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1. Introduction

This is the first in our series of papers on the problem of deformations of singular foliations in the
sense of Stefan–Sussmann [13, 14]. In this paper we will concentrate on the local case, i.e., germs
of singular foliations (analytic, smooth or formal), and study the deformation cohomology which
governs their infinitesimal deformations. In the subsequent papers, we will discuss the global
deformation cohomology, the rigidity problem of singular foliations, and so on.

In most deformation theories of objects of some given category (e.g., Lie algebras, complex
structures, group actions, etc.), one can define a cohomology group which controls infinitesimal
deformations, and other higher cohomology groups which may play the role of obstructions to
integrating these infinitesimal deformations into true deformations. One wants to do the same
thing for singular foliations. In order to do that, one first needs to “algebraize” or “tensorize” them,
turn them into objects which can be manipulated with algebraic operations. Our approach to
algebraization of singular foliations is via integrable differential forms and their dual multi-vector
fields, called Nambu structures (see, e.g., [5, Chapter 6] and [9]).

We note that some authors, including Androulidakis, Skandalis and Zambon, consider locally
finitely-generated involutive modules of vector fields and Lie algebroids as proxies for singular
foliations, and obtain many interesting results with this approach, see, e.g., [1, 2]. Our approach
is different from theirs. We believe that our approach is more directly related to the problem
of deformations of singular foliations of a given dimension, and that the two approaches are
complementary to each other and can be combined for the study of various problems concerning
singular foliations.
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We refer to [5, Section 1.5 and Chapter 6] for a brief introduction to singular foliations and
some basic results, including the Stefan–Sussmann theorem [13,14], which says that a distribution
D on a manifold M generated by a family C of (smooth, analytic or formal) vector fields on M
(i.e., at every point x ∈ M the corresponding tangent subspace Dx of D is spanned by the vectors
{X (x), X ∈ C }) is integrable, i.e., is the tangent distribution of a singular foliation à la Stefan–
Sussmann, if and only if D is invariant with respect to C , i.e. the local flow of every element of C

preserves D.
In the case when dimDx does not depend on x then D is called a regular distribution, and

in this case its integrability condition (i.e., D is the tangent distribution of a regular foliation) is
equivalent to the Frobenius involutivity condition: the Lie bracket of any two vector fields tangent
to D is again tangent to D. In the singular case (when dimDx is not constant but drops on a
subset called the singular set), the involutivity condition is still necessary but not sufficient. A
simple counter example is the distribution D on R2 given by D(x,y) = Span(∂/∂x) if x ≤ 0 and
D(x,y) = Span(∂/∂x,∂/∂y) if x > 0, which is involutive but not integrable. However, according to
a theorem of Hermann [7], for locally finitely generated distributions (i.e., the family C of vector
fields which generates D can be chosen to be finite, at least locally) the involutivity condition is
sufficient for integrability. To avoid pathologies, we will be mainly interested in singular foliations
whose tangent distributions are locally finitely generated.

For regular foliations, the problem of stability (rigidity) was studied by Reeb [12] and
Thurston [15], among other authors, and a deformation cohomology (which governs infinites-
imal deformations) was defined by Heitsch [6]. We want to extend these theories of stability and
infinitesimal deformations of foliations to the case of singular foliations. The motivation is clear:
similarly to the fact that most functions in practice admit singular points, most foliations that
we encounter (e.g., in geometric control theory, sub-Riemannian geometry, dynamical systems,
symplectic and Poisson geometry, algebraic geometry, etc.) are in fact singular, and many inter-
esting things (including global invariants) are localized at singularities, so one should include
singularities in the study.

2. Tensorization of singular foliations

2.1. Integrable differential forms and Nambu structures

Let us recall that a differential p-form ω on a manifold M n (0 ≤ q ≤ n) is called integrable if it
satisfies the following two conditions for any (p −1)-vector field A:

(1) ω∧ i Aω= 0 and (2) dω∧ i Aω= 0. (1)

In particular, when p = 1 then the first condition is trivial (ω∧ω = 0 for any 1-form ω), and the
second condition is the usual integrability condition for a differential 1-form ω∧dω = 0. If ω is
an integrable p-form and z is a regular point of ω, i.e. ω(z) 6= 0, then in a neighborhood of z there
is a local coordinate system (x1, . . . , xn) in which

ω= f dx1 ∧·· ·∧dxp , (2)

where f is some function such that f (z) 6= 0. The kernel of an integrable p-form ω near a point
z where ω(z) 6= 0 is an involutive distribution of corank p which gives a codimension p foliation
outside singular points.

A Nambu structure of order q on a manifold M is a q-vector field Λ on M such that its
contraction

ω= iΛΩ (3)

with a (local) volume form Ω is a (local) integrable differential p-form (where p + q = n is the
dimension of the manifold). An equivalent condition for smooth or analytic Nambu structures is
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as follows: A (smooth or analytic) q-vector field Λ is a Nambu structure if and only if near every
point x such thatΛ(x) 6= 0 there is a local coordinate system (x1, . . . , xn) such that

Λ= f
∂

∂xp+1
∧·· ·∧ ∂

∂xn
. (4)

In fact, by a change of coordinates, one can put f = 1 in Formula (4). This formula cannot be
used in the singular formal case, so in order to define a formal singular Nambu structure one has
to use Condition (1) (applied to the dual differential form) instead (see, e.g., [5]).

2.2. From singular foliations to Nambu structures and back

Let us consider a singular foliation F of dimension q (it is the maximal dimension of the leaves of
F ) on a manifold M . We will say that a (local or global) Nambu structureΛ of order q is a tangent
Nambu structure to F if

codim(S(F ) \ S(Λ)) ≥ 2

and near each point x ∉ S(Λ)∪S(F ) there is a local coordinate system in which Λ= ∂/∂x1 ∧·· ·∧
∂/∂xq and F is generated by ∂/∂x1, . . . ,∂/∂xq . Here S(Λ) denotes the singular set ofΛ, i.e. the set
of points whereΛ vanishes, and S(F ) denotes the set of singular points of F , i.e., the set of points
where the dimension of the tangent distribution drops. If, moreover, codim

(
S(Λ)\S(F )

)≥ 2, and
Λ is without multiplicity in the sense that Λ can’t be written as Λ = f 2Λ′, where f is a function
which vanishes somewhere ( f (0) = 0 in the local case, around 0 on Kn), then we say that Λ is an
associated Nambu structure to F .

The above definition works well in the analytic and formal categories. In the smooth category
the situation is more tricky because the ring of smooth functions is non-Noetherian, but we will
restrict our attention to those foliations for which our definition makes sense. The local asso-
ciated Nambu structure exists and is unique up to multiplication by a non-vanishing function
(see [9] for the details). It can be constructed as follows. Take q local vector fields X1, . . . , Xq which
are tangent to F and which are linearly independent almost everywhere, where q is the dimen-
sion of F . Put

Π= X1 ∧·· ·∧Xq , (5)

then factorize Π as Π = hΛ, where codimS(Λ) ≥ 2. If codimS(F ) ≥ 2 then Λ is an associated
Nambu structure of F . If codimS(F ) = 1, then we find a reduced function s such that S(F ) =
{s = 0}, and sΛ is an associated Nambu structure of F .

For example, let F be the codimension-1 quadric foliation on R3 or C3 with leaves {x2 + y2 +
z2 = const}. Take two tangent vector fields X = y ∂

∂z − z ∂
∂y , Y = z ∂

∂x − x ∂
∂z , and put Π = X ∧Y =

z
(
x ∂
∂y ∧ ∂

∂z + y ∂
∂z ∧ ∂

∂x + z ∂
∂x ∧ ∂

∂y

)
. ThenΛ= Π

z is an associated Nambu structure of F .
Conversely, given a (local or global) Nambu structure Λ of order q , consider the set (or the

sheaf), denoted by CIT(Λ), of all conformally invariant tangent (CIT) vector fields ofΛ, i.e. vector
fields X satisfying

X ∧Λ= 0 and LXΛ= gΛ for some function g . (6)

Then, one checks easily that CIT(Λ) generates an integrable distribution (in the global case, the
manifold is supposed to be orientable). The corresponding foliation is of dimesnion q and is
denoted by FΛ and called the associated foliation of Λ. If f is a non-vanishing function then
F f Λ =FΛ.

The above forward and backward functors give an “almost one to one” correspondence
between local singular foliations and local Nambu structures (up to multiplication by non-
vanishing functions) under some mild conditions on the singularities. (See [9] for precise state-
ments in the holomorphic case). This justifies our use of Nambu structures as a proxy for singular
foliations.
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Nambu structures will allow us to study deformations of singular foliations. They also allow
us to talk about (quasi)homogeneous singular foliations (i.e., foliations associated to linear
and/or (quasi)homogeneous Nambu structures in some coordinate system), and study the local
normalization problem near a singular point. See [16] and references therein for recent results
on the problem of local linearization of singular foliations and of Nambu structures. Many
operations with singular foliations, e.g., pull-back and reduction, can also be done naturally via
associated Nambu structures and integrable differential forms.

Ifω is an integrable p-differential form, one can define a distribution by considering the vector
fields X satisfying the conditions : iXω= 0 and LXω= gω for some function g . This distribution
integrates to a (n −p)-dimensional foliation denoted Fω, the associated foliation of ω. If ω is the
integrable p-form corresponding to the Nambu structure of order q ,Λ, then Fω =FΛ.

Globally, if we consider a foliation on a manifold, we have a sheaf of local tangent Nambu
structures, which is a locally free module of rank one over the ring of functions. In other words,
this sheaf is a line bundle, which is nothing but the anti-canonical line bundle of the foliation.
Since this line bundle may be twisted and does not necessarily admit a global section, we do not
necessarily have a global Nambu structure associated to a singular foliation, only local ones. This
will be discussed in more detail in our subsequent paper.

3. Infinitesimal deformations and deformation cohomologies

Let ω be an integrable differential p-form on a n-dimensional manifold M . By an infinitesimal
deformation ofωwe mean a p-form η such thatω+εη is integrable modulo ε2, where ε is a formal
infinitesimal parameter. In other words,

(ω+εη)∧ i A(ω+εη) ≡ 0 (mod ε2) and d(ω+εη)∧ i A(ω+εη) ≡ 0 (mod ε2) (7)

for any (p − 1)-vector field A. Since ω is integrable, the above conditions are equivalent to the
following family of linear equations on η and dη:

i Aω∧η+ i Aη∧ω= 0 and i Aω∧dη+ i Aη∧dω= 0, ∀ (p −1)-vector fields A. (8)

If η = LXω = iX dω+diXω, where X is a vector field, then η is called a trivial deformation of
ω (because it is obtained by the pull-back of ω with respect to the infinitesimal flow of X , i.e. ω
is sent to ω+εη modulo ε2 by such a flow). Denote by Z (ω) the set of infinitesimal deformations
of ω, and by B(ω) the set of trivial deformations of ω. It is clear that B(ω) is a vector subspace
of Z (ω), and we can define the following quotient vector space, which we denote by D H(ω) and
call the deformation cohomology of ω:

D H(ω) = Z (ω)

B(ω)
. (9)

Suppose thatΩ is a volume form andΛ is a Nambu structure of degree q on M (with p+q = n).
The set of infinitesimal deformations Z (Λ) of Λ consists of all q-vector fields Π such that iΠΩ is
an infinitesimal deformation of the integrable p-form iΛΩ. In other words, Π ∈Z (Λ) means that
Λ+ εΠ is a Nambu structure modulo ε2. If Π = LXΛ for some vector field X , then Π is called a
trivial deformation ofΛ. We denote by B(Λ) the set of trivial deformations ofΛ. The deformation
cohomology D H(Λ) ofΛ is defined as follows:

D H(Λ) = Z (Λ)

B(Λ)
. (10)

The definition of Z (Λ) does not depend on the volume form Ω. Usually, D H(ω) is an infinite
dimensional vector space even when ω is regular. For example, if ω = dx1 ∧ ·· · ∧ dxp , with
1 ≤ p ≤ n − 1, then dimD H(ω) = +∞ because when a multiform is disturbed it can lose some
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properties (e.g. the closeness). Here, for any function f , the p-form f ω is integrable but not
necessarily closed so, does not belong to B(ω). Nevertheless, we have the following proposition.

Proposition 1. IfΛ= ∂/∂x1 ∧·· ·∧∂/∂xq (with q ≥ 1) in Kn , then D H(Λ) = {0}.

Proof. It is obvious if q = 1. Suppose now that q > 1 and consider an infinitesimal deformation
Λ+εΠ ofΛ. Let us first remark that ifΠ= f ∂/∂x1 ∧·· ·∧∂/∂xq for some function f then, we have
Π=LXΛwhere X = (∫

f dx1
)
∂/∂x1.

Therefore, we can assume that in the deformationΛ+εΠ, the tensorΠ does not contain a term
of type f Λ. Consider for i = 1, . . . , q the Hamiltonian vector fields

Xi = (−1)q−i idx1∧...d̂xi ···∧dxq

(
Λ+εΠ)

.

We have

Xi = ∂/∂xi +ε
n∑

k=q+1
f (i )

k ∂/∂xk .

WithΩ= dx1 ∧·· ·∧dxn we define ω= iΛΩ and ωε = iΛεΩ. In the same as above, we then put,
for j ∈ {q +1, . . . ,n},

α j = (−1)n− j i
∂/∂xq+1∧... �∂/∂x j ···∧∂/∂xn

ωε

A computation shows that

α j = dx j −ε
q∑

k=1
f (k)

j dxk .

If we complete X1, . . . , Xq by Xq+1 = ∂/∂xq+1, . . . , Xn = ∂/∂xn and αq+1, . . . ,αn by α1 =
dx1, . . . ,αq = dxq we then get two dual basis.

Now, since Λε is a Nambu tensor modulo ε2, the (n −q)-form ωε is integrable modulo ε2, i.e.
satisfies

ωε∧ i Aωε = 0 (mod ε2) and dωε∧ i Aωε = 0 (mod ε2) (11)

for any (n −q −1)-vector field A.
The first relation gives ωε ∧ α j = 0 (mod ε2) for j = q + 1, . . . ,n. Therefore, we get ωε =

αq+1∧·· ·∧αn (mod ε2) andΛε = X1∧·· ·∧Xq (mod ε2). Note that, the infinitesimal deformation
Π is then necessarily written as

Π=
q∑

i=1
∂/∂x1 ∧·· ·∧∂/∂xi−1 ∧Zi ∧∂/∂xi+1 ∧·· ·∧∂/∂xq

where the vector fields Zi are of type Zi =∑n
k=q+1 f (i )

k ∂/∂xk .

The second relation of (11) gives dα j ∧αq+1 ∧·· ·∧αn = 0 (mod ε2) for j = q +1, . . . ,n. This is
the Frobenius integrability condition (modulo ε2) which is equivalent to the fact that X1, . . . , Xq

span an involutive distribution modulo ε2 i.e. [Xi , X j ] = ∑q
k=1 h(i j )

k Xk (mod ε2) where h(i j )
k are

functions. Using the expression of the vector fields Xk , we get [Xi , X j ] = 0(modε2). This last

relation gives
∂ f (i )

k
∂x j

= ∂ f
( j )

k
∂xi

for any i 6= j and k > q . Therefore, by Poincaré’s Lemma, there exist

functions Fk (for any k > q) such that f (i )
k = ∂Fk

∂xi
for every i = 1, . . . , q and k > q .

Now, we put X =−∑n
k=q+1 Fk∂/∂xk . We then have

X1 ∧·· ·∧Xq =Λ+εLXΛ (modε2)

and the flow φεX sendsΛ toΛ+εΠ (modε2). �
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3.1. Deformation cohomology of singular foliations

Let Λ be a (germ of a) local (smooth, analytic, or formal) Nambu structure of degree q near the
origin in Kn , and FΛ be the foliation generated by Λ. The set B(FΛ) of trivial deformations of
FΛ consists of all (smooth, analytic, or formal) germs of q-vector fieldsΠwhich can be written as

Π=LXΛ+ f Λ (12)

where X is a local vector field and f is a local function near the origin in Kn . The deformation
cohomology D H(FΛ) of the foliation FΛ is defined as follows:

D H(FΛ) = Z (Λ)

B(FΛ)
. (13)

Similarly, if Fω is generated by a local integrable p-form ω, then the set of trivial deformations
B(Fω) consists of all p-forms of the type LXω+ f ω, where X denotes a local vector field and f
denotes a local function. The deformation cohomology of Fω can then be defined as follows:

D H(Fω) = Z (ω)

B(Fω)
. (14)

The following lemma, whose proof is straightforward, says that the cohomology of singular
foliations doesn’t depend on the choice of its associated Nambu structures or integrable forms:

Lemma 2. Let Λ be a local Nambu structure. Suppose that Ω is a volume form and u is an
invertible function. If ω= iΛΩ then

D H(FΛ) ∼= D H(Fω) and D H(FΛ) ∼= D H(FuΛ). (15)

Note that all that we wrote in this section is still valid in the global case, on an orientable
manifold, considering global Nambu structures and integrables forms.

3.2. Nambu structures of order 0 (functions)

Suppose thatΛ= f is a (smooth or analytic) function (i.e. a 0-vector field) in a neighborhood of 0
in Kn (K is R or C).

We denote by On the vector space of germs at 0 of (smooth or analytic) functions on Kn and
X(Kn) the vector space of germs at 0 of (smooth, analytic) vector fields.

Theorem 3. With the notations above, we have

D H( f ) = On

{X ( f ) |X ∈X(Kn)}
= On〈

∂ f
∂x1

, . . . , ∂ f
∂xn

〉 , (16)

D H(F f ) = On

{X ( f )+ c f |X ∈X(Kn),c ∈On}
= On〈

f , ∂ f
∂x1

, . . . , ∂ f
∂xn

〉 . (17)

In particular, dimD H( f ) = µ( f ) ( the so-called Milnor number) and dimD H(F f ) = τ( f ) ( the so-
called Tjurina number).

Proof. It is obvious. The set of infinitesimal deformations of f is just On . �

Note that in this case, ifω= f dx1∧·· ·∧dxn then D H(ω) is the quotient ofΩn(Kn) by {d( f θ) |θ ∈
Ωn−1(Kn)} (denoting by Ωk (Kn) the vector space of k-differential forms) which is isomorphic to
the quotient of On by {X ( f )+ (div X ) f |X ∈X(Kn)}. This deformation space has been computed
in [10, Theorem 3.14] when f is a quasihomogeneous polynomial with an isolated singularity at
0 (its dimension is the Milnor number of f ).
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3.3. Top order multi-vector fields

Assume thatΛ is a n-vector field defined on a neighbourhood of 0 in Kn ,

Λ= f
∂

∂x1
∧·· ·∧ ∂

∂xn
, (18)

where f is either a smooth real function or a real or complex analytic function such that f (0) = 0,
and moreover 0 is a singular point of f , i.e. d f (0) = 0.

Theorem 4. With the same notations as above, we have

D H(FΛ) ∼= On〈
f , ∂ f

∂x1
, . . . , ∂ f

∂xn

〉 (19)

and dim Hde f (FΛ) = τ( f ) is the Tjurina number of f at 0. Moreover,

D H(Λ) ∼= On

{X ( f )− (div X ) f |X ∈X(Kn)}
. (20)

Proof. The vector space of infinitesimal deformations of Λ is the space of (germs of) n-vector
fields of type g ∂

∂x1
∧·· ·∧ ∂

∂xn
with g ∈On which is isomorphic to On . If X is a vector field, we have

LXΛ = (
X ( f )− (div X ) f

)
∂
∂x1

∧ ·· · ∧ ∂
∂xn

which gives the expression of B(Λ) and B(FΛ). Finally,

one easily checks that
{

X ( f )− (div X ) f + g f |X ∈X(Kn), g ∈On
}

is
〈

f , ∂ f
∂x1

, . . . , ∂ f
∂xn

〉
. �

One can find some computations of this cohomology space in the case where f is a quasi-
homogeneous polynomial with an isolated singularity at 0 in [10] and [11]. More precisely, if
n = 2, it is the (germified) Poisson cohomology of the Poisson structure Λ (see Theorems 4.9
and 4.11 in [11]). If n ≥ 3, it is related to a Nambu cohomology space associated to Λ, denoted by
H n

f ,n−2(Kn) or H 2
Λ(Kn) in [10, Corollary 3.19]. In these two cases, the dimension of the deforma-

tion cohomology space is finite and depends on the Milnor number of f .

3.4. Decomposable integrable forms with small singularities

In this section, we work on Cn , in the complex analytic category. Suppose that Λ is an analytic
Nambu structure in a neighborhood of 0 in Cn and ω = iΛΩ, Ω is a volume form. If ω is
decomposable (i.e. ω=ω1 ∧·· ·∧ωp ) and codimS(ω) ≥ 3 then by Malgrange (see [8]):

ω= ud f1 ∧·· ·∧d fp , (21)

where u is a function with u(0) 6= 0. According to Lemma 2 we can assume that u = 1.

Proposition 5. Let ω = d f1 ∧ ·· · ∧ d fp be a complex analytic integrable p-form and η is an
infinitesimal deformation ω. If codimS(ω) ≥ p +2 then

η= a0d f1 ∧·· ·∧d fp +
p∑

i=1
d f1 ∧·· ·∧d fi−1 ∧dai ∧d fi+1 ∧·· ·∧d fp .

It means that ω+εη is also decomposable and admits first integrals modulo ε2.

Proof. By definition, η satisfies for all (p −1)-vector field A :

i Aη∧d f1 ∧·· ·∧d fp + i A(d f1 ∧·· ·∧d fp )∧η= 0 (22)

i A(d f1 ∧·· ·∧d fp )∧dη= 0 (23)

We first claim that (23) is equivalent to

d fi ∧dη= 0 (∀ i = 1, . . . , p) . (24)
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Indeed, if x ∉ S(ω) then d f1(x), . . . ,d fp (x) are independent and if Ex is the subspace of (Cn)∗

generated by the linear forms d f1(x), . . . ,d fp (x), we consider constant vector fields X1, . . . , Xp such
that 〈d fi (x), X j (x)〉 = δi j (Kronecker symbol) for all i and j . We put Ai = X1 ∧ . . . X̂i · · · ∧ Xp and
if (23) is satisfied, it gives d fi (x)∧dη(x) = 0 for all i = 1, . . . , p. The converse is obvious.

Now, using successively the vanishing of the relative de Rham cohomology spaces H p (Ω∗
f1,..., fk

)
for k = 1, . . . , p (see [8]) we get

η= dθ+ cd f1 ∧·· ·∧d fp , (25)

for some (p −1)-form θ and function c.
In the same way as above, we can show that (22) implies

d fi ∧d f j ∧η= 0 ∀ i , j = 1. . . , p . (26)

Consequently, in the decomposition (25), dθ satisfies this condition too. For every i , using
successively the division theorem (see for instance [8, Proposition 1.1]), one can show easily that

d fi ∧dθ = d f1 ∧·· ·∧d fp ∧βi (27)

where βi is a 1-form. Now, we get d f1 ∧ ·· · ∧d fp ∧dβi = 0 so βi is a 1-cocyle in the relative de
Rham cohomology H 1(Ω∗

f1,..., fp
), which gives βi = dai +∑p

j=1 bi j d f j for some functions ai and
bi j . Therefore,

d fi ∧dθ = d f1 ∧·· ·∧d fp ∧dai . (28)

It gives

d fi ∧
(

dθ+
p∑

j=1
(−1) j d f1 ∧·· ·∧ d̂ f j ∧·· ·∧d fp ∧da j

)
= 0 (29)

for every i = 1, . . . , p, which implies, by the division theorem,

dθ+
p∑

j=1
(−1) j d f1 ∧·· ·∧ d̂ f j ∧·· ·∧d fp ∧da j = bd f1 ∧·· ·∧d fp (30)

for some function b. The proposition follows. �

If,ω= d f1∧·· ·∧d fp , we consider F the analytic map fromCn toCp defined by F = ( f1, . . . , fp ). If
X ∈X(Cn) and H = (H1, . . . , Hp ) is an analytic map fromCp toCp , we denote X .F = (X . f1, . . . , X . fp )
and H(F ) = (H1( f1, . . . , fp ), . . . , Hp ( f1, . . . , fp )). Now, we put

IRL(F ) = {
X .F +H(F ) |X ∈X(Cn) , H ∈ (Op )p}

and QRL(F ) = (On)p

IRL(F )
.

Recall that QRL(F ) measures the stability of the germ F and the versal deformations of F with
respect to the Right-Left-equivalence (see for instance [3]). More precisely, another germ of
analytic map G is RL-equivalent to F if there exists a germ of analytic diffeomorphismφ of (Cn ,0)
and a germ of analytic diffeomorphism ψ of (Cp ,0) such that G =ψ◦F ◦φ.

Theorem 6. Ifω= d f1∧·· ·∧d fp with codimS(ω) ≥ p+2, then, with the notations above, we have

D H(Fω) 'QRL(F ) . (31)

Proof. We denote

A =
{

p∑
i=1

d f1 ∧·· ·∧d fi−1 ∧dai ∧d fi+1 ∧·· ·∧d fp

∣∣∣∣∣ai ∈On

}
B = {

bd f1 ∧·· ·∧d fp
∣∣b ∈On

}
C =

{
p∑

i=1
d f1 ∧·· ·∧d fi−1 ∧dX ( fi )∧d fi+1 ∧·· ·∧d fp

∣∣∣∣∣ X ∈X(Cn)

}
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By Proposition 5, we have

D H(Fω) = A+B

B +C
' A

A∩ (B +C )
.

Clearly, C is included in A. If bd f1 ∧·· ·∧d fp ∈ B is in A, i.e. of the form
∑p

i=1 d f1 ∧·· ·∧d fi−1 ∧
dai ∧d fi+1 ∧ ·· ·∧d fp then, we have db ∧d f1 ∧ ·· ·∧d fp = 0 which gives b = H( f1, . . . , fp ) where
H ∈ Op (see [8, Theorem 2.1.1]). Conversely, if b = H( f1, . . . , fp ) with H ∈ Op then bd f1 ∧·· ·∧d fp

is in A∩B .
Therefore, we have

D H(Fω) ' A

D +C
,

where D = {
H( f1, . . . , fp )d f1 ∧·· ·∧d fp |H ∈Op

}
.

Now, we defineΦ : (On)p −→ D H(Fω) such that if G = (g1, . . . , gp ) we have

Φ(G) =
[

p∑
i=1

d f1 ∧·· ·∧d fi−1 ∧dgi ∧d fi+1 ∧·· ·∧d fp

]
.

It is a surjective linear map. It is clear that IRL(F ) is included in the kernel of Φ. Moreover, if
Φ(G) = 0 then there exist a vector field X on Cn and an analytic map K from Cp to Cp such that

p∑
i=1

d f1 ∧·· ·∧d fi−1 ∧ (dgi −X . fi )∧d fi+1 ∧·· ·∧d fp = K ( f1, . . . , fp )d f1 ∧·· ·∧d fp .

It implies that for every i = 1, . . . , p, we have d f1 ∧·· ·∧d fp ∧ (dgi − X . fi ) = 0 which gives (see [8])
that gi = X . fi +Hi ( f1, . . . , fp ) for some Hi ∈Op . Therefore, G ∈IRL(F ). �

As a corollary of this theorem, we get the deformation cohomology of an integrable 1-form d f
or, equivalently, a (n −1)-Nambu struture defined by the function f .

Corollary 7. If ω= d f with f ∈On and codimS(d f ) ≥ 3 then

D H(Fd f ) ' On{
ai

∂ f
∂x1

+·· ·+an
∂ f
∂xn

+h ◦ f
∣∣∣ai ∈On ,h ∈O1

} . (32)

In particular, µ( f ) ≥ dimD H(Fd f ) ≥ τ( f )−1.

Remark 8. We consider the two ideals of On , I f =
〈
∂ f
∂x1

, . . . , ∂ f
∂xn

〉
and J f =

〈
f , ∂ f

∂x1
, . . . , ∂ f

∂xn

〉
. If

we assume that d f (0) = 0 then X . f is not a constant for any vector field X so, we have I f ⊕C ⊂
IRL( f ) ⊂ J f ⊕C which gives µ( f )−1 ≥ dimD H(Fd f ) ≥ τ( f )−1. Consequently, if 0 is an isolated
singularity of f , i.e. µ( f ) < ∞, then dimD H(Fd f ) < ∞. If moreover, f is a quasihomogeneous
polynomial, then I f = J f which gives dimD H(Fd f ) =µ( f )−1 = τ( f )−1.

Corollary 9. If 0 is an isolated singularity of ω= ud f1 ∧·· ·∧d fp then dimD H(Fω) <∞
Proof. We prove that, denoting F = ( f1, . . . , fp ), the quotient (On )p

{X .F |X∈X(Cn )} has a finite dimension.
If we denote by M the ideal of On formed by the functions vanishing at 0, we prove that there is
a positive integer N such that if gi ∈MN , i = 1, . . . , p, then there exists a vector field X such that
X . fi = gi , i = 1, . . . , p. The corollary will follow naturally.

We prove it by induction on p. The case p = 1 is a direct consequence of Hilbert’s Nullstellen-
satz Theorem. If the statement is true for p −1, we prove the existence of an integer N such that
for all g ∈M, there is a vector field X which satisfies X . fp = g and X . fi = 0, i = 1, . . . , p −1.

We consider the ideal I of On formed by functions g ∈M such that there exists a vector field
X satisfying X . fp = g and X . fi = 0, i = 1, . . . , p −1.

For 1 ≤ i1 < ·· · < ip ≤ n, denoting

X =
p∑

j=1
(−1)p+ j det

(
∂( f1, . . . , fp−1)

∂(xi1 , . . . , x̂i j , . . . , xip )

)
∂

∂xi j
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we have X . fi = 0, i = 1, . . . , p − 1 and X . fp = det
(
∂( f1,..., fp )
∂(xi1 ,...,xip )

)
. Therefore, the function

det
(
∂( f1,..., fp )
∂(xi1 ,...,xip )

)
is in I .

By the hypothesis, the zero locus of I is {0} and it finishes the proof, using Hilbert’s Nullstel-
lensatz Theorem. �

3.5. Vector fields and linear Nambu structures

If Λ = X is a vector field, the leaves of the associated foliation are integral curves of X . The
normalization of this foliation is the same as the orbital normalization of X .

In the case Λ = X is a formal vector field in (Kn ,O) whose linear part X (1) is non-trivial, we
denote by D Hlin(X (1)) the quotient of the vector space of linear infinitesimal deformations of
X (1) by the vector space of linear trivial deformations of X (1).

Then by the classical Poncaré–Dulac formal normalization theory we have the following
proposition.

Proposition 10. Suppose that X (1) is non-resonant, then we have :

(i) D H(X ) = D Hlin(X (1)) and dimD H(FX ) = dimD Hlin(X (1))−1.
(ii) dimD Hlin(X (1)) = n2−d ≥ n where d is the dimension of the adjoint orbit of X (1) in gln(K).

(iii) In the generic case (i.e. the eigenvalues of X (1) are distincts) we have dimD Hlin(X (1)) = n.

Proof. By hypothesis, the vector field X is formally linearizable, we then can assume that it
coincides with its linear part X (1). Moreover, if X (1) + εY is an infinitesimal deformation of X (1)

then Y may be written as Y = Y (1)+ Ỹ where Ỹ contains only terms of degree larger or equal to 2.
Since X (1) is non-resonant, we have Ỹ = [X (1), Z̃ ] for some formal vector field Z̃ which contains
only terms of degree larger or equal to 2. Finally, D H(X ) is the quotient of the vector space of
linear vector fields by the vector space of vector fields of type [X (1), Z ] where Z is a linear vector
field (whose dimension is the dimension of the adjoint orbit of X (1)). In the same way, D H(FX ) is
the quotient of the vector space of linear vector fields by the vector space of vector fields of type
[X (1), Z ]+λX (1) where Z is a linear vector field and λ ∈K.

Finally, recall that the dimension of the adjoint orbit of X (1) is less than n(n − 1) and if the
eigenvalues of X (1) are distincts, it is exactly n(n −1). �

Note that the point (iii) of this proposition can be true even if X (1) has eigenvalues of multi-
plicity strictly larger than 1. It is the case if in the Jordan decomposition of X (1), there is only one
Jordan block corresponding to each eigenvalue.

In the resonant case, the formal deformation cohomology can be infinite-dimensional.
Let us now recall that there are two types of linear Nambu structures:

Type 1. Λ is dual to a decomposable linear integrable differential formω= dx1∧·· ·∧dxp−1∧dQ,
where Q is a quadratic function.

Type 2. Λ is decomposable:Λ= ∂/∂x1 ∧·· ·∧∂/∂xq−1 ∧
(∑n

i , j=q bi
j xi∂/∂x j

)
.

It has been shown in [4, 16] that linear Nambu structures of Type 1 with a nondegenerate
quadratic function Q in its formula are formally and analytically rigid (and they are also smoothly
rigid if Q satisfies a natural condition on its signature). In fact, the proofs in these papers also dealt
with deformation cohomology, so we can conclude that the formal and analytic deformation
cohomology of a linear Nambu structure of Type 1 is trivial if the quadratic function Q in its
formula is nondegenerate. If, moreover, the signature of Q is different from (1,∗) then the local
smooth deformation cohomology is also trivial.
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As regards linear Nambu structure of Type 2, the situation is similar to that of linear vector
fields X = ∑n

i , j=q bi
j xi∂/∂x j in the formula. In particular, if X is non-resonant then Λ = ∂/∂x1 ∧

·· ·∧∂/∂xq−1 ∧X has trivial formal deformation cohomology. (See [4, 16] for the details.)
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