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Abstract. We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle [C ]− [−C ]
in the intermediate Jacobian of JC is torsion.
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1. Introduction

Let C be a complex curve of genus g ≥ 3, and p a point of C . We embed C into its Jacobian J
by the Abel–Jacobi map x 7→ [x]− [p]. The Ceresa cycle zp (C ) is the cycle [C ]− [(−1J )∗C ] in the
Chow group C H1(J )hom of homologically trivial 1-cycles. The Ceresa class cp (C ) is the image of
zp (C ) in the intermediate Jacobian J1(J ) parameterizing 1-cycles under the Abel–Jacobi map
C H1(J )hom → J1(J ).

When C is general, zp (C ) is not algebraically trivial [2]. On the other hand, if C is hyperelliptic
zp (C ) is algebraically trivial – in fact it is zero if one chooses for p a Weierstrass point. Not much
is known besides these two extreme cases. There are few curves for which zp (C ) is known to be
not algebraically trivial: Fermat curves of degree ≤ 1000 [4], and the Klein quartic [5]. An essential
ingredient of these results is the fact that cp (C ) is not a torsion class.

It is an open question whether there are non-hyperelliptic curves with zp (C ) algebraically
trivial. As observed in [3, Remark 2.4], this condition is equivalent to a number of interesting
properties: in particular the existence of a multiplicative Chow–Künneth decomposition modulo
algebraic equivalence, or the fact that the class [C ] ∈C H1(J )⊗Q is algebraically equivalent to the
minimal class θg−1

(g−1)! , where θ ∈C H 1(J ) is the class of the principal polarization.
In this note we exhibit a curve C of genus 3 with the weaker property that the Ceresa class cp (C )

is torsion (under the Bloch–Beilinson conjectures, this actually implies the algebraic triviality of
zp (C ) up to torsion). The construction is very simple: the curve C has an automorphism σ which
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fixes a point p, and therefore preserves cp (C ); we just have to check that the fixed point set of σ
acting on J1(J ) is finite.

A similar example, based on a much more sophisticated approach, appears in [1, Remark 3.6].

2. The result

Proposition 1. Let C ⊂P2 be the genus 3 curve defined by X 4+X Z 3+Y 3Z = 0, and let p = (0,0,1).
The Ceresa class cp (C ) is torsion.

Proof. Let ω be a primitive 9th root of unity. We consider the automorphism σ of C defined by
σ(X ,Y , Z ) = (X ,ω2Y ,ω3Z ). We have σ(p) = p; therefore σ preserves the Ceresa cycle zp (C ), and
also its class cp (C ) in J := J1(J ).

Thus it suffices to prove that σ has finitely many fixed points on J; equivalently, that the
eigenvalues of σ acting on the tangent space T0(J) are 6= 1.

Now T0(J) is identified with H 0,3(J ) ⊕ H 1,2(J ) = ∧3 V ∗ ⊕ (
∧2 V ∗ ⊗ V ), where V = H 1,0(J )

= H 0(C ,KC ). We first compute the eigenvalues of σ on V . The elements of V are of the form
L · X d Z−Z d X

Y 2 Z
, with L ∈ H 0(P2,OP(1)); it follows that the eigenvalues of σ on V are ω5,ω7,ω8.

Therefore the eigenvalue on
∧3 V ∗ is ω7, and the eigenvalues on

∧2 V ∗ are ω3,ω5,ω6. Thus each
product of an eigenvalue on

∧2 V ∗ and one on V is 6= 1, hence the Proposition. �
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