g ((1− s)t )ds∫ 1
0 sp−1(1− s)q−1g (st )g ((1− s)t )ds

− c

]
×

[
t m+n−1

∫ 1

0
sp−1(1− s)q−1g (st )g ((1− s)t )ds

]
e−xt dt

=
∫ ∞

0

[∫ 1/2
0 [sm−1(1− s)n−1 + sn−1(1− s)m−1]g (st )g ((1− s)t )ds∫ 1/2
0 [sp−1(1− s)q−1 + sq−1(1− s)p−1]g (st )g ((1− s)t )ds

− c

]
×

[
t m+n−1

∫ 1

0
sp−1(1− s)q−1g (st )g ((1− s)t )ds

]
e−xt dt ,

where we used the integral representation (5) and Lemma 4. Employing the inequality (6) in
Lemma 6 and applying Lemmas 8 and 9 reveal that the function∫ 1/2

0 [sm−1(1− s)n−1 + sn−1(1− s)m−1]g (st )g ((1− s)t )ds∫ 1/2
0 [sp−1(1− s)q−1 + sq−1(1− s)p−1]g (st )g ((1− s)t )ds

=
∫ 1/2

0 φm,n(s)ϕ(s, t )ds∫ 1/2
0 φp,q (s)ϕ(s, t )ds

is increasing in t ∈ (0,∞), where φi , j (s) and ϕ(s, t ) are defined in (10). It is easy to see that

lim
t→0

∫ 1/2
0 φm,n(s)ϕ(s, t )ds∫ 1/2
0 φp,q (s)ϕ(s, t )ds

=
∫ 1/2

0 [sm−1(1− s)n−1 + sn−1(1− s)m−1]ds∫ 1/2
0 [sp−1(1− s)q−1 + sq−1(1− s)p−1]ds

=
∫ 1

0 sm−1(1− s)n−1ds∫ 1
0 sp−1(1− s)q−1ds

= B(m,n)

B(p, q)
= (m −1)!(n −1)!

(p −1)!(q −1)!
.

Since limt→∞
g (t )

t = 1, we acquire

lim
t→∞

∫ 1/2
0 φm,n(s)ϕ(s, t )ds∫ 1/2
0 φp,q (s)ϕ(s, t )ds

=
∫ 1/2

0 [sm−1(1− s)n−1 + sn−1(1− s)m−1]s(1− s)ds∫ 1/2
0 [sp−1(1− s)q−1 + sq−1(1− s)p−1]s(1− s)ds

=
∫ 1

0 sm(1− s)nds∫ 1
0 sp (1− s)q ds

= B(m +1,n +1)

B(p +1, q +1)
= m!n!

p !q !
.

Combining these with Lemma 10 concludes that,

(1) if and only if

c ≤ (m −1)!(n −1)!

(p −1)!(q −1)!
,

the function Fp,m,n,q ;c (x) is completely monotonic in x ∈ (0,∞);
(2) if and only if c ≥ m!n!

p !q ! , the function −Fp,m,n,q ;c (x) is completely monotonic in x ∈ (0,∞).

The proof of Theorem 1 is complete.
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6. Remarks

Finally, we list several remarks on our main results and their proofs.

Remark 13. The papers [2, 4, 6, 7, 42] are related to Theorem 1. Theorems 11 and 12 in this
paper are related to some results reviewed and surveyed in [14, 26] and closely related references
therein.

Remark 14. Lemma 6 in this paper generalizes the second item in [16, Lemma 2.3], which reads
that the function g (2t )

g 2(t )
is decreasing from (0,∞) onto (0,1).

Remark 15. Taking W (x, t ) = e−xt in Lemma 9 gives

∂W (x, t )/∂t

W (x, t )
= ∂e−xt /∂t

e−xt =−x,

which is decreasing in x ∈ (−∞,∞). Further setting U (x) = A(x), V (x) = B(x), and (a,b) = (0,∞) in
Lemma 9 leads to Lemma 5, which was established in [43, Lemma 4]. This means that Lemma 9 in
this paper is a generalization of [43, Lemma 4]. Lemma 9 has been announced in [30, Remark 7.2].

Remark 16. From the majorizing relation (n+2,n) Â (n+1,n+1), we see that Theorem 12 in this

paper generalizes a conclusion in [42, Theorem 2], which states that the function [ψ(n+1)(x)]2

ψ(n)(x)ψ(n+2)(x)

for n ≥ 1 is decreasing from (0,∞) onto the interval
( n

n+1 , n+1
n+2

)
.

Remark 17. Direct differentiation gives

Q ′
m,n(x) = ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)−ψ(m+n)(x)

[
ψ(m)(x)ψ(n)(x)

]′
[ψ(m)(x)ψ(n)(x)]2

.

The decreasing property of Qm,n(x) in Theorem 11 implies that the inequality

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′−ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x) > 0,

equivalently, [
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

> ψ(m+n+1)(x)

ψ(m+n)(x)
,

is valid on (0,∞) for m,n ∈N.
We guess that, for m,n ∈N, the function

ψ(m+n)(x)
[
ψ(m)(x)ψ(n)(x)

]′−ψ(m+n+1)(x)ψ(m)(x)ψ(n)(x)

should be completely monotonic in x ∈ (0,∞).
Generally, one can discuss necessary and sufficient conditions on Ωm,n ∈ R such that the

function
ψ(m+n)(x)

[
ψ(m)(x)ψ(n)(x)

]′−Ωm,nψ
(m+n+1)(x)ψ(m)(x)ψ(n)(x)

and its opposite are respectively completely monotonic on (0,∞).

Remark 18. It is immediate that

Q′
m,n;p,q (x) =

( [
ψ(m)(x)ψ(n)(x)

]′[ψ(p)(x)ψ(q)(x)]
−[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′

)
[ψ(p)(x)ψ(q)(x)]2

.

The decreasing property of Qm,n;p,q (x) in Theorem 12 implies that the inequality[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′− [

ψ(m)(x)ψ(n)(x)
]′[ψ(p)(x)ψ(q)(x)] > 0,

equivalently,
[ψ(p)(x)ψ(q)(x)]′

ψ(p)(x)ψ(q)(x)
>

[
ψ(m)(x)ψ(n)(x)

]′
ψ(m)(x)ψ(n)(x)

,
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is valid on (0,∞) for (p, q) Â (m,n).
We guess that, for (p, q) Â (m,n), the function[

ψ(m)(x)ψ(n)(x)
]
[ψ(p)(x)ψ(q)(x)]′− [

ψ(m)(x)ψ(n)(x)
]′[ψ(p)(x)ψ(q)(x)]

should be completely monotonic in x ∈ (0,∞).
Generally, for (p, q) Â (m,n), one can discuss necessary and sufficient conditions onΩm,n;p,q ∈

R such that the function[
ψ(m)(x)ψ(n)(x)

]
[ψ(p)(x)ψ(q)(x)]′−Ωm,n;p,q

[
ψ(m)(x)ψ(n)(x)

]′[ψ(p)(x)ψ(q)(x)]

and its opposite are respectively completely monotonic on (0,∞).

Remark 19. For n ≥ 2 and two nonnegative integer tuples α = (α1,α2, . . . ,αn) ∈ Nn
0 and β =

(β1,β2, . . . ,βn) ∈Nn , let

Pα,β;Cα,β
(x) =

n∏
r=1

ψ(αr )(x)−Cα,β

n∏
r=1

ψ(βr )(x)

and

Qα,β(x) =
∏n

r=1ψ
(αr )(x)∏n

r=1ψ
(βr )(x)

on (0,∞), where we denote ψ(0)(x) =−1 for our own convenience. It is clear that

P(2k,0),(k,k);C(2k,0),(k,k)
(x) =Fk,−C(2k,0),(k,k)

(x), Q(2k,0),(k,k)(x) =Fk,2(x),

Q(m+n,0),(m,n)(x) =Qm,n(x), Q(m,n),(p,q)(x) =Qm,n;p,q (x).

We guess that, if αÂβ, the function Qα,β(x) is increasing from (0,∞) onto the interval( n∏
r=1

αr !

βr !
,

n∏
r=1

(αr −1)!

(βr −1)!

)
.

Generally, for αÂβ, one can discuss necessary and sufficient conditions on Cα,β ∈R such that
the function Pα,β;Cα,β

(x) and its opposite are respectively completely monotonic on (0,∞).

Remark 20. Gurland’s ratio

T (s, t ) = Γ(s)Γ(t )

[Γ((s + t )/2)]2

was firstly defined in [10]. In appearance, we can regard the functions Qm,n(x) and Qm,n;p,q (x)
defined in (3) and (4) as analogues of Gurland’s ratio T (s, t ). In [32, 38], there existed a detailed
survey and review of Gurland’s ratio T (s, t ) and related results. In [46], the functions T

( 1
p , 3

p

)
and

T
( 1

p , 5
p

)
with their statistical backgrounds were mentioned.

Remark 21. The ratios of finitely many gamma functions and polygamma functions have
applications in differential geometry, manifolds, statistics, probability, and their intersections.
See, for example, the papers [8, 11, 33, 34, 48].

Remark 22. As a generalization of decreasing property of real functions of one variable, one
can consider (logarithmically) complete monotonicity and completely monotonic degrees. For
details, please refer to [14, 19, 31, 39, 41, 44, 49] and the review article [26].

Remark 23. This paper is a revised version of the electronic preprint [15] and is the eighth one
in a series of articles including [17, 18, 20–25, 29].
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[13] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications.

East European Series, vol. 61, Kluwer Academic Publishers, 1993.
[14] F. Qi, “Completely monotonic degree of a function involving trigamma and tetragamma functions”, AIMS Math. 5

(2020), no. 4, p. 3391-3407.
[15] ——— , “Decreasing monotonicity of two ratios defined by three or four polygamma functions”, https://hal.

archives-ouvertes.fr/hal-02998414, 2020.
[16] ——— , “Lower bound of sectional curvature of manifold of beta distributions and complete monotonicity of

functions involving polygamma functions”, https://www.preprints.org/manuscript/202011.0315/v1, 2020.
[17] ——— , “Necessary and sufficient conditions for a difference defined by four derivatives of a function containing

trigamma function to be completely monotonic”, to appear in Appl. Comput. Math., https://osf.io/56c2s/, 2020.
[18] ——— , “Some properties of several functions involving polygamma functions and originating from the sectional

curvature of the beta manifold”, São Paulo J. Math. Sci. 14 (2020), no. 2, p. 614-630.
[19] ——— , “Bounds for completely monotonic degree of a remainder for an asymptotic expansion of the trigamma

function”, Arab. J. Basic Appl. Sci. 28 (2021), no. 1, p. 314-318.
[20] ——— , “Lower bound of sectional curvature of Fisher–Rao manifold of beta distributions and complete monotonic-

ity of functions involving polygamma functions”, Results Math. 76 (2021), no. 4, article no. 217 (16 pages).
[21] ——— , “Necessary and sufficient conditions for a difference constituted by four derivatives of a function involving

trigamma function to be completely monotonic”, Math. Inequal. Appl. 24 (2021), no. 3, p. 845-855.
[22] ——— , “Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be

monotonic”, Turk. J. Inequal. 5 (2021), no. 1, p. 50-59.
[23] ——— , “Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined

by two derivatives of a function involving trigamma function”, Appl. Anal. Discrete Math. 15 (2021), no. 2, p. 378-392.
[24] ——— , “Decreasing property and complete monotonicity of two functions constituted via three derivatives of a

function involving trigamma function”, Math. Slovaca 72 (2022), in press.
[25] ——— , “Two completely monotonic functions defined by two derivatives of a function involving trigamma func-

tion”, TWMS J. Pure Appl. Math. 13 (2022), no. 1, in press.
[26] F. Qi, R. P. Agarwal, “On complete monotonicity for several classes of functions related to ratios of gamma functions”,

J. Inequal. Appl. 2019 (2019), article no. 36 (42 pages).
[27] F. Qi, B.-N. Guo, “Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to

be completely monotonic”, Adv. Appl. Math. 44 (2010), no. 1, p. 71-83.
[28] ——— , “Complete monotonicity of divided differences of the di- and tri-gamma functions with applications”,

Georgian Math. J. 23 (2016), no. 2, p. 279-291.

C. R. Mathématique — 2022, 360, 89-101

https://hal.archives-ouvertes.fr/hal-02998414
https://hal.archives-ouvertes.fr/hal-02998414
https://www.preprints.org/manuscript/202011.0315/v1
https://osf.io/56c2s/


F. Qi 101

[29] F. Qi, L.-X. Han, H.-P. Yin, “Monotonicity and complete monotonicity of two functions defined by three derivatives
of a function involving trigamma function”, https://hal.archives-ouvertes.fr/hal-02998203, 2020.

[30] F. Qi, W.-H. Li, S.-B. Yu, X.-Y. Du, B.-N. Guo, “A ratio of finitely many gamma functions and its properties with
applications”, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115 (2021), no. 2, article no. 39 (14 pages).

[31] F. Qi, A.-Q. Liu, “Completely monotonic degrees for a difference between the logarithmic and psi functions”, J.
Comput. Appl. Math. 361 (2019), p. 366-371.

[32] F. Qi, Q.-M. Luo, “Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-
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