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Abstract. We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle [C] — [-C]
in the intermediate Jacobian of JC is torsion.
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1. Introduction

Let C be a complex curve of genus g = 3, and p a point of C. We embed C into its Jacobian J
by the Abel-Jacobi map x — [x] — [p]. The Ceresa cycle 3,(C) is the cycle [C] - [(-1))*C] in the
Chow group CH;(J)hom of homologically trivial 1-cycles. The Ceresa class ¢, (C) is the image of
3p(C) in the intermediate Jacobian J;(J) parameterizing 1-cycles under the Abel-Jacobi map
CHi(Dhom — J1(D.

When C is general, 3,(C) is not algebraically trivial [2]. On the other hand, if C is hyperelliptic
3p(C) is algebraically trivial — in fact it is zero if one chooses for p a Weierstrass point. Not much
is known besides these two extreme cases. There are few curves for which 3, (C) is known to be
not algebraically trivial: Fermat curves of degree < 1000 [4], and the Klein quartic [5]. An essential
ingredient of these results is the fact that ¢, (C) is not a torsion class.

It is an open question whether there are non-hyperelliptic curves with 3,(C) algebraically
trivial. As observed in [3, Remark 2.4], this condition is equivalent to a number of interesting
properties: in particular the existence of a multiplicative Chow-Kiinneth decomposition modulo
algebraic equivalence, or the fact that the class [C] € CH; (J) ® Q is algebraically equivalent to the
minimal class %, where 8 € CH(J) is the class of the principal polarization.

In this note we exhibit a curve C of genus 3 with the weaker property that the Ceresa class ¢, (C)
is torsion (under the Bloch—-Beilinson conjectures, this actually implies the algebraic triviality of
3p(C) up to torsion). The construction is very simple: the curve C has an automorphism ¢ which
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fixes a point p, and therefore preserves ¢, (C); we just have to check that the fixed point set of &
acting on 1 (J) is finite.
A similar example, based on a much more sophisticated approach, appears in [1, Remark 3.6].

2. The result

Proposition1. LetCc P2 be the genus 3 curve defined by X*+XZ3+Y3Z=0,and letp=1(0,0,1).
The Ceresa class ¢, (C) is torsion.

Proof. Let w be a primitive 9" root of unity. We consider the automorphism o of C defined by

o(X,Y,2) = (X,w?Y,w3Z). We have o(p) = p; therefore o preserves the Ceresa cycle 3,(C), and
also its class ¢, (C) in J := J1(J)).

Thus it suffices to prove that o has finitely many fixed points on J; equivalently, that the
eigenvalues of ¢ acting on the tangent space Ty (J) are # 1.

Now Ty(J) is identified with H*3(J) @ HY2()) = A3V* @ (A2V* ® V), where V = H"O())
= HY%(C, K¢). We first compute the eigenvalues of 0 on V. The elements of V are of the form
L- %, with L € H°(P?, Op(1)); it follows that the eigenvalues of o on V are w°,0’,w®.
Therefore the eigenvalue on A3 V* is w’, and the eigenvalues on \? V* are 0®,w®,w®. Thus each
product of an eigenvalue on A V* and one on V is # 1, hence the Proposition. U
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