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Abstract. In the paper, by virtue of the convolution theorem for the Laplace transforms, with the aid of three
monotonicity rules for the ratios of two functions, of two definite integrals, and of two Laplace transforms,
in terms of the majorization, and in the light of other analytic techniques, the author presents decreasing
properties of two ratios defined by three and four polygamma functions.
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1. Motivations

In the literature [1, Section 6.4], the function
o0
I'(2) =f “le7'dr, R(2)>0
0

and its logarithmic derivative ¥(z) = [InT'(2)]' = % are called Euler’s gamma function and
digamma function respectively. Moreover, the functions v'(z), ¥ (z), ¥"(z), and ¥ (z) are
known as the trigamma, tetragamma, pentagamma, and hexagamma functions respectively. As a
set, all the derivatives w(k) (2) for k € Ny = {0} UN are known as polygamma functions.

Recall from Chapter XIII in [13], Chapter 1 in [36], and Chapter IV in [40] that, if a function
f(x) on an interval I has derivatives of all orders on I and satisfies (—1)" " (x) = 0 for x € I and
n € N, then we call f(x) a completely monotonic function on I.

In [28, Theorem 1.1] and [27, Theorem 3], among other things, the function

(v (x)1% + Ay (x)

was proved to be completely monotonic on (0,00) if and only if A < 1. In [9, Theorem 1], it was
proved that, among the functions

Fon@® =[p" @02+ (x), m,neN, xe(0,00),
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(1) the functions
fr2(0) =y ) +y" )
and
Fnzn-10 =[]+ (x)
are completely monotonic on (0,00), but the complete monotonicity of f;2,-1(x) is
trivial;
(2) the functions
Fnan(0) =[] +y?" ()
for (m, n) # (1,1) are not monotonic and does not keep the same sign on (0, c0).
For ke Nand x € (0,00), let

W(Zk) (%)
[(=1)*+1y B (x)] 9k

In [20, Theorem 3.2], the author proved the following conclusions:

(1) ifand only if ;. = %(k(f—’f)):k,, the function & ;, (x) is completely monotonic on (0, 00);

(2) if and only if ny < 0, the function —?k,n . (x) is completely monotonic on (0, 00);
(3) ifand only if 94 = 2, the function § g, (x) is decreasing on (0, 00);

(4) ifand only if 9y < 2,5:11 , the function §.9 . (x) is increasing on (0, 00);

(5) the following limits are valid:

Frn ) =y 0+ [y P @]° and Frp, (0 =

(2k)! 2k+1
OGO
. 2k+1
l =
lim, Sko () =10, O > 1
2k+1
—00, 1‘)
* k< k+1
and . ‘
2k—-1)!
k-
. [(k—D2
lim 0, () =\ _oo, 9 >2
0, 19k <2;
(6) the double inequality
1 (2k) w9 (x)

2 (k—-1K! < [(=D)k+1y k) (x))2 <

is valid on (0,00) and sharp in the sense that the lower and upper bounds cannot be
replaced by any greater and less numbers respectively.

Leta = (a,as,...,a,) and B = (B1, B2, ..., Bn) € R™. A n-tuple «a is said to strictly majorize § (in
Symbols a> ﬁ) if[a[l],a[g],...,a[n]) # (ﬁ[l],ﬁ[g],...,ﬁ[n]), Zi.czl ap = Zi.czl ﬁ[i] forl<k<n-1,and
Y ai=X", Bi,where ap = ap == ajy and fj1) = Pz = -+ = Py are rearrangements of a
and S in a descending order. See [12, p. 8, Definition A.1] or closely related texts and references in
the papers [5,35,37,47].

Theorem 1 ( [20, Theorem 3.11). Let p, q, m, n € Ny satisfying (p, q) > (m, n) and let
; - lw™ l[y™ @) - e[y @), q=0
(x) =
P g [ ™ ||y P )] - clyP W ||y P W], g=1

forceR and x € (0,00). Then
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(1) forg=0, ifand only if

(m-Din-nt
TR
c=<
(m-1D!(n-1)!
(p-Dig-1V" "7

the function Fp, m n,q;c(X) is completely monotonic in x € (0,00);

(2) for g =1, ifand only if c = %, the function —Fy m n,q;c(x) is completely monotonic in
x €(0,00);

(3) thedouble inequality

(m+n-1) p ) (x)
- < 1)
(m-Di(n-1)! w0 (x)y®(x)
for m,n €N and the double inequality
m-D!n-1! vy x)y?x) mn! 2

<

(p-Dig-1!  yP(x)y@Dx)  pq!

form,n,p,geNwithp>m=n>q=1and m+n= p+ q are valid on (0,00) and sharp

in the sense that the lower and upper bounds cannot be replaced by any larger and smaller
scalars respectively.

In [16, Remark 6.2], the preprint of the formally published paper [20], the author guessed that,

(1) for m,neN, the function

(m+n)
_ v (x)
Qmn 0 = o (e (o @
should be decreasing on (0, 00);
(2) for m,n, p, q € Nsuch that (p, g) > (m, n), the function
(m) () (¢
Do g (1) = Yy ) 4)

P ()@ (x)
should be decreasing on (0,00).

It is clear that Qg i (x) = §,2(x) for k € N, which is decreasing on (0, c0).
In this paper, we aim to confirm these two guesses. We also supply an alternative proof of
Theorem 1.

2. Lemmas

The following lemmas are necessary in this paper.

Lemma2 ([3, p. 10-11, Theorem 1.25]). Fora,beR witha<b, leff(x) and g(x) be continuous
onla, b), differentiable on (a, b), and g'(x) # 0 on (a, b). If the ratio L s increasingon (a, b), then

FO—fl@ 4 f—fb) g
X)— a X)—
both t5=gt@ "4 g

are increasingin x € (a, b).

Lemma 3 ( [1, p. 260, 6.4.1]). The integral representation

y @)= n"t f
0

is valid forR(z) >0 andn = 1.

tn

ﬁe_“dt (5)
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Lemma 4 (Convolution theorem for the Laplace transforms [40, p. 91-92]). Let the functions
fx (1) for k = 1,2 be piecewise continuous in arbitrary finite intervals included in (0,00). If there
exist some constants My > 0 and ci = 0 such that the inequalities | fi(£)| < Myes' for k = 1,2 are
valid, then

o0 t o -
f [f A fete= u)du] e dt :f filwe™ duf HLwe dw.
0 0 ) A

Lemma 5 ( [43, Lemma 4] and [45, Section 3]). Let the functions A(x) and B(x) # 0 be defined
on (0,00) such that their Laplace transforms exist. If the ratio % is increasing, then the ratio
Joo Alx)e ' dx

T Bme dx is decreasing on (0,00).
0

Lemma6. Let

t
y t#£0;
giy=<1-et ?
1, t=0.

Then the following conclusions are valid.

(1) The function g(t) is infinitely differentiable on (—oco,00), increasing from (—oo,00) onto
(0,00), convex on (—oo,00), and logarithmically concave on (—o0o,00).

(2) For fixed s € (0,1), the ratio gzig is decreasing in t from (0,00) onto (0,1).

(3) Forse (0, %) and t € (0,00), the mixed second-order partial derivative

0*In(g(s1)g((1—9)1)]
0sot
Proof. The differentiability, monotonicity, and convexity of g(¢#) come from utilization of [22,

Lemma 2.3].
Direct computation yields

>0. (6)

e*f—el(r?+2)+1
(et_1)2t2

lng(M1"=ng(-n1"=-

~ 1 =N tk

on (0,00). Hence, the function g(#) is logarithmically concave on (—oo,00). See also the proof
of [16, Lemma 2.3].
It is straightforward that
. g limog’(n) 1°

im = =
=0 g(st) lim;.og(st) 1

and
N 1' . N N 1 l
im £ _ lim, olg@/M” \ F 1 o
t—oo g(st) limy_oolg(st)/st] t—oo st s t—o0 175
The first derivative of the ratio gzs[g is
d gs(t)] _sg'( [g’(t) _g'(sn)
delgsn!l g lgr) gsnl
Hence, for arriving at decreasing property of the ratio gxg, it is sufficient to show that the

!
ratio gT(tt)] is decreasing on (0,00). For this, it is sufficient to show that the function g(f) is
logarithmically concave on (0,00). This requirement has been verified in last paragraph.
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By Lemma 2, straightforward differentiation gives
oln[g(sng((1—-s)nN] 1r+2e'+2—e"[(1-s)r+2]—e "9 (st+2)
ot Y (est —1)[e(-9t —1]
lim[r+2e'+2—e*[(1-5)r+2] e (st +2)] = Eiir(l)((e”—l)[e(l_s”—l]) =0,

’

[t+2e +2-e"[(1-9)t+2] eV (st+2)]}  el(st+1)—e*'[(1-5)r+1]
[(est _1)(6(1—s)t _1)113 - el —e2st
lim (e’ (st +1) = e*'[1-s)¢+1]) = lim (e’ —e*") =0,
s

s—

)

and ,
(e'(st+1)—e*' [A-9)r+1]); 1 el 2 —(1-251-1

(et_ezn)/s ) B 2t
dln[g(st)g((1-9)1)]

is increasing in s € [0,1]. This means that the partial derivative is increasing
in s € [O,%] for fixed ¢ > 0. As a result, the inequality (6) is valid. The proof of Lemma 6 is
complete. U

Lemma 7 ([20, Lemma 2.1]). For k € N, we have the limits

lim [xFy* V()] = Dk k-1 @)
xX— +
and

lim [x*y P ] = D k-1 ®)

Lemma8. Form,n,p,qe€N such that (p,q) > (m, n), the function
sm—l(l _ s)n—l + (1 _ s)m—lsn—l
sPI1—-9)47 1+ (1—s)P1sa-1

is increasing in s € (0, 3).

Proof. Direct computation yields

_ _ _ _ -1 -1
Sm l(l_s)n 1+(1_3)m lsnl_(%_l)n +(%_1)m

sPI1- ) 1+ (1—-s)plsa-1 (-1t (-1t

27l 2l gnmd gy gmeq

T 2014 zp 1T 14 zpd

and

d (zb + zc) _ (bzP +cz9) 1+ 2% - az?(2" + 2°)

dz\ 1+ 2z z(1 + z%)2
bzb(1-2%¢) + cz¢(1 - 2%P)
B z(1 + z9)2
<0,

Wherezzﬁ—le(l,oo) anda=p-qg>b=m-qg=c=n-q>0with a= b+ c. The proof of
Lemma 8 is complete. O

Lemma9. Letthe functionsU(x), V(x) >0, and W(x, t) > 0 be integrable in x € (a, b). If the ratios

W(x, . . . . .
amﬁ’f—x%at and % are both increasing or both decreasing in x € (a, b), then the ratio

_ JPUW(x, ndx

 Pvwix, dx

is increasing in t; if one of the ratios % and %

in x € (a,b), then the ratio R(t) is decreasing in t.

R(1)

are increasing and the other is decreasing
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Proof. Direct differentiation gives
JP U8l q [Py ()W (x, 1)dx
~JPUOWx, ndx [V (x) 2=0 4
[f2Vow(x, ndx]?
JL f U(x)aw(”)V(y)W(y,t)dxdy
~ L Puw, nvip) 202D dxdy
[[Pvow(x, t)dx]

J2 L U@VIW G, W (y, ) Lot -SR0S dxdy

R'(1)=

([P vow(x, ndx]?

[ U(x) uly) ] [OW(x,t)/at _ 6W(y,t)/at]
Vix) V() W(x,1) W(y,1) dxdy
xV(X) V)W, )W(y, 1)

2[fPviow(x, ndx]?
The proof of Lemma 9 is complete. O

JL

Lemma 10 ([40, p. 161, Theorem 12b]). A function f(x) is completely monotonic on (0,00) if and
only if
o0
flx)= f e do(1), x€(0,00), 9)
0

where o (s) is non-decreasing and the integral in (9) converges for x € (0,00).

3. Decreasing property of a ratio defined by three polygamma functions

In this section, we prove that the function Q,,,(x) defined in (3) is decreasing.

Theorem 11. For m,n € N, the function Q, ,(x) defined in (3) is decreasing from (0,00) onto

(—%,0). Consequently, the double inequality (1), that is,

(m+n-1)!
(m-Dl(n-1)!
is valid on (0,00) and sharp in the sense that the lower and upper bounds cannot be replaced by
any larger and smaller numbers respectively.

<Qmn<0, mneN,

Proof. By virtue of the integral representation (5), we can rearranged Q,,,(x) as
f(;DO tm+n71g(t) efxt dr

Q) = = T g (e [ e g e de

By Lemma 4, we obtain
f(;>0 tm+n—1g(t) e—xt dr
f(;’o[fot unl(t—uw)"lg(u)g(r— wdu] e~ rtdr
By Lemma 5, we only need to prove the ratio
tm+n—1g(t)
Jouml(t—wynlg(wg(t-wdu
tm+n—1g(t)

gman=L [Lsm=1(1 - syn-lg(st)g((1 - s)t)ds
1

1 om-1¢1 _ e\n— 1g(st) g1-s)1)
Jo s -9 o0 20 ds

Qmn(x)=—

Pm,n(t) =

C. R. Mathématique — 2022, 360, 89-101
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is decreasing on (0,00). Hence, it suffices to show that the ratio G0

g°(n)
in t € (0,00). This increasing property of gﬁig has been proved in Lemma 6 in this paper. As a

result, the function Q;,,(x) defined in (3) is decreasing on (0, 00).
Making use of the limits (7) and (8) in Lemma 7 yields

for fixed s € (0, 1) is increasing

' (lim_ o+ %) lim,_ o+ [xm+n+1w(m+n) (x)]
lim Qp,n(x) = - =0
Pyt hmx—>0+ [xm+1w(m) (x)] llmx_,0+ [anrll//(n) ()]

and
li oo m+n,, (m+n)
lim Qo () = o XY 0]
X—00 limy_ [xmw(’”) ()] limy—oo [X”W(”) (x)]
_ (D™ N (m+n-1)!
(D" m - DD N (n-1)!
_ (m+n-1)!
(m-1)i(n-1"
The proof of Theorem 11 is complete. O

4. Decreasing property of a ratio defined by four polygamma functions

In this section, we prove that the function 2y, 5,5 4 defined in (4) is decreasing.

Theorem 12. For m, n, p, q € N with the majorizing relation (p, q) > (m, n), the ratio 2 n;p,q(X)
defined in (4) is decreasing from (0,00) onto the interval [%,%). Consequently, for
m, n, p,q € N with (p, q) > (m, n), the double inequality (2), that is,
{m= Dl = Din - L) <m,n;p,q(x) < M
(p—-Dlg-1! p'q
is valid on (0,00) and sharp in the sense that the lower and upper bounds cannot be replaced by
any larger and smaller scalars respectively.

’

Proof. By the limits (7) and (8) in Lemma 7, we obtain
lim,— g+ [x™ 1y ()] lim g+ [x" 1y ()]
limy o+ [xP+ 1P (x) | limy_ g+ [x9+ 1D (x)]
(=)™ ml(-1)"* !
T DT pI=Dg)
m!n!
T pla

i 2=

and
lim oo [ ™™ () | lim oo [ "™ (x) ]
limy— oo [ XP P () ] iMoo [ X9 (@ (1) ]
D" m - D=1 (- 1)!
T =DP (- DIEDT (g - D!
_(g-Dln-1)!
~(p-Dg-DY
Making use of the integral representation (5) yields
oo lgne ™ de ;" g e dr
JootPlg(ne*tdr [t g(r)e > dt

lim 2, 1.p.q0(X) =
Yoo m,n,p,q()

Qm,n;p,q(x) =

C. R. Mathématique — 2022, 360, 89-101
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Utilizing Lemma 4 gives

fooo[fot u™ (- u)"_lg(u)g(t_ u)du] e dr
[ ur-1t—wa-'gwg(r - wdu]e~tde’

Qm,n;p,q(x) =

Employing Lemma 5 tells us that, it suffices to prove the increasing property in ¢ of the ratio

Joum M- w"gug(t—wydu Jo sl - 9" g(sng((d - s)t)ds
JouP1(t-wilg(wg(t—wdu fol sP1(1 -9 1g(st)g((1—s)H)ds

R a -9 -9 s g(sng(( - ) Ods
V2[6p-1(1 = 5)9-1 4+ (1 - 5)P~ 15971 g(s0) g((1 — ) )ds

_ 01/2 Gm,n(S)@(s, fds

) fol/z bp,q(S)p(s, 1)ds ’

where

$i,j9)=s"11-9+1-9" s/ and @(s,0) =g(sn)g((1-9)1). (10)

Lemma 8 implies that the ratio (5)’;’:((;) isincreasingin s € (0, %) for (p, q) > (m, n). Further making

use of the inequality (6) in Lemma 6 and utilizing Lemma 9 reveal that the function 2, ;4 (x) is
decreasing in x € (0,00). The proof of Theorem 12 is complete. O

5. An alternative proof of Theorem 1

In this section, we supply an alternative proof of Theorem 1.
For g = 0, we have

Epmyn0c (%) = | (0] |y (0] - c|y'P ()]

(o0] tm oo tn [o0] t]a
:f e_Xtdtf —e_xrdt—cf —e_Xtdt
o l1l—e? o 1l—e? o l—e?

e t
=f U u - w) g gt —wdu—ct™ " 1 g(r)
o Lo
o) 1
_ mty 186NN
_fo [fos (1-9) 200 ds c]t gne *dt,

where we used the integral representation (5) and Lemma 4. From the second property in
Lemma 6, it follows that the function

1 _
f s — gl glst)g((1-s)1) ds
0 g1

e *drt

is decreasing in ¢ € (0,00) and has the limits

1
1 _ m-=1. _ gh-1 =0
fosm1(1—s)n18(“)2(((;)_3)”(15—.{[0 sTA=-97ds, 10

00, t — oo.
Consequently, basing on Lemma 10, we see that, if and only if

(m-Dl(n-1)!

1
csf s l1-9"'ds=Bum,n) =
0 (m+n-1)!

’

the function Fp, i »,0,c(x) is completely monotonic on (0, 00).

C. R. Mathématique — 2022, 360, 89-101
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For g = 1, we have
Fpmngic®) = [y @) ||y ™ 0] - |y 0| |9'? ()]
=f0 t’”‘lg(t)e‘“dtf0 t"‘lg(t)e"“dt—c/0 t”‘lg(t)e"“dtfO t7 (e de

o t
=f f u™ Nt —w)" g gt — wydu| e ' dr
o LJo

o0
C.[
0

oo 1
=f z"”"*lf s 1 -9 g(st)g((1 - s)Dds
0 0

t
f uP Ht-wi lg(wg(t—wdu|e > dt
0

1
_ thﬂ/*lf Pl - s)‘iflg(st)g((l -5) t)ds] e *dr
0

Jos" -9 g(sngl-s)nds c]
fisP=11—s5)a-1g(st)g((1 - 5))ds

1
tm+n—1f0 sp—l(l_s)q—lg(st)g((l—s) tds

=f0°°

X e *dr

f°° [ Jo Pl -9 4+ s 1 - 5 g (s g((L - ) D)ds ]
_ —-C
o fo”z[sl’—l(l _ s)q—l + sq—l(l _ s)p—llg(s[)g((l —s)t)ds

X e *dy,

1
tm+n—lj(; Pl - 9T g(sng((1 - 9)t)ds

where we used the integral representation (5) and Lemma 4. Employing the inequality (6) in
Lemma 6 and applying Lemmas 8 and 9 reveal that the function

St - 9"+ s 1 - 9™ N g(sng(L-9)0ds [y pmn(S)ep(s, s

JI2(sp=1(1 - )01 4 59-1(1— )P~ 1g(s0)g (1 -9 ds [y 4()p(s, Dds

is increasingin ¢ € (0,00), where ¢; ;(s) and ¢(s, t) are defined in (10). It is easy to see that

o bmaSp(s, 0ds 321" A= 9"+ 5L - 9™ Yds

m =17 =2
=0 [0 pg (s, 1)ds o [P —-98)a7 1 + 5971 (1 - s)P~1]ds
_Josmta-9" s Bomn)  (m-1)(n—1)!

C fsia-s9a-lds B(pg)  (p-DUg-DY

. . t .
Since lim;_ &I) =1, we acquire

o 2 Pma®e(s,0ds  fo 1m0 - 9"+ 5711 - 9™ s(1 - s)ds

lim =
im0 12, (s, )ds [/ [sP~1(1 = 5)-1 + 59-1(1 = 5)P~1]5(1 - 5)ds
B fol s"(1-9"ds B(m+1,n+1) m!n!
C lspa-sads  Bp+lg+D)  plgt
Combining these with Lemma 10 concludes that,
(1) ifand only if

(m-1Di(n-1)!
cs—mMmMmmm8m,
(p—Dlg—D!
the function Fy, i, »,¢;c (X) is completely monotonic in x € (0, 00);
(2) ifand only if ¢ = %, the function —Fj, s, n,4;c(X) is completely monotonic in x € (0, 00).

The proof of Theorem 1 is complete.
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6. Remarks

Finally, we list several remarks on our main results and their proofs.

Remark 13. The papers [2, 4, 6, 7, 42] are related to Theorem 1. Theorems 11 and 12 in this
paper are related to some results reviewed and surveyed in [14,26] and closely related references
therein.

Remark 14. Lemma 6 in this paper generalizes the second item in [16, Lemma 2.3], which reads

that the function ‘g 52(2 is decreasing from (0,00) onto (0,1).

Remark 15. Taking W (x, ) = e *' in Lemma 9 gives
OW(x,1)/0t _de *' /ot _
W, 1) et
which is decreasing in x € (—o0,00). Further setting U (x) = A(x), V(x) = B(x), and (a, b) = (0,00) in
Lemma 9 leads to Lemma 5, which was established in [43, Lemma 4]. This means that Lemma 9 in
this paper is a generalization of [43, Lemma 4]. Lemma 9 has been announced in [30, Remark 7.2].

X,

Remark 16. From the majorizing relation (n+2, n) > (n+1, n+1), we see that Theorem 12 in this
[1//(’””():)]2

paper generalizes a conclusion in [42, Theorem 2], which states that the function T

for n = 1 is decreasing from (0,00) onto the interval (727, 2£1).
Remark 17. Direct differentiation gives

Q. (x)= D (g () () -y () [y )y ()
i [y (x)y ™ (x))2 ‘

The decreasing property of Q,, ,(x) in Theorem 11 implies that the inequality
Y ) [y )y ()] = Y ™ 0y P (x) > 0,

equivalently,
a Y [w(m) (x)w(n) (x)]’ 1l/(m+n+1) (x)
> )
yMy™x)  pmrn(x)

is valid on (0, 00) for m, n € N.
We guess that, for m, n € N, the function

y" @) [y @y 0] =y @y ™ oy ™ ()

should be completely monotonic in x € (0,00).
Generally, one can discuss necessary and sufficient conditions on Q,, , € R such that the
function
" @[y ™ 0y @] = Q™D @y @y ()

and its opposite are respectively completely monotonic on (0,00).

Remark 18. It is immediate that

[w(m) (x)w(n) (x)]’[w(lﬂ) (x)w(li) (x)]
_ [w(m) (x)w(n) (x)] W/(P) (X)l//(q) @7

[w(p) (x)w(q) (x)]2
The decreasing property of 2, 5., 4(x) in Theorem 12 implies that the inequality
[v ™ 0y™ )] [y w' P @) - [v™ @y 0] P @ (x)] >0,

equivalently,

Q;n,n;p,q(x) =

P )y D (x))’ S [ ()™ (%))
yP Oy @) "~ My
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is valid on (0,00) for (p, q) > (m, n).
We guess that, for (p, q) > (m, n), the function

[w(m) (x)w(n) (X)] [W(P) (x)w(q) (X)], _ [u/(m) (x)u/(ﬂ) (x)]’[w(P) (x)w(ﬂﬂ ()]

should be completely monotonic in x € (0,00).
Generally, for (p, g) > (m, n), one can discuss necessary and sufficient conditions on Q, ;4 €
R such that the function

[ )y (0] [y Y@ (0)) = Qg [ ™ Y™ (0] Ty P (09D (x)]
and its opposite are respectively completely monotonic on (0,00).

Remark 19. For n = 2 and two nonnegative integer tuples a = (a1, az,...,a,) € Nj and § =
(B1,B2,...,Bn) eN", let

n n
PaiCo () = rljlw(“”(x) ~Cap rH:lw““ (x)

and
n:l w(ar) (x)
e, Wb (x)

on (0,00), where we denote w(o) (x) = —1 for our own convenience. It is clear that

Qa,ﬁ (x) =

Pak,0),(k,0:Ck 0,000 ) = Fh~Cot o,k XD Qe2k,0),(k, k) (X) = Fk,2 (1),
Qum+n,0,0m,m (X) = Qm,n(x), Qum,n),(p,q) (%) = Qm,n;p,q (X).
We guess that, if a > S, the function Q, 5(x) is increasing from (0, 00) onto the interval
ar! (a,—1)!
rH1 /! Hl Br—D1J

Generally, for a > f§, one can discuss necessary and sufficient conditions on Cy g € R such that
the function Pg g;c, ,(x) and its opposite are respectively completely monotonic on (0,c0).

Remark 20. Gurland’s ratio

INQINC)
[T((s+1)/2)]?
was firstly defined in [10]. In appearance, we can regard the functions Qy,,(x) and 2, n;p,q(x)
defined in (3) and (4) as analogues of Gurland’s ratio T'(s, £). In [32, 38], there existed a detailed
survey and review of Gurland’s ratio 7'(s, ) and related results. In [46], the functions T( p) and

T(s, t)=

T( ; 2) with their statistical backgrounds were mentioned.

Remark 21. The ratios of finitely many gamma functions and polygamma functions have
applications in differential geometry, manifolds, statistics, probability, and their intersections.
See, for example, the papers [8,11,33,34,48].

Remark 22. As a generalization of decreasing property of real functions of one variable, one
can consider (logarithmically) complete monotonicity and completely monotonic degrees. For
details, please refer to [14,19,31,39,41, 44,49] and the review article [26].

Remark 23. This paper is a revised version of the electronic preprint [15] and is the eighth one
in a series of articles including [17, 18,20-25, 29].
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