

Comptes Rendus Mathématique

Henry Fallet

Cherednik algebra for the normalizer

Volume 360 (2022), p. 47-52

Published online: 26 January 2022

https://doi.org/10.5802/crmath.281

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2022, 360, p. 47-52 https://doi.org/10.5802/crmath.281

Representation theory / Théorie des représentations

Cherednik algebra for the normalizer

Henry Fallet^a

^a 33 Rue St Leu, 80000 Amiens, LAMFA, UMR 7352 CNRS-UPJV, France E-mail: henry.fallet@u-picardie.fr

Abstract. Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category \mathcal{O} for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group W. We announce a generalization of this result to the extension of the Hecke algebra associated to the normalizer of a reflection subgroup.

2020 Mathematics Subject Classification. 20C08.

Manuscript received 29th April 2021, revised 6th July 2021 and 11th October 2021, accepted 9th October 2021.

Version française abrégée

Dans [14] est définie une extension de l'algèbre de Hecke d'un groupe fini de reflexions complexes W. On la note $H(W,W_0)$, elle est réalisée à partir du normalisateur d'un sous groupe de réflexions W_0 de W. Le but de cet article est d'établir un résultat équivalent à celui de [9, théorème 5.12] pour la catégorie des $H(W_0,W)$ -modules de dimension fini. Pour cela nous allons définir différents objets : l'algèbre de Cherednik associée à $H(W,W_0)$, éléments d'Euler, Opérateurs de Dunkl-Opdam, catégorie \mathcal{O} . Puis nous construisons explicitement le « foncteur KZ » qui va réaliser l'équivalence de catégorie. Nous donnons ensuite une construction similaire permettant d'omettre le groupe de réflexions W.

1. Introduction

Let V be a \mathbb{C} -vector space of finite dimension n. Let W < GL(V) be a finite complex reflection group. Let $W_0 < W$ be a reflection subgroup of W. According to [3], we can associate to W a braid group B(W) and a Hecke algebra H(W). In [14] is introduced an extension of H(W) as an algebra associated to the normalizer $N_W(W_0)$, called its Hecke algebra and denoted $H(W, W_0)$, for more results see [10, 11].

We refer to [3] for the general definitions used below. We have a surjection $\pi: B(W) \to W$ sending a braided reflection of hyperplane H to the distinguished reflection s_H of hyperplane H. We denote $\mathscr A$ the hyperplane arrangement of W. Let $\widehat{B_0}:=\pi^{-1}(N_W(W_0))$ and J be the two-sided ideal of $\mathbb C\widehat{B_0}$ generated by $\langle \sigma_H^{m_H}=1, \ H\in \mathscr A\setminus \mathscr A_0$ and $\sigma_H^{m_H}=\sum_{k=0}^{m_{H}-1}a_{H,k}\sigma_H^k, \ H\in \mathscr A_0\rangle$ where m_H is the order of the pointwise stabilizer of H in W, denoted W_H and the scalars $(a_{H,k})_{k\in\{0,\dots m_H-1\}}$ are complex numbers invariant under the action of $N_W(W_0)$, $\forall \ w\in N_W(W_0)$, $a_{w(H),k}=a_{H,k}$ for all $k\in\{1,\dots,m_H-1\}$. As in [14] we define the Hecke algebra of the normalizer as the quotient algebra of $\mathbb C\widehat{B_0}$ by the ideal J.

There is a second equivalent definition. Let $K:=\mathrm{Ker}(\pi_1(X/W)\to\pi_1(X_0/W_0))$ and $\widetilde{B_0}:=\frac{\widehat{B_0}}{K}$ where $X:=V\setminus\bigcup_{H\in\mathscr{A}}H$ and $X_0=V\setminus\bigcup_{H\in\mathscr{A}_0}H$. Then

$$H(W, W_0) \simeq \frac{\mathbb{C}\widetilde{B_0}}{\langle \sigma_H^{m_H} = \sum_{k=0}^{m_H-1} a_{H,k} \sigma_H^k, \quad H \in \mathscr{A}_0 \rangle}$$

We introduce Cherednik algebras in this new context, and we prove

Theorem 1. There exists an equivalence of categories between the quotient category $\mathcal{O}/\mathcal{O}_{tor}$ and the category of $H(W, W_0)$ -modules of finite dimension, where \mathcal{O} is a highest weight category associated to the Cherednik algebra of the pair (W_0, W) .

2. Construction of the KZ_0 -functor

2.1. The Cherednik algebra of the pair (W_0, W)

We denote $A(W_0, W)$ this algebra, and we define it as an algebra admitting a triangular decomposition in the sense of [13]. As a vector space, $A(W_0, W)$ is $\mathbb{C}[V] \otimes \mathbb{C}N_W(W_0) \otimes \mathbb{C}[V^*]$ and we add the following relations on the generators of $\mathbb{C}[V]$, $\mathbb{C}[V^*]$ and $\mathbb{C}N_W(W_0)$,

$$\begin{split} &[x',x] = 0 \text{ for all } (x,x') \in V^* \times V^* \\ &[y,y'] = 0 \text{ for all } (y,y') \in V \times V \\ &[y,x] = tx(y) + \sum_{H \in \mathcal{A}_0} \frac{\alpha_H(y)x(v_H)}{\alpha_H(v_H)} \sum_{j=0}^{m_H-1} m_H(k_{H,j+1} - k_{H,j}) \epsilon_{H,j} \end{split}$$

where $\epsilon_{H,j}=\frac{1}{m_H}\sum_{w\in W_H\setminus\{\mathrm{id}\}}\det(w)^jw$ is a primitive orthogonal idempotent of $\mathbb{C}W_H$, $\alpha_H\in V^*$ such that $\ker(\alpha_H)=H$. The vector $v_H\in V$ is such that $\mathbb{C}.v_H$ is a W_H -stable complement of H. The set $(k_{H,j})_{j\in\{0,\dots,m_{H}-1\}}$ is a set of complex number such that $k_{w(H),j}=k_{H,j}$ and $t\in\mathbb{C}$. In order to define a KZ functor, we need to assume $t\neq 0$. Therefore, up to renormalization we can assume t=1 which we do from now on.

As noticed by the referee, this algebra is a special case of a symplectic reflection algebra as in [6], for $N_W(W_0)$ acting on $V \oplus V^*$ in natural way.

2.2. Dunkl-Opdam operators

We denote by $\mathcal{D}(X)$ the algebra of differential operators over X. In [11] is introduced a differential 1-form, $N_W(W_0)$ -equivariant and integrable,

$$\omega_0 = \sum_{H \in \mathcal{A}_0} a_H \frac{\mathrm{d}\alpha_H}{\alpha_H} \in \Omega^1(X) \otimes \mathbb{C}W_0$$

where $a_H = \sum_{j=0}^{m_H-1} m_H k_{H,j} \epsilon_{H,j}$. We build a connection on a trivial vector bundle over X, by $\nabla := d + \omega_0$. This connection is flat and $N_W(W_0)$ -equivariant. The covariant derivative of this connection in the direction of $y \in V$ is a differential operator called Dunkl–Opdam operator, noted T_V .

Proposition 2. For all $y \in V$, $T_y := \partial_y + \sum_{H \in \mathcal{A}_0} \frac{\alpha_H(y)}{\alpha_H} a_H \in \mathcal{D}(X) \times N_W(W_0)$. This family of differential operators satisfies two properties $\forall (y, y') \in V \times V$,

$$[T_{\nu}, T_{\nu'}] = 0$$

and $\forall y \in V$, $\forall w \in N_W(W_0)$, $w.T_y.w^{-1} = T_{w(y)}$.

We introduce the algebra $A(W, W_0)_{reg} = \mathbb{C}[X] \otimes_{\mathbb{C}[V]} A(W, W_0)$. We can define a faithful representation of $A(W_0, W)$.

Theorem 3 (Dunkl embedding).

(1)
$$\Phi: \quad A(W_0, W) \longrightarrow \mathcal{D}(X) \rtimes N_W(W_0)$$
$$x \in V^* \longmapsto x$$
$$w \in N_W(W_0) \longmapsto w$$
$$y \in V \longmapsto T_V$$

is an injective morphism of algebras.

(2) By localization, the morphism Φ becomes an isomorphism of algebra. We note Φ_{reg} the isomorphism between $A(W_0, W)_{reg}$ and $\mathcal{D}(X) \rtimes N_W(W_0)$.

2.3. The category ∅ -

Let $\operatorname{eu}_0 = \sum_{y \in \mathscr{B}} y^*.y - \sum_{H \in \mathscr{A}_0} a_H$, where \mathscr{B} is a basis of V. This operator is called the Euler element. It induces an inner graduation on $A(W_0, W)$, $A(W_0, W)^i := \{a \in A(W_0, W) \mid [\operatorname{eu}_0, a] = ia\}$ for all $i \in \mathbb{Z}$, because $[\operatorname{eu}_0, x] = x$, $[\operatorname{eu}_0, y] = -y$, $[\operatorname{eu}_0, w] = 0$.

For every simple $\mathbb{C}N_W(W_0)$ module E, $\sum_{H \in \mathscr{A}_0} a_H \in Z(\mathbb{C}N_W(W_0))$ acts on E by multiplication by a scalar c_E . We define a partial ordering on $Irr(N_W(W_0))$: E < E' if $c_E - c_{E'} \in \mathbb{Z}_{>0}$.

For each $E \in Irr(N_W(W_0))$ we define a $A(W_0, W)$ module called standard object or Verma module,

$$\Delta(E) = \operatorname{Ind}_{\mathbb{C}[V^*] \otimes \mathbb{C} N_W(W_0)}^{A(W_0, W)} E$$

The category $\mathcal O$ is a full sub category of the category of $A(W_0,W)$ modules, where the modules are finitely generated, locally nilpotent for the action of $\mathbb C[V^*]$ and isomorphic to the direct sum of the generalized eu_0 -eigenspaces. According to [1,2,9], the category $\mathcal O$ is Abelian, Artinian. The object $\Delta(E)$ is indecomposable. The category $\mathcal O$ is highest weight with $\{\Delta(E)\}_{E\in\mathrm{Irr}(N_W(W_0))}$ as the set of standard object. Every standard object $\Delta(E)$ admits a simple head L(E). Every simple object in $\mathcal O$ is isomorphic to some L(E) and L(E) admits a projective cover. Every object M of $\mathcal O$ admits a finite composition series. The B.G.G reciprocity law is satisfied inside $\mathcal O$.

2.4. Functor KZ_0

Let $\delta := \prod_{H \in \mathscr{A}} \alpha_H \in \mathbb{C}[V]$. Let $(A(W_0, W) - \text{mod})_{tor}$ be the subcategory of $A(W_0, W) - \text{mod}$ with δ -torsion, i.e. $M \in A(W_0, W) - \text{mod}$, $M_{tor} := \{m \in M \mid \exists \ n \geq 0 \ \delta^n . m = 0\}$, then $M \in (A(W_0, W) - \text{mod})_{tor}$ if $M_{tor} = M$. Let $\mathcal{O}_{tor} := \mathcal{O} \cap (A(W_0, W) - \text{mod})_{tor}$

We have a localization functor,

Loc:
$$A(W_0, W)$$
-mod $\longrightarrow A(W_0, W)_{reg}$ -mod $M \longmapsto A(W_0, W)_{reg} \otimes_{A(W_0, W)} M$

This functor induces a fully faithful functor $\frac{\mathscr{O}}{\mathscr{O}_{tor}} \to A(W_0, W)_{reg}$ -mod.

The Dunkl embedding gives an equivalence of categories between $A(W_0, W)_{reg}$ -modules

The Dunkl embedding gives an equivalence of categories between $A(W_0,W)_{reg}$ -modules and $\mathscr{D}(X) \rtimes N_W(W_0)$ -modules. We also have the following equivalence of categories between $\mathscr{D}(X) \rtimes N_W(W_0)$ -modules and $e.(\mathscr{D}(X) \rtimes N_W(W_0)).e$ -modules and with $\mathscr{D}(X)$ -modules where $e = \frac{1}{|N_W(W_0)|} \sum_{g \in N_W(W_0)} g$ it is an idempotent of $\mathbb{C}N_W(W_0)$. From the results of [4] we get an isomorphism of algebras $\mathscr{D}(X)^{N_W(W_0)} \simeq \mathscr{D}(X/N_W(W_0))$, thanks to the fact that $N_W(W_0)$ acts without fixed points on X.

Let us examine the structure of $\mathcal{D}(X) \rtimes N_W(W_0)$ -modules for the case of a localized standard object. The localized Verma module $\Delta(E)_{reg}$ is a free $\mathbb{C}[X]$ -module of dimension $\dim(E)$, so it corresponds to an algebraic vector bundle over X. We endow this vector bundle with a connection by considering the action of T_y on an element of $\Delta(E)_{reg}$. This leads to the formula

$$\nabla_y(P\otimes v):=\partial_y(P\otimes v)=\partial_y(P)\otimes v+\sum_{H\in\mathcal{A}_0}\frac{\alpha_H(y)}{\alpha_H}.(P\otimes a_Hv)$$

Proposition 4. ∇_y is a flat, $N_W(W_0)$ -equivariant connection with regular singularities over V.

Since this property is true for every standard object, it is also true for every object in \mathcal{O} . Applying the Riemann–Hilbert–Deligne correspondance, we get a horizontal sections functor $\frac{\mathcal{O}}{\mathcal{O}_{tor}} \to \mathbb{C}\pi_1(X/N_W(W_0))$ -mod, $M \to ((M_{reg}^{N_W(W_0)})^{an})^{\nabla}$. According to [11, Proposition 2.6], this action by monodromy factorizes through $H(W,W_0)$. So we get a functor $KZ_0: \frac{\mathcal{O}}{\mathcal{O}_{tor}} \to H(W,W_0)$ -mod which is exact and fully-faithful. From classical results (see [15]), we get that KZ_0 is representable by a projective object noted P_{KZ_0} . We prove the following

Theorem 5. KZ_0 is fully faithful and essentially surjective from the category $\frac{\mathcal{O}}{\mathcal{O}_{tor}}$ to the category of $H(W, W_0)$ -modules of finite dimension.

3. Forgetting W

In this section we provide a related result involving only W_0 , and not the ambient group W. The general setting is as follows. Let G be a finite subgroup of GL(V). Let G_0 be a normal subgroup of G generated by reflexions. Let \mathcal{R}_0 be the set of reflexions of G_0 and \mathcal{A}_0 the arrangement of reflecting hyperplanes of G_0 . The first goal is to build up a Hecke algebra for G from the Hecke algebra of G_0 generalizing $H(W_0, W)$ for $G = N_W(W_0)$.

Let X^+ be the subspace of V on which G acts freely and let X_0 be the subspace of V on which G_0 acts freely. The manifold $X_0 \setminus X^+$ is of codimension > 2 then $\pi_1(X^+) \simeq \pi_1(X_0)$ [12, Theorem 2.3]. Since G_0 acts freely on X_0 , it also acts freely on X^+ therefore the projection maps $X_0 \to X_0/G_0$ and $X^+ \to X^+/G_0$ are covering maps and we get two short exact sequences.

The exactness and the commutativity of the diagram together imply $\pi_1(X^+/G_0) \simeq \pi_1(X_0/G_0)$. The braid group B_0 of G_0 is a normal subgroup of $B := \pi_1(X^+/G)$, we get a short exact sequence

$$1 \longrightarrow B_0 := \pi_1(X_0/G_0) \longrightarrow \pi_1(X^+/G) \longrightarrow G/G_0 \longrightarrow 1$$

Let I be the ideal of $\mathbb{C}B_0$ generated by the relations $\sigma_H^{m_H} = \sum_{k=0}^{m_H-1} a_{H,k} \sigma_H^k$ for σ_H a braided reflection associated to $H \in \mathcal{A}_0$. Then the Hecke algebra of G_0 is the quotient $H_0 := \frac{\mathbb{C}B_0}{I}$. According to the now proven BMR freeness conjecture (see the references of [11] or its weaker version in Characteristic 0 [5]) it is an algebra finitely generated of dimension $|G_0|$. Let $I^+ = \mathbb{C}B \otimes_{\mathbb{C}B_0} I$ be the ideal which define the Hecke algebra of G, $H(G) := \frac{\mathbb{C}B}{I^+} \simeq \mathbb{C}B \otimes_{\mathbb{C}B_0} H_0$ is of dimension |G|.

Let us make a link between this new algebra and the algebra $H(W_0, W)$. We defined $H(W_0, W)$ as a quotient of the algebra $\mathbb{C}\widetilde{B}_0$. We defined \widetilde{B}_0 as the quotient of $\pi_1(X/N_W(W_0))$ by $K := \text{Ker}(\pi_1(X) \to \pi_1(X_0))$. Since $X_0 \setminus X^+$ has codimension > 2

$$K = \operatorname{Ker}(\pi_1(X) \longrightarrow \pi_1(X_0)) \simeq \operatorname{Ker}(\pi_1(X/N_W(W_0)) \longrightarrow \pi_1(X^+/N_W(W_0)))$$

And $\widetilde{B}_0 \simeq \pi_1(X^+/N_W(W_0))$ is our group $\pi_1(X^+/G) =: B$. As a result, the algebra $H(W_0, W)$ is the same as H(G).

Let us consider the category \mathcal{O}^0_{tor} the full subcategory of \mathcal{O} of module annihilated by a power of $\delta_0 := \prod_{H \in \mathcal{A}_0} \alpha_H$. We have

Theorem 6. KZ_0 is fully faithful and essentially surjective from the category $\frac{\mathcal{O}}{\mathcal{O}_{tor}^0}$ to the category of finite dimension H(G)-modules.

A priori \mathcal{O}_{tor} and \mathcal{O}_{tor}^0 are differents. Actually, we can prove that these two categories are the same. Let $M \in \mathcal{O}_{tor}^0$ then $\text{Loc}(M) = \mathbb{C}[X] \otimes_{\mathbb{C}[X_0]} (\mathbb{C}[X_0] \otimes_{\mathbb{C}[V]} M)$, so $M \in \mathcal{O}_{tor}$.

Conversely, let M be a module inside \mathcal{O}_{tor} , we would like to prove $M_{reg^0} := \mathbb{C}[X_0] \otimes_{\mathbb{C}[V]} M = 0$. Let $i: X^+ \hookrightarrow X_0$ be a continuous injection of the open set X^+ inside X_0 . We denote by \mathcal{O}_{X^+} the structural sheaf of X^+ and X_0 the structural sheaf of X_0 . We denote by X_0 the sheaf of algebraic differential operators over X_0 and X_0 the sheaf of algebraic differential operators over X_0 , [8, definitions 2.1.5 and 2.1.12].

We have a morphism of ringed space $(i,i^{\sharp}):(X^+,\mathcal{O}_{X^+})\to (X_0,\mathcal{O}_{X_0})$ where $i^{\sharp}:i^{-1}\mathcal{O}_{X_0}\to\mathcal{O}_{X^+}$ is the identity map, then $i^{\sharp}_x:\mathcal{O}_{X_0,x}\to\mathcal{O}_{X^+,x}$ is the identity too. The pull back functor is

$$i^*: \mathcal{D}_{X_0}\operatorname{-mod} \longrightarrow \mathcal{D}_{X^+}\operatorname{-mod}$$

 $(M, \nabla_0) \longmapsto (i^*M, i^*\nabla_0)$

We have two functors $A(N_W(W_0))_{reg}^0$ -mod $\to \mathcal{D}_{X_0}$ -mod, $M \to (M, \nabla_0)$ and $A(N_W(W_0))_{reg}$ -mod $\to \mathcal{D}_{X^+}$ -mod, $M \to (M, \nabla_0)$.

We need to prove $i^*M_{reg^0}=0$. We have for all $x\in X\subset X_0$, $M_{reg,x}=0$ it is due to $M\in \mathcal{O}_{tor}$. Since M_{reg^0} and M_{reg} are locally free \mathcal{O}_{X_0} -module, respectively \mathcal{O}_{X_0} -module, $(i^*M_{reg^0})_x\simeq M_{reg,x}$. Therefore, $(i^*M_{reg^0})_x\simeq M_{reg^0,x}\simeq \mathcal{O}_{X_0,x}^n\simeq 0$ then n=0.

Since $i^*M_{reg^0}$ is a locally free \mathcal{O}_X module, there exists an open affine covering $(U_i)_{i\in I}$ of X such that $(i^*M_{reg^0})_{|U_i} \simeq (\mathcal{O}_{X_{|U_i}})^n = 0$, thus $i^*M_{reg^0} = 0$ so $M_{reg^0} = 0$ then $M \in \mathcal{O}_{tor}^0$. The categories \mathcal{O}_{tor} and \mathcal{O}_{tor}^0 are equals. The proof of the equivalence of categories induced by KZ_0 uses the same arguments as for 5.

Acknowledgements

These results are part of my PhD-Thesis [7] at University Picardie Jules Verne under the supervision of Prof. Ivan Marin. I would like to thank the referee, which suggested forgetting the ambient group W.

References

- [1] G. Bellamy, U. Thiel, "Highest weight theory for finite-dimensional graded algebras with triangular decomposition", *Adv. Math.* **330** (2018), p. 361-419.
- [2] C. Bonnafé, R. Rouquier, "Cherednik algebras and Calogero-Moser cells", https://arxiv.org/abs/1708.09764, 2017.
- [3] M. Broué, G. Malle, R. Rouquier, "Complex reflection groups, braid groups, Hecke algebras", *J. Reine Angew. Math.* **1998** (1998), no. 500, p. 127-190.
- [4] R. C. Cannings, M. P. Holland, "Differential operators on varieties with a quotient subvariety", *J. Algebra* **170** (1994), no. 3, p. 735-753.
- [5] P. Etingof, "Proof of the Broué–Malle–Rouquier conjecture in characteristic zero (after I. Losev and I. Marin-G. Pfeiffer)", *Arnold Math. J.* **3** (2017), no. 3, p. 445-449.
- [6] P. Etingof, V. Ginzburg, "Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism", *Invent. Math.* **147** (2002), no. 2, p. 243-348.
- [7] H. Fallet, "Opérateurs de Dunkl-Opdam, Catégorie \mathcal{O} , Algèbres de Cherednik", PhD thesis in preparation at Université Picardie Jule-Verne.
- [8] V. Ginzburg, "Lectures on D-modules", Online lecture notes, available at Sabin Cautis' webpage http://www.math.columbia.edu/~scautis/dmodules/ginzburg.pdf, with collaboration of Baranovsky, V. and Evens S, 1998.
- [10] T. Gobet, A. Henderson, I. Marin, "Braid groups of normalizers of reflection subgroups", https://arxiv.org/abs/2002. 05468, to appear in Ann. Inst. Fourier, 2020.
- [11] T. Gobet, I. Marin, "Hecke algebras of normalizers of parabolic subgroups", https://arxiv.org/abs/2006.09028, 2020.
- [12] C. Godbillon, Eléments de topologie algébrique, Editions Hermann, 1971.

- [13] R. R. Holmes, D. K. Nakano, "Brauer-type reciprocity for a class of graded associative algebras", *J. Algebra* **144** (1991), no. 1, p. 117-126.
- [14] I. Marin, "Artin groups and Yokonuma–Hecke algebras", Int. Math. Res. Not. 2018 (2018), no. 13, p. 4022-4062.
- [15] J. J. Rotman, An introduction to homological algebra, Springer, 2008.