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Abstract. We construct a relation between the leading pre-factor function A(z) and the singulants u0(z),
u1(z), and recurrence relation of the singulants at higher levels for the solution of singularly-perturbed
first-order ordinary general differential equation with a small parameter via the method of multi-level
asymptotics. The particular equation is chosen due to its appearance at every level of multi-level asymptotic
approach for the first-order differential equations. By the relations derived by the asymptotic analysis from
the equation, Stokes and anti-Stokes lines can be extracted more quickly and so which exponentials of
the expansions are actually contributed in each sector of the complex plane can be deduced faster. Multi-
level asymptotic analysis of the first-order singular equations and the Stokes phenomenon may be done
straightaway from the higher levels of the analysis.
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1. Introduction

In this paper, the method of multi-level asymptotics introduced by Say in [32] will be considered
by analysing a general singularly perturbed linear ordinary differential equation of the first-order.
Multi-level asymptotics is the method for extracting the exponentially small terms; unlike the
usual perturbation expansion, it enables us to study the asymptotic behaviour of the exponen-
tially small terms which can be quite large as certain lines are crossed. Therefore, it constitutes
“asymptotics beyond all orders”. Extracting the exponentially small terms via the growing subject
of exponential asymptotics has been studied by many, for example, [5, 6, 8, 9, 14, 24, 25, 27, 29].
The basis of this work is similar to the methods of hyperasymptotics [6]. However, the way it ap-
proaches the resultant remainders and the related truncation points of each level is different, and
this will be addressed in the paper in more detail. In this paper, we are interested in the behaviour
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1268 Fatih Say

of the following equation for small ε in an asymptotic sense and aim to locate and investigate its
Stokes and anti-Stokes lines

ε
dy(z)

dz
+ A(z)y(z) = f (z), (1)

where 0 < ε ¿ 1. Because this equation presents in each level of the multi-level asymptotic
expansion after the zeroth-level for first-order singular equations, it is a rather special differential
equation. Through studying this equation, some key features of the multi-level asymptotics
arising from each stage of the analysis will be demonstrated and more information on the
behaviour of the differential equation will be gathered. In light of the link between the singulant
introduced by Dingle [19, p. viii] and the pre-factor A(z) and as well as the recursion relationships
between the successive singulants, asymptotic behaviour of the equations and local analysis
of the Stokes phenomenon near the singularities will be extracted much quicker at any higher
level. With the development of exponential asymptotics, the presence of exponentially small
terms encoded in the divergent tails is no longer negligible upon their optimal truncation [3].
Deriving the exact general form of the perturbation coefficients of the asymptotic expansions
is usually intractable. However, those coefficients mostly occur at the standard factorial-over-a-
power form [14, 19], which will be discussed later. Under the consideration of this form along
with the recursive relationships of the singulants obtained in the paper, one can directly find
the optimal truncation points of each level and analyse the associated exponentially small
remainders straightforwardly.

The present paper is organised as follows: We first naively expand the problem in powers of ε
as explained by Hinch in [21] and determine the leading order term. Because it is a singular per-
turbation problem, the series will be divergent and has to be truncated to obtain the minimum
error. In order to do so, we first need to find out the general representation of the late-order terms.
Hence, the derivation of the general term is our second step in Section 2. We will provide a con-
nection formula between the singulant of the expansion and A(z) function of the equation (1).
The optimal truncation point is the point at which the series changes its form from decreasing
to increasing. Section 3 is devoted to optimally truncate the expansion. Substitution of this trun-
cated expansion into the original equation will provide an inhomogeneous differential equation
for the remainder term, which is expected to be exponentially small as indicated by Berry [5]; this
will be specifically demonstrated there. In Section 4, we will introduce various choices of A(z)
functions. The third step is to inspect the behaviour of the resultant remainder near its singular-
ities, which means that the singulant of the asymptotic expansion in this section will be derived
and so the relevant Stokes and anti-Stokes lines based on the various pre-factors will be located.
Therein, detailed prescriptions existing in the literature which are required for the Stokes phe-
nomenon will be given. In Section 5, we will derive the general first-level differential equation
of the multi-level asymptotics generated by the remainder for general A(z) together with the re-
cursive relation of the singulants. Finally, the findings of the paper will be briefly summarised in
Section 6 along with a detailed discussion.

2. Asymptotic power series

In this section, our motivation is to express the relationship between the late-order term of
an asymptotic expansion and the pre-factor A(z), by which Stokes and anti-Stokes lines of the
equation can be identified. Particularly, deriving this relationship will play an essential role in
understanding the Stokes structure of the higher levels of multi-level asymptotics. Hence, the
first step of the investigation of obtaining an accurate approximation is principally to expand
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y(z) in powers of ε. Let us assume the corresponding asymptotic series solution of y(z) we seek
in (1) in the limit ε→ 0 is

y(z) ∼
∞∑

n=0
εn yn(z). (2)

Substitution of this solution back into the original differential equation (1) and equating like
powers of ε generate a leading order equation for y0(z) at O(1) and a recurrence relation for yn(z)
at O(εn) in the following sense

y0(z) = f (z)

A(z)
,

dyn−1(z)

dz
+A(z)yn(z) = 0 for n ≥ 1.

(3)

This recurrence relation in (3) permits us to compute the general term yn(z) in terms of y0(z).
It may be appropriate to point out herein that zeros of A(z) and singularities of f (z) are the
singularities of the leading order term y0(z), which means they are the singularities of the
expansion for all n. The strength of the singularity or singularities of the expansion increases
as n increases. As is known, if an asymptotic series solution has a singularity or singularities,
then the solution is divergent and this has to be of the form factorial-over-a-power [11, 14, 19],
which is a generic feature of exponential asymptotics. In fact, this diverging nature of the series
occurs due to Darboux’s theorem since the asymptotic behaviour of the leading order terms is
determined by the closest relevant singularity in the expansion as the singular points control the
whole expression, see Darboux’s theorem [10,11,18,19]. Moreover, while extracting the late-order
terms, it is also essential to ensure that the terms of an expansion are in the expected factorial-
over-a-power nature. Therefore, let us assume the late-order terms of the expansion take the form

yn(z) ∼ Γ(n +γ)

u0(z)n+γC as n →∞, (4)

in which Γ( · ) is the gamma function described in [1, 30], and C is a constant which could be
a function of ε and could be derived by going to the next order of the matching; when this
method is employed, we observe that it is indeed a constant. The constant γ is the number of
differentiations added as a power of u0(z) to have an easy cancellation while obtaining yn(z)
from yn−1(z) upon its substitution into the recurrence relation in (3). The denominator function
u0(z) is the singulant subject to singular points of the expansion. Henceforth, the subscript(s)
of u0(z) refers to the level of the multi-level asymptotics addressed herein and throughout the
paper. In order to further study the behaviour of the expansion and the Stokes phenomenon, the
late-order terms have to be generated for large n. Therefore, substituting this ansatz back into the
recurrence relation given in (3) provides us with the following equation after some computations

Γ(n +γ+1)

u0(z)n+γ+1

(−u′
0(z)+ A(z)

)
C = 0, (5)

which requires

u′
0(z) = A(z), (6)

where prime ′ represents the derivative d/dz. Due to the relation between A(z) and y0(z),
the integration constant can be derived from the singularities of y0(z), whilst completing the
determination of u0(z). Nevertheless, the constant γ in the denominator could be obtained
via the repeated use of the recurrence relation from which the degree of the singulant arises,
which will be more thoroughly demonstrated later. The link mentioned earlier between the
denominator of the expansion and the pre-factor A(z) of the equation (1) is finally established
in (6); as a consequence, this will be used while locating the Stokes phenomenon of the equation.

C. R. Mathématique — 2021, 359, n 10, 1267-1278



1270 Fatih Say

2.1. Complex ε

This subsection briefly addresses what happens and what difference it would make if ε is complex
for the equation (1); particularly, it discusses whether this methodology of multi-level asymp-
totics can be further extended for complex ε. For this purpose, we introduce the rescaled ε with-
out loss of generality as

ε= e iθε1, (7)

where ε1 is real, and 0 < ε1 ¿ 1. Back substitution of the complex ε in (7) into the original
differential equation (1) gives

e iθε1 y ′(z)+ A(z)y(z) = f (z). (8)

Doing the usual expansion for y(z) of the form y(z) ∼ ∑∞
n=0 ε

n
1 yn(z) and substituting the expres-

sion back into (8) itself, we match the coefficients of the like powers of ε1, yielding at O(1) and
O(εn) respectively

y0(z) = f (z)

A(z)
, and e iθy ′

n−1(z)+ A(z)yn(z) = 0 for n ≥ 1. (9)

In order to find the late-order terms of the expansion, we employ the factorial-over-a-power
method as in (4). In doing this, after some computations, we establish the link between the
singulant and the pre-factor A(z) as

u′
0(z) = e−iθA(z). (10)

In comparison with (6), we express the derivative of the singulant as a multiplication of the pre-
factor A(z) and e−iθ, as a result of rescaling ε. Hence, the method can be extended to complex ε.
We succinctly discuss the Stokes phenomenon for complex ε in the Example 1 of Section 4.

We are interested in determining the general form of the optimal truncation point for this
particular equation and then demonstrating whether the remainder is exponentially small. In
essence, we further study the Stokes and anti-Stokes lines based on various choices of A(z)
functions via (6) in the forthcoming sections.

3. Optimal truncation

The next step in the calculation is to asymptotically analyse the equation (1) by truncating the
asymptotic series (2) after N0 terms, that is

y(z) =
N0−1∑
n=0

εn yn(z)+RN0 (z), (11)

wherein the resultant remainder RN0 (z) is of O(εN0 ). The subscript 0 in the truncation point, N0,
similar to that of the singulant u0(z), indicates the level of the multi-level asymptotics for the rest
of the paper. To proceed, substituting the truncated series back into the differential equation (1)
produces an inhomogeneous remainder differential equation such that

εR ′
N0

(z)+ A(z)RN0 (z) =−εN0 y ′
N0−1(z)

= εN0 A(z)yN0 (z). (12)

Before proceeding, it is worth observing here that the remainder equation (12) has the same form
as the original equation (1), besides their right-hand side (RHS). The optimal truncation point of
the expansion, in its simplest definition, can be found by equating the successive ratio of the RHS
of the remainder equation (12) in magnitude to 1 [16, 25], particularly,∣∣∣∣∣εN0+1 A(z)yN0+1(z)

εN0 A(z)yN0 (z)

∣∣∣∣∣∼ 1,
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whereupon it is furnished in the form of a function divided by ε by

N0 ∼
|u0(z)|

ε
. (13)

This means that the minimum number of terms, N0, needed in the expansion depends on the
arbitrariness of ε and z. For any given z, as ε goes to zero, the optimal truncation point clearly
increases. Note that α needs to be added to ensure N0 is an integer,

N0 =
|u0(z)|

ε
+α, (14)

where 0 ≤α< 1. Determination of the optimal truncation point means that the series solution (2)
does not start to grow until this point. After having derived the truncation point, we find out that
the remainder changes its nature from algebraically small as such

O
(
εN0

)
,

to exponentially small. More precisely, employing this value of the truncation point in (14) shows
that the remainder is asymptotic to

RN0 (z) ∼ εN0
Γ(N0 +γ)

u0(z)N0+γC

∼
exp

(
−|u0(z)|

ε
−α−γ+1

)
p

u0(z)ε
γ−

1

2

[ |u0(z)|
u0(z)

] |u0(z)|
ε

−
1

2
+α+γp

2πC . (15)

Upon performing Stirling’s approximation of gamma function [30], we verify above (15) by
exponential factor exp(−u0(z)/ε) that the remainder turns out to be exponentially small as
expected. Therefore, examining the truncated remainder equation in its least value enables us to
investigate the behaviour of the exponentially small terms. It is also readily deducible from (15)
that this exponentially small term controls the order of the error. Meanwhile, we further observe
that the optimal truncation point obtained in (14) occurred exactly the same as that in the power
of the exponential factor of (15).

4. Stokes structure

In exponential asymptotics, critical points (singularities or turning points) where Stokes and anti-
Stokes lines sprout from play a key role. A turning point of an asymptotic expansion is a point
where the pre-factor A(z) vanishes in which the expansion breaks down since its zeros appear
to be the singularities of such an expansion. It could also occur when the RHS of the differential
equation has a singularity. In the paper, we approximate a linear combination of two asymptotic
expansions whereby they have the leading behaviours as exp(−u0(z)/ε) and exp(0); particularly,
for this inhomogeneous equation, the particular integral is the solution which contains an
asymptotic expansion. This expansion may generate a Stokes line and switch on and off the exact
homogeneous solution. However, the complementary function does not know anything about
a particular integral since there is not a divergent tail from the exact homogeneous solution;
therefore, it can not turn the particular integral on. Stokes in [34] pioneered the idea that across
certain rays, known as Stokes lines, in the complex plane subdominant solutions change abruptly,
which has been much studied in the literature, for example, [2–4, 12, 14, 20, 28, 29]. There are
several prescriptions for locating these lines:

(i) Stokes lines may be present when singulants or the powers in the leading exponentials
satisfy [3, 14, 16, 17, 19, 33],

ℑ (u0(z)) =ℑ (0) , and ℜ (u0(z)) >ℜ (0) .
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(ii) Stokes lines occur where the dominant factor of the RHS of the residual equation (15) is
maximal at ph(z) = θ [19, 29] [34, p. 105].

(iii) Stokes lines can be determined by minimising the magnitude of the RHS of (15) [26].
(iv) Stokes lines may sometimes be located when the RHS of (15) does not depend on α in

Olde Daalhuis et al [29].
(v) Stokes lines arise when the phases of the higher order terms in an expansion are the

same [15, 19].
(vi) Anti-Stokes lines arise where the singulants are purely imaginary or the exponentials are

of the same order [3, 15, 17, 23, 28, 33], i.e.

ℜ(u0(z)) =ℜ (0) .

Across anti-Stokes lines, exponentials change their behaviour from being dominant to sub-
dominant or vice-versa. This means that anti-Stokes lines indicate the region of the complex
plane where the exponential is dominant; therefore, anti-Stokes lines matters. In this paper, in-
active Stokes lines correspond to the irrelevant Stokes lines in which the subdominant exponen-
tial can not switch the dominant exponential on; particularly, in our case, they present when the
powers in the leading exponentials satisfy ℑ (u0(z)) =ℑ (0) and ℜ (u0(z)) <ℜ (0). For more details
regarding the irrelevant Stokes lines, we refer to [13, 22]. Generally, a differential equation of the
remainder appears as in (12). In order to examine this type of equation after the zeroth-level via
using methods of multi-level asymptotics [32], one needs to rescale the remainder based on its
RHS whereupon the RHS becomes 1 in the new scaled equation, which will become apparent in
Section 5. Therefore, for the following instructive examples, the RHS of (1) is set out as f (z) = 1.
The rest of the section discusses the Stokes and anti-Stokes lines of equation (1) according to
various choices of pre-factor A(z) taking into account the link derived in (6).

Example 1. Assume in (1) that A(z) is given as A(z) = z.

As indicated earlier, since the Stokes phenomenon of (1) is associated with the pre-factor A(z),
we begin the determination of the Stokes and anti-Stokes lines of (1) for this particular A(z) by
first deriving its turning point. The turning point of the expansion (2) lies at the origin whereby
A(z) = z vanishes for z = 0. In order to derive the singulant u0(z) of the late-order terms given
in (4), we solve the differential equation (6) to find

u0(z) = z2

2
+C1,

in which C1 is a constant of integration. As explained above, because u0(z) has to vanish at the
singular point, it requires C1 to be zero, whence the singulant of the late-order term is completely
derived as

u0(z) = z2

2
. (16)

We now have sufficient information to locate the Stokes and anti-Stokes lines. Upon introducing
the polar coordinates z = r exp(iθ) and directly implementing them into the singulant enable us
to write down u0(z) in terms of fast variable θ and r , yielding

u0(z) = r 2 exp(2iθ)

2
= r 2

2
(cos(2θ)+ i sin(2θ)) . (17)

Adopting one of the definitions given earlier such as (i) for (17) gives that Stokes lines occur
whenever θ fulfils the condition

sin(2θ) = 0 while cos(2θ) > 0. (18)

Therefore, Stokes lines in this example are θ = 0 andπ. Inactive Stokes lines lie alongπ/2 and 3π/2
in which the RHS of (18) is cos(2θ) < 0. Likewise, the set of points satisfying the condition (vi)
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is an anti-Stokes line. Considering (17) under this condition reads that anti-Stokes lines appear
whenever θ satisfies cos(2θ) = 0. This means they occur along θ =π/4, 3π/4, 5π/4 and 7π/4. Both
Stokes and anti-Stokes lines are illustrated in Figure 1.

On the other hand, employing the link in (10) when ε is complex, we derive the associated
singulant for A(z) = z is

u0(z) = exp(−iθ)z2

2
. (19)

After performing the Stokes lines analysis as before, we do not repeat here for the sake of brevity,
we find that the associated Stokes and anti-Stokes lines are rotated in the counterclockwise
direction by θ = π/4 as mapped in the Figure 1b for selected ε = −iε1. Hence, the method can
be used when ε is complex. Moreover, it is perhaps worth commenting that the solution of the
equation (1) based on Example 1, which could be derived via the integration factor method,
comes from the same family of the error function [3, 31].

We are, mainly, considering two exponential solutions that have the leading behaviour of
a first-order differential equation: one can be obtained from the homogeneous solution as
exp(−z2/ε2) while the other is derived from the RHS of the differential equation as 1 = exp(0).
Once the conditions (i) and (vi) of the above Stokes and anti-Stokes lines prescriptions are
applied to these two exponentials, one can see that this will yield the same Stokes lines results
as above. Stokes and anti-Stokes lines can be determined through these exponential terms of
the equation (1) that are all mapped in Figure 1a, in which exp(−z2/ε2) and exp(0) are labelled
by 1© and 0©, respectively. This figure additionally illustrates the sectors in the z-plane where
these exponential terms switch on and off, and they become present. This switching on and off
behaviour of the solutions when Stokes lines are crossed is not the main focus here, but will be
discussed in more detail in a future paper; for more details, see [2, 7, 13, 22, 23, 32]. In order to see
it, we need to make a full circuit around the complex plane divided into 4 sectors by the active
and inactive Stokes lines. Assume we are in Sector IV of Figure 1a, and 0© is present there. We
travel through Sector IV to I in a counterclockwise direction. As we cross the Stokes line from
Sector IV to Sector I, 1© gets turned on by 0© and it must be added to the solution. Thus, 0©
and 1© are both present in Sector I. As the Stokes line from Sector I to Sector II is inactive, no
change is observed as we move leftward meaning that 0© and 1© are also present in Sector II.
However, crossing through Sector III, 1© is switched off by 0© across the Stokes line. Therefore, 1©
is not present in Sector III. Since the Stokes line is inactive while travelling rightward from Sector
III toward to Sector IV, again nothing gets turned on and off; hence, 0© stays present in Sector
IV. As we arrive at the point of initiation, we conclude that we return back to where we started
wherein we began with an assumption that 0© was present. In other words, through this circuit
around the plane, we have observed that the resultant asymptotic contribution is identical to the
initial contribution. Present exponentials of the associated sectors bounded by the Stokes lines
are illustrated in boxes in the figure.

Example 2. Assume in (1) that A(z) is given as A(z) = z2.

In order to give the location of the Stokes and anti-Stokes lines of Example 2, one can now
directly start the investigation by looking at the turning points of the expansion (2) for given A(z).
The turning point explicitly occurs at the origin, that is, A(z) = z2 vanishes for z = 0. Equation (6)
implies that the relevant singulant u0(z) of the example turns out to be

u0(z) = z3

3
+C2,
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(a) ε (b) ε=−iε1

Figure 1. The red and blue lines represent, respectively, the Stokes and anti-Stokes lines
of the equation (1) for chosen A(z) = z in Example 1. Figure 1a demonstrates the sudden
appearance and disappearance of the exponential terms exp(−z2/2ε) and exp(0) labelled
as 1© and 0©, respectively. The direction of red arrows represents dominant exponential
switches the subdominant exponential on across the Stokes lines. Present exponentials of
the sectors are shown in the boxes. When ε is complex, Stokes and anti-Stokes lines picture
of (1) rotates counterclockwise by π/4 from Figure 1a to Figure 1b.

where C2 is a constant. Since u0(z) has to vanish at the singular point, C2 needs to be zero.
Similar to the previous example, applying the polar coordinates, i.e. z = r exp(iθ), into the above
singulant produces

u0(z) = r 3 exp(3iθ)

3
= r 3

3
(cos(3θ)+ i sin(3θ)) . (20)

As already discussed, singulant of the expansion presents all the putative Stokes and anti-
Stokes lines, whence applying the conditions of (i) among the definitions of Stokes lines for (20)
demonstrates that they appear when

sin(3θ) = 0 while cos(3θ) > 0,

which implies Stokes lines follow the curve along 0, 2π/3 and 4π/3 whilst the inactive Stokes
lines lie along π/3, π and 5π/3. In a similar manner, anti-Stokes lines by the condition (vi) may
present when θ satisfies cos(3θ) = 0, which implies they occur along π/6, π/2, 5π/6, 7π/6, 3π/2
and 11π/6. Stokes and anti-Stokes lines of the equation (1) according to this A(z) are shown in
Figure 2.

In addition to Stokes lines analysis, this particular example is multivalued at the origin. In
particular, solving the differential equation (1) for A(z) = z2 with the integration factor method,
one easily verifies that the solution can be written out in terms of an incomplete gamma function
Γ(a, z) which is a generalization of an exponential integral, a complementary error function and
a hypergeometric function, and all have branch cuts [1, 30, 32]. Therefore, this example is an
analytic function in the z-plane, except the branch cut so that the branch cut must be introduced
in order to make the function single-valued or, in other words, to avoid the multivaluedness.

C. R. Mathématique — 2021, 359, n 10, 1267-1278



Fatih Say 1275

Next, we concisely travel around the complex plane to see the present exponentials of the sec-
tors defined by dividing the complex plane via the active Stokes lines and the branch cut. Like-
wise in Figure 1, the homogeneous solution of the equation (1) for A(z) = z2 is exp(−u0(z)/ε) =
exp

(−z3/3ε
)

represented by 1© while its RHS 1 = exp(0) is represented by 0© which does the
switching on and off of the subdominant exponential term across the Stokes lines. Regardless
of the region we begin travelling, we will come back to where we started due to crossing three ac-
tive Stokes lines and one branch cut which leads to removal of 1© by discontinuity. Hence, which
exponentials are present in which sectors of the complex plane are summarised in boxes in Fig-
ure 2 through circuiting along the plane.

Figure 2. Active and inactive Stokes lines of the equation (1) are illustrated by the lines
in red, while anti-Stokes lines are demonstrated in blue for chosen pre-factor A(z) = z2

in Example 2. Zigzag in black represents the branch cut. The direction of the red arrows
represents dominant exponential 0© turns the subdominant exponential 1© on across the
Stokes lines. Present exponentials of the sectors generated by the active Stokes lines and the
branch cut are shown in boxes.

5. First-level of multi-level asymptotics for general A(z)

We next go beyond the zeroth-level of multi-level asymptotics as it is complete. More generally,
we are now in a position to discuss the first-level of multi-level asymptotics for general A(z)
and what is likely to happen at higher levels of the method. This section aims to establish the
inhomogeneous differential equation of the multi-level asymptotic approach in the first-level,
which is the main objective of the method, based on the relation obtained in (6) for general A(z)
generated by the remainder. To do so, our strategy herein and in every level of the multi-level
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asymptotics is first to rescale the resultant remainder RN0 (z) of level zero according to the RHS of
the differential equation (12) such that

RN0 (z) = εN0 A(z)yN0 (z)Q(z), (21)

in which Q(z) will be addressed shortly. However, before proceeding, let us define ν0 by ν0 =
εN0 which is influenced by the truncation point (13). The straightforward substitution of (21)
into (12), under the consideration of ν0, leads to a singular differential equation as

εQ ′(z)+
(
u′

0(z)−ν0
u′

0(z)

u0(z)
+ε

u′′
0 (z)

u′
0(z)

)
Q(z) ∼ 1. (22)

For ε sufficiently small, the leading parts of pre-factor of Q(z) in (22) turn out to be

εQ ′(z)+u′
0(z)

(
1− ν0

u0(z)

)
Q(z) ∼ 1. (23)

The differential equation of the first-level in the analysis is finally established. Notice that the
equation is in the form of the original equation (1). The analysis of this paper clearly indicates that
proceeding to the higher levels of multi-level asymptotics, one can easily see that the remainder
equation of every level is actually in the nature of the equation (1). Therefore, for given A(z) and
its associated relation with the singulant, we can execute the systematic analysis of multi-level
asymptotics in the first-level (and higher levels) upon expansion of Q(z), or directly begin the
examination from the first-level for either the optimal or arbitrary selection of the truncation
point in the zeroth-level for the first-level differential equations. Although we do not conduct
first-level analysis in this paper since it is not the principal concern here, we could determine
the generic form of the first-level singulant and the related optimal truncation point for the first-
order singular differential equations with the formula derived in (6). However, before doing this, it
is important to pinpoint at this stage that the first-level equation has a singularity or singularities
when z is a solution of

u0(z)−ν0 = 0. (24)

Let us assume the first-level singulant of Q(z) when expanded is u1(z) which must satisfy (24).
Applying the formula (6) in the pre-factor of (23) gives the first-level singulant by means of

u1(z) = u0(z)−ν0 ln(u0(z))+ c1, (25)

in which c1 is an integration constant and can be derived via the singularity of the expansion.
Thence, after substituting (24) into (25), one completes the general description of the first-level
singulant in terms of a zeroth-level singulant as

u1(z) = u0(z)−ν0 ln(u0(z))+ν0 ln(ν0)−ν0. (26)

It is crucial to emphasise herein that the singulant (26) has a logarithmic branch cut at the
singularities of level zero. Despite the fact that turning points of the zeroth-level are not the
turning points of the first-level of multi-level asymptotics, zeroth-level singularities arise in the
logarithmic function of the singulant of the first-level. In fact, our analysis indicates that the
logarithmic branch cut occurs in order to preserve the level zero singularities in its succeeding
level. Hence, the preceding level singularities disappear in the succeeding level; particularly, the
singularities approach to infinity and lead to a logarithmic branch cut. For instance, in the case
of u0(z) = z, the first-level equation (23) and the singulant (26) are equivalent to the singulant of
exponential integral [32]. Therefore, this (23) and the associated singulant is indeed observed for
each level of the exponential integral in [32].

As a final remark without loss of generality, it is pertinent to stress that because a remainder
differential equation of every level of the multi-level asymptotics turns out to be in the nature of
the equation (1), we can extract a recursive relationship between a singulant and its succeeding

C. R. Mathématique — 2021, 359, n 10, 1267-1278



Fatih Say 1277

level singulant or vice-versa. Particularly, in light of (26), because any two successive level
singulants correspond to the first-level of its preceding level at any higher levels in multi-level
asymptotic approach, the recursive relationship of the singulants can be succinctly generalized as

ui+1(z) = ui (z)−νi −νi ln(ui (z))+νi ln(νi ), for i ≥ 0, (27)

where νi can either be defined via the truncation point of i th level of multi-level asymptotics or
via its relation with the singulant, i.e., |ui (z)| = νi . Notice that when z is a solution of ui (z) = νi ,
singulant of the related level becomes zero so that the expansion breaks down at that point(s). If
this recursive relationship is iterated, singulants of every single level can be extracted so that every
putative Stokes and anti-Stokes lines can be found out at higher levels without going through
the higher-level analysis of multi-level asymptotics in detail. Likewise, our analysis indicates that
since the optimal truncation points are defined via Ni ∼ |ui (z)|/ε like in (13), one can find out
the optimal truncation points for any levels in light of this recursion relation. Nevertheless, it is
possible to state that all the results regarding the singulant in (26) apply for every singulant at
higher levels, i.e., for (27).

6. Summary and conclusion

To summarise, through scrutinising the equation in (1), we have found the general representation
of the optimal truncation point and expressed the relationship obtained in (6) between the singu-
lants of the expansion and A(z) function for the first-order singular perturbation problem. This
relationship can be implemented in the higher levels of the multi-level asymptotics and clarify
the understanding of the Stokes phenomenon. We have determined the Stokes and anti-Stokes
lines of the equation emerging from the singular points of the expansion by examination of these
points in light of various values of pre-factor A(z). In Section 5, the general representation of the
inhomogeneous singular differential equation of the resultant reminder (23) along with the sin-
gulant (26) was determined so that the first-level investigation of any differential equation in the
form of (1) can be done straightaway. Moreover, Stokes and anti-Stokes lines investigation can
be extracted via the recursive relation of the singulants without the need for further asymptotic
analysis at higher levels. It is important to highlight that a singular differential equation generated
by the remainder function in higher levels is a generic feature of the multi-level asymptotic ap-
proach for the first-order differential equations. The use of the multi-level asymptotic procedure
is central to these conclusions.
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