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Abstract. In this note, we investigate the kernel-type estimator of the nonparametric expectile regression
model for functional data. More precisely, we establish the almost complete convergence rate of this estima-
tor under some mild conditions. Finally, the usefulness of the expectile regression is discussed, in particular,
the connection with the regression function.

Résumé. Dans cette note, nous nous intéressons au probléeme d’estimation non-paramétrique de la fonction
de régression expectile lorsqu’on régresse une variable réelle sur une variable fonctionnelle. Plus précisé-
ment, nous obtenons la convergence presque compléte de 1'estimateur a noyau de la fonction de régression
expectile sous des conditions générales. Nous discutons brievement notre résultat et mettons en évidence le
lien avec la fonction de régression.

Manuscript received 8th July 2019, revised 25th November 2019, accepted 24th February 2020.

1. Introduction

The mean regression analysis has proved to be a flexible tool which provides a powerful statistical
modeling framework in a variety of applied and theoretical contexts, where one intends to model
the predictive relationship between related responses and predictors. Mean regression, however,
only captures the conditional mean of the response and is not sufficient to capture a complete
picture of the relationship between the response variable and predictors, in particular, when deal-
ing with heterogeneous data. This motivates the introduction of quantile regression by [13], that
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plays a fundamental role in various statistical applications. In the literature in risk management
and, more generally, in mathematical economics and mathematical finance modelling, it is com-
monly known as Value-at-Risk (VaR). It complements the classical regression on the conditional
mean by offering a more useful tool for examining how the regressors influence the entire distri-
bution of a response variable. Expectiles as defined by [2], [18], can be introduced in two ways,
either as the generalization of the ordinary mean or as an alternative to quantiles. Indeed, from
the classical regression, we get the high sensitivity to the extreme value which permits for more
reactive risk management. On the other hand, from quantile regression we inherit the possibility
to acquire an exhaustive information on the impact of explanatory variable on the response one
by exploring its conditional distribution. In this work, we consider the expectile regression to an-
alyze the effect of a functional covariate on the scalar response variable. The expectile regression
has been widely studied in applied areas such as econometrics, finance and actuarial science, see
for instance [14] or [10] and the reference therein for more details. However, the literature on the
theoretical properties of this model is still limited. We cite, for instance, [6] who generalized the
mean regression to the expectile regression by means of the minimisation of an asymmetric qua-
dratic loss function and presented their main properties. The theoretical and numerical results
of the comparison study for these risk measures are given in [5] and indicate that the expectiles
are perfectly reasonable alternatives to the Value-at-Risk (VaR) and expected shortfall (ES) risk
measures. In [20] authors proposed an estimation of the VaR and ES or conditional VaR by using
the expectiles. While, these cited works consider the finite dimensional case, the functional case
problems form a basically unsolved open problem in the literature. We aim at filling this gap in
the literature by deriving the almost complete convergence rate kernel estimator of the expectile
regression. It is worth noticing that questions of functional data analysis are particularly interest-
ing in many applied areas. For good sources of references to research literature in this area along
with statistical applications consult the monographs of [11] and [19] or the special issue [4]. It
should be noted that the recent technological development of the measuring instruments, allows
the data recording over a thinner discretization grid, which consists the principal motivation of
the functional statistics. In this context, the economic or financial data, which are the principal
applied areas of the expectile model, constitute a natural source of functional data. Moreover,
one of crucial issue in these areas is to find the best strategy for managing the volatility of the
portfolios. Therefore, exploring the functional path of this data in risk analysis has a great impact
in practice. At this stage the expectile regression plays an important role. It allows to control the
behavior of the data in the center as well as in the tails. Its main features are the subadditivity
and the sensitivity to the magnitude of the extreme losses. In particular it is well documented
that the expectile model is the only elicitable coherent risk measure (see, [6]). As far as we know,
the problem that we consider is open up to now, which motivated us to provide a further study.
Nevertheless, other nonparametric functional regression models such as the conditional expec-
tation and the conditional quantiles, are also widely applied. Among the wide literature concern-
ing the nonparametric study of this functional model we only refer to [3], [11], [15], [16] and the
references therein.

This note is structured as follows. In the following section, we introduce the kernel estimator
of the functional expectile regression. In Section 3, we will establish our main result that is the
almost complete convergence of the kernel estimator. Some comments on the importance of the
studied model are given in Section 4. The details of the proof can be obtained upon request.

2. Model and estimator

Let (X;, Y;) for i =1,...,n, be a sample of independent and identically distributed pairs as (X, Y)
which is a random vector valued in & x R, where & is a semi-metric space. In the sequel, d
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denotes a semi-metric on &%, x is a fixed point in &, N, is a fixed neighborhood of x and the
closed ball centered at x and of radius « is denoted by

B(x,a) ={y € & such thatd(y,x) < a}.

The aim of this note is to estimate the p'”* conditional expectile, of Y given X = x, denoted by
0(p; x) which is defined by

0(p; x) = argmin [E[p(Y = 0*Liy_ps0| X =x] +E[A-p)(Y - D*Ly_p=o | X =x]], (D

where 1 4 is the indicator function of the set A, see primarily [18] and also [9] and [1] for further
references. It is worth noticing that (1) generalizes the conditional expectation of Y given X = x,
which coincides with 0(p; x) when specifically p = 1/2. On the other hand, (1) is similar to the
conditional p-quantile of Y given X = x, which can be obtained by replacing (Y — £)?> by |Y — |
in (1). By a simple manipulation, we show that 8 (p; x) is the unique solution with respect to ¢ of

Gi(t;x)
{(p;x) =G(t;x) = Cotn)
where
(px) =15,
{ Gi(;x) = -E[(Y - l‘)]l(Y—t)50|X= x],
Go(t;x) = E[(Y = )L(y—p>0| X = x].

Thus, due to the monotony of the function G(-; x), we derive that
O0(p;x) =inf{t e R: G(t; x) = {(p; x)}.

Now;, let K () be a kernel function and & := h,, be a sequence of positive real numbers tending to

zero as n tends to infinity. The kernel estimator of the function G(-; x) is given by

Y K (h7td(x, Xi)) (Y — D1y- =0

?:l K(h_ld(x! Xt)) (Yi - t)]l(Y[—t)>0

én,hn(t;X) = , for teR.

It follows that the kernel estimator of the conditional expectile 8(p; x), denoted by §n'hn (p; x) is
explicitly defined by
Onn, (p;x) =inf{t eR: Gy, (£ %) = {(p; x)}.

3. Asymptotic properties of the estimator

In order to establish the almost complete convergence of the estimator ) n,hy, (p; X) for a fixed point
x in &, we consider the following assumptions.

(A1) P(X € B(x, hy)) = ¢px(hp) >0,
(A2) For i = 1,2, the functions G;(-;x) are continuously differentiable functions in R and
satisfy the following Lipschitz’s condition: V (f1, &) € R, V x1, X2 € Ny,

1Gi(t1;%1) = G (125 %2)| < C(d% (x1, x2) + |1y — 121”) for a;, b; > 0.
(A3) Foreach m =2 and for all x' € N,
E[IYI"| X =x"] omx) <oo.

(A4) K(-) is a measurable function with support [0,1] and satisfies: there exist C»,C3 > 0
such that
0<Cr<K()<(C3<00.
(A5) The smoothing parameter fulfills n¢y(h,)/logn — oo as n — co.

The main result of this note is stated in the following theorem.
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0G(0(p;x);x)

Theorem 1. Under the Assumptions (A1)-(A5) and if min (Gg @(p; x);x), o1

almost completely, as n — oo,

R ' L b logn
101, (30 = 0(p; )] = Oy ) + O (W) '

Remark 2. Theorem 1 can be considered as a generalization of the result concerning the almost
complete of the kernel estimator of the regression operator investigated in [11]. Indeed, it is easy
to prove that

) >0, we have,

m(x):=0(0.5;x) =E[Y|X = x] and m(x) := é\n,hn (0.5; x).

Hence, with a simple modification of the condition (A2), considering the operator m(-), we obtain
the same convergence rate as in [11]

4. Some comments
Some remarks on the hypotheses

It is clear that our main result is stated under standard conditions of the almost complete
consistency in nonparametric functional statistics. In particular the structure of the considered
assumptions match to those given in the monograph by [11]. They cover the three structural axes
of this study (data, model and estimator). More precisely, assumptions (Al) and (A2) allow to
explore the dimensionality of the data and the model, respectively. Whilst (A4) and (A5) concern
the main parameters of the proposed estimator, i.e., that are the kernel K(-) and the smoothing
parameter h,,. Recall that the integrability condition (A3) is a technical assumption allowing the
application of the Bernstein’s inequality to obtain the almost complete convergence. Of course
this condition can be weakened if we limit our study to the convergence in probability.

Some remarks on the expectile regression

Although they present differences in their construction, both quantiles and expectiles share sim-
ilar properties. The main reason for this, as shown in [12], is the fact that expectiles are precisely
quantiles but for a transformation of the original distribution. [1] established an important fea-
ture is that quantiles and expectiles of the same distribution coincide under the hypothesis of
weighted symmetry and pointed out that inference on expectiles is much easier than inference
on quantiles. Notice that quantiles are not always satisfactory and can be criticized for being
somewhat difficult to compute as the corresponding loss function is not continuously differen-
tiable. The key advantage of the expectile over the quantile is its efficiency and computing expe-
dience, although it does not have a direct interpretation as the quantile in terms of the relative
frequency, see [7]. Another substantial difference is that expectiles rely on the distance to obser-
vations, whereas quantiles only use the information whether an observation is below or above
the predictor. From an empirical point of view the use of the expectation is more informative
than the probability distribution (characterized by the frequency of the data), because the expec-
tation is based on both (values of the data and their frequencies). On the other hand, the expec-
tile regressions are used to construct alternative estimators for both known risk measures such
as Conditional VaR (CVAR) or the Conditional Expected Shortfall (CES) (see [20]). Thus, the main
contribution of this research is the preliminary study of the nonparametric estimation of CVAR
and the CES in functional statistics. From a practical point of view, the expectile regression, as a
risk measure, allows to overcome the drawbacks of the CVAR or CES such as the non-coherence
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and the non-elicitability. For further details about the use of the expectile we refer to the excel-
lent study of [8]. For example, [2] construct expectiles to estimate production frontiers and pro-
vides an additional argument for using expectiles by stating that expectile regression is a way to
treat asymmetric consequences as it places different weights on positive and negative residuals.
For a recent comparison between quantile and expectile regression and references see [21]. In
conclusion we can say that the expectile regression is of potential interest in theory as well as in
practice.

Some perspectives

As a new model in nonparametric functional statistics, the expectile regression model, opens
the way for further research and applications in the future. The natural perspective of this work
is the implementation of this estimator in practice. Of course the applicability of this estimator
is related to the choice of the different parameters involved in the estimator. Some preliminary
simulation studies show that the cross validation procedure used by [11] on classical regression
provides satisfactory results. However, it would be more important to introduce a specific se-
lection procedure of the expectile regression. The second prospect of this work is an extension
to the multidimensional framework where Y € R?. On the basis of the multidimensional expec-
tile in the paper of [17], let us introduce the conditional multidimensional expectile : Let | - || be
a norm on R%. We denote by (Y1)+ the vector (Y1)+ = (YD+,..., (Y).)" and by (Y)- the vector
(Y)_ =(Y1)_,...,(Yz)_)T. We define the following scoring function, for all y € R¢,

s y) =l Y-y I+ A1 - )y -1+ .
We call a multivariate expectile regression any minimizer

y* € argmin E[s4(Y,y) | X = x].
yeRd
It will be of interest to consider this extension in a future investigation. In the present work we
have considered the properties of the nonparametric conditional expectile in the complete data
and in the independent framework. A challenging task would be to consider an extension of our
results to the censored data and dependent observations, which requires nontrivial mathematics,
that goes well beyond the scope of the present paper.
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