
Comptes Rendus

Mathématique

Fabiano G. B. Brito, Jackeline Conrado, Icaro Gonçalves and Adriana
V. Nicoli

Area minimizing unit vector fields on antipodally punctured unit
2-sphere

Volume 359, issue 10 (2021), p. 1225-1232

Published online: 4 January 2022

https://doi.org/10.5802/crmath.258

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.258
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2021, 359, n 10, p. 1225-1232
https://doi.org/10.5802/crmath.258

Geometry and Topology / Géométrie et Topologie

Area minimizing unit vector fields on

antipodally punctured unit 2-sphere

Fabiano G. B. Britoa, Jackeline Conradob, Icaro Gonçalvesa

and Adriana V. Nicolib

a Centro de Matemática, Computação e Cognição, Universidade Federal do ABC,
Santo André, 09210-170, Brazil

b Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de São
Paulo, R. do Matão 1010, São Paulo-SP, 05508-900, Brazil

E-mails: fabiano.brito@ufabc.edu.br, avnicoli@ime.usp.br,
icaro.goncalves@ufabc.edu.br, avnicoli@ime.usp.br

In memory of Amine Fawaz

Abstract. We provide a lower value for the volume of a unit vector field tangent to an antipodally punctured
Euclidean sphere S2 depending on the length of an ellipse determined by the indexes of its singularities. We
also exhibit minimizing vector fields ~vk within each index class and show that they are the only ones that are
sharp for the volume. These fields have areas given essentially by the length of ellipses depending just on the
indexes in N and S.
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1. Introduction and main results

For a compact Riemannian manifold (M , g ), the volume of a smooth vector field ~v : M → T M is
the volume of its image~v(M) 7→ (T M ; g Sas ), where g Sas is called Sasaki metric and it is defined by
declaring the orthogonal complement of the vertical distribution to be the horizontal distribution
given by the Levi-Civita connection ∇. In terms of ∇ and g ,

vol(~v) =
∫

M

√
det(I + (∇~v)(∇~v)∗)ν, (1)

where I is the identity, (∇~v)∗ is the adjoint operator an ν is the volume form of M .
Back in 1986, Gluck and Ziller ( [5]) proved that Hopf flows are the unit vector fields of

minimum volume in M =S3. The theorem reads

Theorem 1 (Gluck and Ziller). Hopf unit vector fields (~vH ) are the minimum for the volume on
S3 and no others.
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However, in 1988 Johnson proved that Hopf vector fields are unstable in higher dimensions
(see [6]):

Theorem 2 (Johnson). The Hopf vector fields on S2n+1 are unstable for n > 1.

Later, in 2008 Brito, Chacón and Johnson ( [2]) established a relationship between the volume
of unit vector fields and their indexes around isolated singularities. More precisely:

Theorem 3 (Brito, Chacón and Johnson). Let S2 or S3 be the standard Euclidean sphere with
two antipodal points N and S are removed. Let ~v be a unit smooth vector field defined in those
manifolds and I~v (P ) the Poincaré index of ~v around P. Then,

• for S2\{N ,S}, vol(~v) ≥ 1
2 (π+|I~v (N )|+ |I~v (S)|−2)vol(S2)

• for S3\{N ,S}, vol(~v) ≥ (|I~v (N )|+ |I~v (S)|)vol(S3)

Let~vR be the north-south field, then it will achieve both equalities in the theorem. In this case,
for S2\{N ,S}, vol(~vR ) = 1

2π vol(S2) and in S3\{N ,S}, vol(~vR ) = 2 vol(S3) = vol(~vH )
In terms of foliations on S2, Fawaz (see [4]) studied the minimal value of meromorphic

foliations. The minimum value is achieved by taking the foliation of the sphere S2 by parallels.
Formally:

Theorem 4 (Fawaz). Let F be a foliation on the Riemann sphere S2 given by the real part of a
meromorphic or holomorphic vector field, then vol(F ) ≥ 2π2.

In 2010, Borrelli and Gil-Medrano proved (see [1]) that the Pontryagin fields are area-
minimizing of the unit 2-sphere. Pontryagin fields of Sn are any unit vector field ~vP tr y defined
in a dense open subset U such that the closure of~vP tr y (U ) is the n-dimensional generalized Pon-
tryagin cycle of the unit vector bundle of the n-sphere (T 1Sn).

Theorem 5 (Borrelli and Gil-Medrano). Among unit vector fields without boundary of S2(1)\{P }
those of least area are Pontryagin fields (~vP tr y ) and no others.

Recently, in 2019, Theorem 3 was extended to odd dimensional spheres S2n+1\{±P }, see [3].

Theorem 6 (Brito, Gomes and Gonçalves). If ~v is a unit vector field on S2n+1\{±P }, then

vol(~v) ≥ π

4
(|I~v (P )|+ |I~v (−P )|)vol(S2n).

In this article, we establish sharp lower bounds for the total area of unit vector fields on
antipodally punctured Euclidean sphere S2, and these values depend on the indexes of their
singularities. We show that this lower bound is sharp and describe the vector fields~vk that achieve
the minimum for each positive index k, we also show that these unit vector fields are the only ones
with this property. In fact, given an index k, we informally declare a unit vector field ~vk with one
or two singularities satisfying:

(1) ~vk is parallel along meridians
(2) ~vk turns k −1 times along each parallel at a constant angle speed
(3) we establish an “initial meridian” along which ~vk makes an angle θ with each parallel

Theorem. Let ~v be a unit vector field defined on M =S2\{N ,S}. If k = max
{

I~v (N ), I~v (S)
}
, then

vol(~v) ≥πL(εk ),

where L(εk ) is the length of the ellipse x2

k2 + y2

(k−2)2 = 1, with a positive index k and I~v (P ) stands for
the Poincaré index of ~v around P.

This is a natural extension of Theorems 3 and 5 aforementioned. We also exhibit vector fields
~vk achieving the minimum volume for each index k, i.e. the lower bound is sharp. These results,
as long as we know, completely solve the Gluck-Ziller problem for the antipodally punctured unit
2-sphere. Borreli and Gil-Medrano solved the case where k = 2, [1].
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2. Existence and uniqueness of vector fields with total area πL(ε)

Let M =S2\{N ,S} be the Euclidean sphere in which two antipodal points N and S are removed.
Denote by g the usual metric of S2 induced from R3, and by ∇ the Levi-Civita connection
associated to g . Consider the oriented orthonormal local frame {e1,e2} on M , where e1 is tangent
to the parallels and e2 to the meridians. Let ~v be a unit vector field tangent to M and consider
another oriented orthonormal local frame

{
~v ,~v⊥}

on M and its dual basis {ω1,ω2} compatible
with the orientation of {e1,e2}.

In dimension 2, the volume of ~v given in equation (1) reduces to

vol(~v) =
∫
S2

√
1+γ2 +δ2ν, (2)

where γ = g (∇~v~v ,~v⊥) and δ = g (∇v⊥~v⊥,~v) are the geodesic curvatures associated to ~v and ~v⊥,
respectively, and ν is the volume form.

Let S1
α be the parallel of S2 at latitude α ∈ (−π

2 , π2 ) and S1
β

be the meridian of S2 at longitude
β ∈ (0,2π).

We formally define a family of unit vector fields achieving the volume given by the Theorem.

Definition 7. Let k be a positive integer and define:

(1) ~v1(p) =~e2(p), if k = 1;
(2) ~vk (p) = cosθ(p)~e1(p) + sinθ(p)~e2(p), if k > 1, where θ : S2\{N ,S} → R is given by

θ(α,β) = (k −1)β+θ0, (where θ0 is a constant), in that way,

θ1(p) = k −1√
x2 + y2

and θ2(p) = 0,

where θ1 = dθ(e1) and θ2 = dθ(e2) are the derivatives of θ on e1 and e2, respectively.

Notice that θ has constant variation along the parallel x2 + y2 = cosα, with α ∈ (−π
2 , π2

)
constant, and this includes the case where k = 1. Remember that the case k = 2 has one
singularity (see [1]).

If we use spherical coordinates (α,β) so that p = (cosαcosβ,cosαsinβ, sinα), we can say that
the vector~vk spins around a point P at a constant speed of rotation along the parallelα. Moreover,
~vk gives exactly k −1 turns when it passes the α parallel, with respect to the referential

{
~e1,~e2

}
,

and it gives k turns with respect to a fixed polar referential, in this case, θ1(p) = k−1
cosα . In Figure 1

is given a visual representation about the behavior of ~vk s and in Figure 2 we have a unit vector
field with k = 4.

Lemma. Let θ ∈ [0,π/2] be the oriented angle from e1 to ~v. If ~v = (cosθ)e1 + (sinθ)e2 and
~v⊥ = (−sinθ)e1 + (cosθ)e2, then

1+γ2 +δ2 = 1+ (tanα+θ1)2 +θ2
2 .

Proof. We write γ and δ as the following sums

γ= A+B +C +D and δ= A′+B ′+C ′+D ′,

with

A = g
(∇(cosθ)e1 (cosθ)e1,~v⊥)

, B = g
(∇(sinθ)e2 (cosθ)e1,~v⊥)

,

C = g
(∇(cosθ)e1 (sinθ)e2,~v⊥)

, D = g
(∇(sinθ)e2 (sinθ)e2,~v⊥)

and

A′ = g
(∇(−sinθ)e1 (−sinθ)e1,~v

)
, B ′ = g

(∇(cosθ)e2 (−sinθ)e1,~v
)

C ′ = g
(∇(−sinθ)e1 (cosθ)e2,~v

)
, D ′ = g

(∇(cosθ)e2 (cosθ)e2,~v
)

.
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Figure 1. Visual representation of ~vk s: The angle θ, between the parallels and the field
~vk , changes as k changes. For example, the angle θ between ~v3 and parallels is twice the
angle θ between parallels and ~v2. This is to be expected, since ~v3 has a singularity with an
index equal to 3 (with four “petals”) and ~v2 has a singularity with an index equal to 2 (with
two “petals”). Also, ~v1 is the south-north vector field, which forms an angle θ = π

2 with the
parallels. See [1] and [7] for more details.

Observe that tanα = g
(∇e1 e1,e2

)
and ∇e2 e2 = 0. Indeed, define ψ : U → R3 as ψ(α,β) =

(cosαsinβ,cosαcosβ, sinα), where
(− π

2 , π2
)× (

0,2π
)

:= U ⊂ R2. In this case, ψα = e2, ψβ =
e1 cos(α) and ψαα = ∇e2 e2. Therefore, tanα = g

(∇e1 e1,e2
)

and since the e2 is tangent to the
meridians, ∇e2 e2 = 0 in S2.

By a straightforward computation,

γ= cosθ(tanα+θ1)+ (sinθ)θ2, (3)

δ= sinθ(tanα+θ1)− (cosθ)θ2. (4)

From equations (3) and (4), we have

1+γ2 +δ2 = 1+ (cosθ(tanα+θ1)+ (sinθ)θ2)2 + (sinθ(tanα+θ1)− (cosθ)θ2)2

= 1+cos2θ(tanα+θ1)2 + (sinθ)2θ2
2 + sin2θ(tanα+θ1)2 + (cos2θ)θ2

2

= 1+ (tanα+θ1)2 +θ2
2 .

Finally,

1+γ2 +δ2 = 1+ (tanα+θ1)2 +θ2
2 . �
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This Lemma allows us to rewrite the volume functional as an integral depending on the
latitude α and the derivatives of θ

vol(~v) =
∫

M

√
1+ (tanα+θ1)2 +θ2

2 ν. (5)

Proposition 8. Let ~vk be unit vector field on M =S2\{N ,S}. Then,

vol(~vk ) =πL(εk ),

if and only if ~vk satisfies the aforementioned definition.

Proof. Using the Lemma we have

vol(~vk ) =
∫

M

√
1+ (tanα+θ1)2 +θ2

2 ν.

Assuming θ1 = k−1
cosα and θ2 = 0, we obtain

vol(~vk ) =
∫

M

√
1+

(
tanα+ k −1

cosα

)2

ν

=
∫

M

√
1+

(
sinα+k −1

cosα

)2

ν

=
∫

M

√
1+ (k −1)2 +2(k −1)sinα

cosα
ν

= lim
α0→− π

2

∫ π
2

α0

∫ 2π

0

√
1+ (k −1)2 +2(k −1)sinα

cosα
cosαdβdα

= 2π
∫ π

2

− π
2

√
1+ (k −1)2 +2(k −1)sinαdα.

Taking t = α
2 + π

4 we have

vol(~vk ) = 4π
∫ π

2

0

√
(k −2)2 +4(k −1)sin2 t dt

=πL(εk ).

On the other hand, if vol(~vk ) =πL(εk ),

vol(~vk ) =
∫ √

1+ (tanα+θ1)2 +θ2
2 ν

≥
∫ √

1+ (tanα+θ1)2ν

≥
∫
|cosϕ+ sinϕ(tanα+θ1)|ν

=πL(εk ),

then θ2 = 0 and cosϕ(tanα+θ1) = sinϕ, where ϕ ∈ R. We conclude that θ1 = tanϕ− tanα and

ϕ=ϕ(α) = arctan
(
tanα+ k−1

cosα

)
, which implies θ1 = k−1

cosα . �

Example (Poincaré Index 4 and −2). Let~v be a unit vector field inS2 with two singularities with
indexes 4 and −2. Thus the volume of ~v is bounded by

vol(~v) ≥ 4π
∫ 2π

0

√
4+12sin2 t dt

Figures 2 and 3 provide a visual representation for a unit vector field with two singularities with
Poincaré indexes 4 and −2.
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Figure 2. Singularity of index 4 in north
pole

Figure 3. Singularity of index −2 in
south pole

3. Proof of the Theorem

We will follow most of the arguments found in the proof of the main Theorem of [2].

Proof of the Theorem. Given a, b, ϕ ∈ R we have a general inequality
p

a2 +b2 ≥ |a cosϕ+
b sinϕ|, which implies √

1+ (tanα+θ1)2 ≥ ∣∣cosϕ+ sinϕ(tan(α)+θ1)
∣∣ .

Therefore,

vol(~v) ≥
∫

M

(
cosϕ+ sinϕ| tanα+θ1|

)
ν. (6)

This inequality is valid for all ϕ such that 0 ≤ ϕ ≤ 2π, therefore we may use ϕ obtained in the
previous Proposition:

ϕk (α) = arctan

(
tanα+ k −1

cosα

)
; where α ∈

(
−π

2
,
π

2

)
. (7)

Replacing this condition in equation (6) we find

vol(~v) ≥
∫

M

(
cos

(
ϕk (α)

)+ sin
(
ϕk (α)

) |tanα+θ1|
)
ν. (8)

On the other hand, 7 provides that

cos
(
ϕk (α)

)= cosα√
1+ (k −1)2 +2(k −1)sinα

and

sin
(
ϕk (α)

)= k −1+ sinα√
1+ (k −1)2 +2(k −1)sinα

.

Thus, the second part of the inequality (8) is equal to

lim
α0→− π

2

∫ π
2

α0

∫ 2π

0

(
cosα√

1+ (k −1)2 +2(k −1)sinα

+ k −1+ sinα√
1+ (k −1)2 +2(k −1)sinα

|tanα+θ1|
)

cosαdβdα. (9)
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Remember that Cartan’s connection form ω12 is given by

ω12 = δω1 −γω2,

where {ω1,ω2} is dual basis of {~v ,~v⊥}. If i :S1
α ,→S2 is the inclusion map, and e1 = sinθ~v⊥+cosθ~v ,

then
i∗(ω12)(e1) = δsinθ−γcosθ,

where i∗ is the pullback of i .
From equations (3) and (4), we have

i∗(ω12)(e1) = sinθ
[
sinθ

(
tanα+θ1

)−cosθ(θ2)
]−cosθ

[
cosθ

(
tanα+θ1

)+ sinθ(θ2)
]

= tanα+θ1.

Thus, from (9)

vol(~v) ≥ lim
α0→− π

2

∫ π
2

α0

∫ 2π

0

(
cosα+ (

(k −1)+ sinα
)
i∗(ω12)(e1)√

1+ (k −1)2 +2(k −1)sinα

)
cosαdβdα. (10)

In order to compute the integral of i∗ω12 over the parallel of S2 at constant latitude α, we follow
the same arguments in the proof Theorem 1.1 of [2].

S2
α = {(x, y, z) ∈R3; z ≥ sinα}, α0 ≤α≤ π

2
.

The 2-form dω12 is given by
dω12 =ω1 ∧ω2.

A simple application of Stokes’ theorem implies that∫
S2
α

dω12 = 2π
(
IN (~v)

)−∫
S1
α

i∗ω12.

Suppose that IN (~v) = sup{IN (~v), IS (~v)} = k. We obtain∫
S1
α

i∗ω12 = 2πk −Area
(
S2
α

)= 2πk −2π
(
1− sinα

)= 2π
(
k −1+ sinα

)
. (11)

From inequality (10),

vol(~v) ≥ lim
α0→− π

2

∫ π
2

α0

∫ 2π

0

(
cosα+ (

(k −1)+ sinα
)
i∗(ω12)(e1)√

1+ (k −1)2 +2(k −1)sinα

)
cosαdβdα

= lim
α0→− π

2

∫ π
2

α0

(
cosα√

1+ (k −1)2 +2(k −1)sinα

∫ 2π

0
cosαdβ

+
(
(k −1)+ sinα

)√
1+ (k −1)2 +2(k −1)sinα

∫
S1
α

i∗ω12

)
dα

= lim
α0→− π

2

∫ π
2

α0

(
2πcos2α√

1+ (k −1)2 +2(k −1)sinα
+ 2π

(
(k −1)+ sinα

)2√
1+ (k −1)2 +2(k −1)sinα

)
dα,

where the last inequality is obtained from (11). Therefore,

vol(~v) ≥ 2π lim
α0→− π

2

∫ π
2

α0

(
cos2α+ (

(k −1)+ sinα
)2√

1+ (k −1)2 +2(k −1)sinα

)
dα.

Analogously,

vol(~v) ≥ 2π lim
α0→− π

2

∫ π
2

α0

(√
1+ (k −1)2 +2(k −1)sinα

)
dα.

A trigonometrical identity give us

vol(~v) ≥ 2π
∫ π

2

− π
2

√
(k −2)2 +4(k −1)sin2

(α
2
+ π

4

)
dα.

C. R. Mathématique — 2021, 359, n 10, 1225-1232



1232 Fabiano G. B. Brito, Jackeline Conrado, Icaro Gonçalves and Adriana V. Nicoli

Assume that t = α
2 + π

4 , then

vol(~v) ≥ 4π
∫ π

2

0

√
(k −2)2 +4(k −1)sin2 tdt . (12)

Consider k > 2 and an ellipse εk given by

x2

k2 + y2

(k −2)2 = 1.

Let µ be a parametrization for εk defined by µ(t ) = (k cos t , (k −2)sin t ). Its length is

L(εk ) = 4
∫ 2π

0

(√
(k −2)2 +4(k −1)sin2 t

)
dt . (13)

Therefore,
vol(~v) ≥πL(εk ). �
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