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Abstract. We analyze the differential relation corresponding to integrability of almost complex structures,
reformulated as a directed immersion relation by Demailly and Gaussier. Using recent results of Clemente
from 2020 in combination with this analysis, we show the following two statements: first, there are no
formal obstructions to integrability of a complex structure, in the sense of h-principle. Second, for an almost
complex manifold with arbitrary metric (X, J,g), and for € > 0, there exists a smooth function f : X — R
and almost complex structure /' on X such that J and J’ are C%-close on the graph of f with respect to the
extended metric on X x R, and such that the Nijenhuis tensor of J' on the graph has pointwise sup norm less
than Ce, where C is a constant depending only on J and g.

Manuscript received 26th April 2021, revised and accepted 2nd May 2021.

1. Introduction

In their paper [4], Demailly and Gaussier construct, for a given complex dimension 7, a universal
space Z with an algebraic distribution D for which all almost complex n-manifolds immerse into,
transverse to D. More precisely, they prove the following theorem.

Theorem 1 (Demailly-Gaussier). For all integers n = 1, there exists a complex affine algebraic
manifold Z of dimension N = 38n® + 8n possessing an anti-holomorphic algebraic involution
and an algebraic distribution D c T Z of codimension n, for which every compact n-dimensional
almost complex manifold (X, ]) admits an embedding f : X — Z® transverse to D and contained
in the real part of Z, such that ] = J¢, where ] denotes the almost complex structure on TZ|D
pulled back under f.

The space Z they construct is a combination of Grassmannians and twistor spaces, built in
such a way that essentially “globalizes” the local picture relating Frobenius integrability with the
Nijenhuis tensor, via Whitney embedding. Moreover, they give a criterion for when a given almost
complex structure J is integrable, with respect to this setup.

Theorem 2 (Demailly-Gaussier). For every compact n-dimensional integrable complex mani-
fold (X, ]), there exists an embedding X — Z® transverse to D, contained in the real part of Z, such
that

W J=Jr and 0; f is injective;
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(i) Im(d;f) is contained in the isotropic locus I of the torsion operator 0 of D, the intrin-
sically defined algebraic locus in the Grassmannian bundle Gr(n,D) — Z of complex n-
dimensional subspaces in D consisting of those subspaces S such that 0|syxs = 0.

The torsion operator 0 is defined as
0(X,Y)=[X,Y] mod D.

Note that by taking the quotient, we obtain a skew symmetric bilinear fensor; we may view it as
a holomorphic section of the bundle A2D* ® (TZ/D). The inclusion condition (ii) Im(d;f) < I
is actually necessary and sufficient for integrability of . Here, ) if = %(d f+JzedfoJf) where
Jz is the fixed complex structure on Z. It was first suggested by Demailly at James Simons’ 80th
birthday conference to use the above theorems as a strategy to find obstructions to moving into
the isotropy locus; this would give topological obstructions to having an integrable complex
structure.

In the language of Gromov and the h-principle [11], the above gives rise to a natural directed
immersion problem. As described in Eliashberg & Mishachev [6], the setup is as follows: let
Gr, (W) be the Grassmannian bundle of tangent n-planes to a manifold W of dimension strictly
larger than n and V be an n-dimensional manifold. Let A < Gr,(W) be an arbitrary subset. An
immersion f:V — W is said to be an A-directed immersion if the induced tangential lift Gdf
maps into A, where Gdf sends v to df,, (T, V). All of the above can similarly be done replacing the
word immersion with embedding.

In other words, the question of when an almost complex structure can be moved along a
path of almost complex structures into one that is integrable is equivalent to a modified directed
immersion problem with respect to d of immersions into the universal space Z. One can then
apply the philosophy of the h-principle and ask:

(i) Are there formal solutions to this differential relation?
(ii) Assuming (i), are there genuine solutions to this differential relation? Does it satisfy the
h-principle?
In fact, even if there were no obstructions to a formal solution, we already know that this relation
fails the h-principle: there exist almost complex manifolds in complex dimension 2 that have no
integrable complex structures, as shown classically by Van de Ven [22]. It is an open problem as
to whether there exist such manifolds in higher dimensions.

This paper is organized as follows: we first give preliminary information about the differential
relation and the corresponding subspace of the Grassmannian bundle. We prove in Section 3 the
following result.

Theorem 3. There are always formal solutions to the above differential relation.

In the previous version of this paper, the above theorem only held for complex dimensions up
to 77. However, using results of Clemente [3], we can say it holds for all dimensions.

In Section 4, we prove that there is always a holonomic section into an arbitrarily small open
neighborhood of the relation, using the method of holonomic approximation and a microexten-
sion trick [6], assuming the existence of a formal solution. The previous version of this paper er-
roneously stated this meant there were almost complex structures with Nijenhuis tensors whose
C° norms became arbitrarily small. First, a minor definition:

Definition 4. Ler (X, g) be a Riemannian manifold and let f : X — R be a smooth function. LetT ¢
denote the graph of f as a submanifold of X x R. Restrict the metric g;j ® d? on X xR to the graph
'y to obtain a metric gy onT y. We will call the metric gy the graph metric with respect to f.

The argument presented in the previous version of this paper then actually proves the follow-
ing statement.

C. R. Mathématique — 2021, 359, n° 7, 773-793
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Theorem 5. Let (X, ], g) be an almost complex manifold with metric. For any € > 0, there exists a
smooth function f : X — R and almost complex structure J' on X such that

e |n*J=n*J'llco < Ke wheren™ J andn* J' denote the pullbacks of ] and J' onT y respectively,
and where the norm is taken with respect to g y and the constant K only depends on J and g

e the Nijenhuis tensor of ' onT'y has C° norm less than Ce, again with respect to gy, and
where C is a constant depending onlyon J and g.

In other words, given an almost complex structure J and metric g, we can find a smooth
function f and a new almost complex structure J’ so that J' approximates J on the graph of f,
and so that the Nijenhuis tensor of J' has small norm on the graph of f.
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2. The subspace I and the relation % ;

In this section we provide some preliminary information about the universal space Z, the
distribution D, the subspace I, and the differential relation 2;. For the entirety of this paper,
we only discuss complex dimension.

We first recall the definition of jets and jet spaces, following Hirsch [13, p. 58-66].

Definition 6. Let M, N be two smooth manifolds. An r-jet is an equivalence class [x, f, U], of a
triple (x, f,U) where U c M is open, x € U, and f : U — N is a C" map. Two triples (x, f,U) and
(', f',U") are equivalent if x = x' and if in some (and therefore any) pair of coordinate charts, f
and f' have the same partial derivatives up to order r. We denote [x, f, U], as j.f, called the r-th
jet of fat x. The space of all r -jets from M to N is denoted J" (M, N).

There is a natural projection map J"*1(M, N) — J" (M, N) which gives J"*! (M, N) the structure
of an affine bundle over J" (M, N). The space JO(M, N) is simply the product M x N.

Definition 7. A differential relation £ is a subset of " (M, N).

For this paper, we will mainly be concerned with the space J!(M, N). After choosing coordi-
nates on M and N, an element j}cf of JY (M, N) can be represented as a tuple (x, y, L) where y is
the image of x under f and L € Homg(TxM, T}, N) is the derivative of f at x. In other words, we
can think of L as a “formal” a priori derivative at x.

Let us illustrate some examples of differential relations below.

Example 8. We write Zimm < J'(M,N) to denote the differential relation of maps that are
immersions. This relation consists of tuples (x, y, L) such that L is injective.

Example9. Let N be equipped with a complex structure Jy. We write Zyeq < J' (M, N) to denote
the differential relation of maps that are totally real. This relation consists of tuples (x, y, L) such
that Ly (T X) N Jn(Lx(Tx X)) = 0.

C. R. Mathématique — 2021, 359, n° 7, 773-793
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Example 10. Let N be equipped with a distribution D. We write Zp < J'(M, N) to denote the
differential relation of maps that are transverse to D. This relation consists of tuples (x, y, L) such
that the composition T, X L TyN — T, N/D, is surjective.

Notice that the above three examples are subsets that are open in the jet spaces. Before the
next example, we introduce some notation.

Definition 11. Let Gr(r,s) denote the Grassmannian of r-planes in s-space. A point in Gr(r, s) is
an r-plane in a complex vector space of dimension s.

For a vector space equipped with a complex structure J, we say an r-plane S is complex if and
only if it is J-invariant; that is, J(S) < S. All r-planes are complex r-planes in this paper, unless
otherwise stated.

Definition 12. Let M be an almost complex manifold. Let Gr(n, T M) denote the Grassmannian
bundle of n-planes in T M. For each point x in M, the fiber of this bundle at x is the Grassmannian
Gr(n, Ty M) of n-planes in the vector space T,, M. If A is a subset of Gr(n, T N), we write Ay to denote
the intersection of A with the fiber over x.

Example 13. Let A be a subset of Gr(n, TN) and assume M is of dimension n and N is an almost
complex manifold of much larger dimension, with complex structure /. We write % 4 < J (M, N)
to denote the differential relation of maps that are A-directed. This relation consists of tuples
(x,y, L) such that L (T, M) € A,. Notice this only makes sense if L is injective and, as we require
our planes to be complex, if L (TxM) is Jy-invariant.

Definition 14. A smooth distribution D of constant rank k in TM is a smooth section of the
Grassmannian bundle Gr(k, T M) over M.

In this paper, all distributions will be of constant rank; distributions then also correspond to
subbundles of TM. With this point of view, given a distribution D, it makes sense to discuss
general A-directed mappings where A is a subset of Gr(-, D).

Recall that for real analytic complex structures, there is a deep theorem first proven by
Gauss relating integrability of complex structures to integrability of distributions in the sense
of Frobenius.

Theorem 15 (Gauss, Frobenius). Let U c R>" be an open set containing the origin and let ] be a
real analytic complex structure on U. Let U® denote the complexification U + iU < C*"* of U and
let J© denote the complexification of J. Then J© extends holomorphically to a small ball in U®.
Moreover, ] is integrable if and only if the +i -eigenspaces of J* on U® are integrable in the sense of
Frobenius.

Sketch of proof. We have that J is a real analytic map U — Hom(T'U, TU). Thus it has a power
series expansion in a neighborhood of the origin in U. Replacing real variables by complex
variables, we obtain J© which is a map U — Hom(TU ®r C, TU ® C), with the same power series
as J. This power series converges in a small ball in U® around the origin in C?", since the series
for J is also convergent. Therefore we can extend J© holomorphically to this ball in U®. This
extension is also a complex structure and so has +i-eigenspaces defined on this ball around the
origin.

To prove the last statement, consider U embedded in U + iU by the diagonal mapping. This
mapping is totally real; moreover it is transverse to the distribution of +i-eigenspaces defined
on the ball around the origin. If the +i-eigenspaces are integrable in the sense of Frobenius, we
can find a holomorphic foliation of submanifolds that are tangent to the +i-eigenspaces and
transverse to the diagonal. The leaves of this foliation then project to the holomorphic charts for
which J is constant. d
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We now discuss the following deep theorem of Demailly and Gaussier [4].

Theorem 16 (Demailly-Gaussier). For all integers n = 1, there exists a complex affine algebraic
manifold Z of dimension N = 38n® + 8n possessing an anti-holomorphic algebraic involution
and an algebraic distribution D c T Z of codimension n, for which every compact n-dimensional
almost complex manifold (X, ]J) admits an embedding f : X — Z® transverse to D and contained
in the real part of Z, such that ] = J¢, where ] denotes the almost complex structure on TZ|D
pulled back under f.

Sketch of proof. The space Z is defined as the set of tuples (z,S',5",%',2") in C8" x Gr(3n,8n) x
Gr(3n,8n) x Gr(4n,8n) x Gr(4n,8n) where §' c 2/, §" < £, and X' @ X" = C®*. The space Z
is then a quasiprojective subvariety of this product of Grassmannians; it is a smooth variety
of dimension N = 38n? + 8n. The flag decompositions are equivalent to a choice of complex
structure on C%" and S’ ® S” where S’ c X’ and S” < X" correspond to the +i and —i eigenspaces
respectively. The distribution D is defined at a point P = (z,5,5",2/,Z") as the set of tangent
vectors (v, u',u”, w', w") where v € §' ® " tautologically, with no other conditions on the other
components. This gives TpZ/Dp =3'/S', so D is corank n.

The embedding of an almost complex manifold (X, J) into Z is constructed by first embedding
X into the diagonal of X x X, and then embedding X x X by the product embedding into euclidean
space via Whitney. One then complexifies the normal bundle of this embedding and its complex
structure J, defined as the direct sum of the complex structures J,—J, and Jo where —]J is the
conjugate complex structure and J, is the complex structure on the double normal bundle. The
embedding f into Z is then by taking as the four subspaces the +i and —i eigenspaces of J
on C® and the complexified normal bundle, in such a way that £'/S" = TV°X. Thus Z and D
are defined tautologically so that X embeds transverse to D, and so that the pullback complex
structure agrees with the initial complex structure, by way of a real (which is a posteriori complex)
isomorphism f*(TZ/D) = T'X. O

Remark. In [4], Z is actually taken to be an open affine subset of the above space by removal of
an appropriate subvariety, but it is shown that any almost complex manifold X embeds into the
above quasiprojective variety anyway.

The above construction is strongly motivated by the proof of Gauss-Frobenius; indeed, it is a
globalization of the local picture in Gauss-Frobenius made universal by Whitney embedding. For
full proof and construction, see [4]. We will often call Z the universal space and D the universal
distribution in this paper.

We now prove some properties about the universal space Z and its universal distribution D.
Namely, Z is homogeneous.

Lemma 17. There is a natural transitive group action of C3" x GL(8n,C) on Z. There is another
transitive group action, by the affine group Aff(C®"), on Z such that D is invariant; that is, for an
affine element g € Aff(C®"), the differential of the multiplication map tg maps D to D.

Proof. Define the action of C®x GL(8n,C) by (b, A)-(z,5',S",2',2") = (z+ b, AS', AS", AZ', AZ").
This is transitive since the action is transitive on all components. Define the action of Aff(C8)
by (b, A)-(2,5',S",2,2") = (Az+ b, AS', AS", AT, AT"). This is again transitive on all components.
Moreover, for a fixed element g = (b, A), we have a smooth map ug : Z — Z which is multiplication
by g. Recall that D at a point P = (z,5,5",%/,2") is the set of (v, v/, u”, w',w") where ve S’ ® X"
tautologically. Then, the map pg sends (v, v, u”, w', w") in Dp to (Av, W, u’, W, w" in Dy, (p), for
some u' , ﬁr’, E;’, w". Thus D is invariant under this action. O

Before we further analyze the structure of the algebraic distribution D on Z, we must prove
some lemmas regarding stably almost complex manifolds.

C. R. Mathématique — 2021, 359, n° 7, 773-793
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Definition 18. A smooth manifold M is stably almost complex if TM & eug is a complex vector
bundle for some k, where eu’% is the trivial rank k real vector bundle.

We use the following lemma ([9, Lemma 2.1]).

Lemma 19 (Goertsches-Konstantis). Let M and N be two real d-dimensional manifolds, M#N
their connected sum, and p : M#N — M and q : M#N — N the two collapsing maps. Then
T(M#N) & eu’é = p*TM & q* TN. This implies the connected sum of two stably almost complex
manifolds is stably almost complex.

The following observation is due to a discussion with M. Albanese and A. Milivojevic. We write
#K M to denote the k-fold connected sum of M. That is, #* M = M#...#M with k copies of M.

Lemma 20. In every odd dimension, there exists examples of almost complex manifolds whose
tangent bundles admit no complex line subbundles.

Proof. We have that S° x S° is complex [2] and so its connected sums are stably almost complex,
by Lemma 19. By Theorem 2 in [23], we have that #2585 x 8% is almost complex. Moreover, it
is 2-connected with nonzero Euler characteristic, and so it has no complex line subbundle in
its tangent bundle. Since S° is also 2-connected with nonzero Euler characteristic, we have that
products of $° with #2°S5 x S5 are almost complex manifolds that do not admit any complex line
subbundle in their tangent bundle. This gives every dimension of the form 3a + 5b, which gives
every odd dimension except 7. Finally, we have that HP2#HP2#(S* x $%) is a 2-connected almost
complex manifold with nonzero Euler characteristic in dimension 4 ([16, Proposition 6]). Again
by taking a product with S%, we obtain dimension 7. U

Remark. The above argument only uses almost complex and stably almost complex manifolds.
An earlier version of this paper asked a question: Does every odd dimensional complex manifold
admit a complex line subbundle in its tangent bundle? M. El Alami provided the author with a
reference to a paper by Lu and Tian [15], wherein they prove that #2° 53 x §3 is a complex manifold.
The answer to the question is then no. Lu and Tian in fact prove much more: they prove all
connected sums of S® x S3 with itself are complex.

Lemma21. Consider the quotient bundle T Z /D over Z. The quotient bundle T Z | D has no proper
complex subbundles.

Proof. By universality of the construction of D and Z in [4], we have that for given dimension
n, every almost complex n-manifold X embeds into Z by some map f transverse to D such that
f*(TZID) = TX. Therefore, to show that TZ/D has no proper complex subbundles, it suffices to
exhibit in each dimension n an example of an almost complex manifold whose tangent bundle
does not split into complex subbundles. However it is known that CP?* admits no complex
subbundles and that CP2%*! only admits a complex line subbundle and its complement for
all k [8]. But by Lemma 20, we have shown that every odd dimension has examples of almost
complex manifolds whose tangent bundles have no complex line subbundles. U

Before we proceed, we recall the following basic lemma with its proof [21].

Lemma 22. Let M be a complex manifold with complex structure J, and let X and Y be holomor-
phic vector fields. Then JIX, Y] =[JX,Y].

Proof. Recall that the Lie bracket of two vector fields is equivalent to taking the Lie derivative of
one with respect to the other. Also using product rule, we have

UX,YI=-2%y(UX)
=—JLyX+(&yHX
=J[X,Y]
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with £y J vanishing since holomorphic vector fields admit flows ¢; that are holomorphic. Thus
the flow associated to Y therefore satisfies ¢p;J = d¢p_, o Jod¢p, = J. This gives that LyJ =
i| *J= £| J=0 O
3t l=0Pt) = qrli=0 :

We now come to the essential property of the distribution D on Z.

Definition 23. Let D be a distribution on a manifold M. We say it is bracket-generating if the
pointwise evaluations of iterated Lie brackets of vector fields tangent to D eventually span T M.

Proposition 24. The algebraic distribution D on the universal space Z is bracket-generating.

Proof. For a point z, consider the subspace D, defined as the span (over the ring of smooth R-
valued functions) of all iterated Lie brackets of vector fields tangent to D evaluated at z. For any
other z’ € Z, there exists g € Aff(C®") such that g - z = 2z’ by transitivity of the affine group action
on Z, by Lemma 17. Since D is invariant under this action, and biholomorphisms push forward
Lie brackets, we have that ﬁzr =dg; (ﬁz) independent of the choice of g. Thus D is a well defined
subbundle with D c D c TZ. To show D is bracket-generating, we will prove that D = T Z. Notice
immediately that D cannot equal D, as then D would be integrable in the sense of Frobenius.
This would imply every almost complex structure would be integrable.

Moreover D is Jz-invariant, since D is holomorphic: first choose a local holomorphic frame
for D. If v € D, then we can write v as the R-linear span of evaluations of holomorphic vector
fields spanning D and their iterated brackets. Then J, v is in D by Lemma 22, since J, commutes
with all brackets and since D is Jz-invariant. We conclude D is a complex subbundle in T Z.

If D is a proper subbundle of TZ, then we obtain a proper quotient bundle TZ/D — TZ/D.
After choosing a hermitian metric, this gives us a proper complex subbundle of TZ/D. However
this contradicts Lemma 21. O

Definition 25. Let D be a distribution on a smooth manifold M. The mapping0: D x D — TM/D
defined by

0(X,Y)=[X,Y] mod D.
where X and Y are vectors extended locally to vector fields, is the torsion tensor of D. This map is
also called the curvature of D.

Notice that 0 is exactly the obstruction for a distribution to be integrable in the sense of
Frobenius and that it is a well defined tensor due to the quotient. In our specific case with the
universal distribution D on Z, the torsion tensor 0 is algebraic.

Definition 26. Let Gr(n, D) be the Grassmannian bundle of n-planes over Z, with D the universal
distribution. Let I denote the set of n-planes S in Gr(n, D) where 0|sxs is identically zero. We call I
the isotropy locus or integrability locus. We will also write I, = I N Gr(n, D;) as the intersection of
I with the fiber of Gr(n,D) overz€ Z.

We recall a basic definition.

Definition 27. Let Gr(n, V) be the Grassmannian of n-planes in a vector space V. We writey" to
denote the tautological bundle of n-planes. That is, each fiber of y" over a point S € Gr(n,V) is
precisely the subspace S < V. We will also write (y™)* to denote the dual vector bundle, where each
fiber over S is the dual space of S.

Lemma 28. The expected dimension of I is ”72 (75n+13).

Proof. Consider the holomorphic vector bundle A2 (y™* ®C" over Gr(n, D). Define an algebraic
section 0, where 0,(S) = 0|sxs. This is well defined since 0 is a skew-symmetric tensor and D is
corank n. Then I is precisely the zero locus of the algebraic section o ;. The expected dimension
of I, is then "72 (75n+13), since I is cut out by () n equations. O

C. R. Mathématique — 2021, 359, n° 7, 773-793
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Definition 29. Let M and N be two almost complex manifolds with complex structures Jp; and Jn
respectively. Let f : M — N be a smooth mapping. The antiholomorphic differential is defined as

of = %(df‘f‘]NodfO]M)-

Notice that 4 f vanishing identically is equivalent to df commuting with the complex struc-
tures; it is precisely the obstruction to f being a holomorphic mapping. In our specific situation,
we have

0f =05, f=3df+JzodfoJyf)
as our antiholomorphic differential, with Jz the complex structure on the universal space Z
and Jr = J the complex structure obtained by pullback via the isomorphism df with TX and
TZ/D. We are interested in the situation where 9 f is injective. A crucial observation thanks to A.
Viktorova is that injectivity of ) f is independent of J, as implied by the following.

Lemma30. f isinjective if and only if the immersion f is totally real, i.e., the differential satisfies
dfs(TxX) N Jz(dfx (T X)) =0 forall x€ X.

Proof. Suppose f is a totally real immersion. If ) f(v) =0, by definition df (v) = —=Jzodf o J¢(v).
Therefore df(v) is an element of df(TX) and Jz odf(TX), so by totally realness, df(v) = 0.
Since f is also an immersion, v = 0. Suppose conversely that df is injective. Let V = df(TX) N
Jz(df(TX)). Notice that V is Jz-invariant. Complexifying TX, TZ, and df, we have by Jz-
invariance (i.e., V being a complex vector space) that there exists a +i-eigenvector v € V.
Moreover, v = df(u) for some u € TX ®C. Since Jzv = iv, we have that J7z,;p[v] mod D = i[v]
mod D, and therefore, by definition of the pullback complex structure, that Jru = iu (since df
is complex linear with respect to the complexification). Evaluating the complexified F) f on u,we
have

0f(w=df(w)+JzodfoJs(w)
=v+iJzodf(u)
=v+i]Jz(v)

=v-v=0
By injectivity of5f, we have that u=0,so v =0. g
We are now able to fully express the differential relations we are interested in studying.

Example 31. Let X be a smooth manifold and Z be the universal space. Let Z,. < J'(X, Z)
be defined as the intersection Zimm N Zreal N Zp. This is the almost complex relation, where
elements are tuples (x, y, L) such that L is injective, totally real, and transverse to the universal
distribution D.

Example 32. Let I < Gr(n,D) be the isotropy locus of the Grassmannian bundle over the
universal space Z. Let X be an almost complex manifold. Let %; ¢ %, denote the I-directed
mappings where 0 f (T X) € I for all x € X. This is equivalently the set of tuples (x, y, L) where L is
injective, transverse to D, totally real, and where L = %(L + JzoLo Jr) maps T, X into I for all x.
Here, J; denotes the complex structure pulled back by L from T Z/D. This is the complex relation.

Observe that we can make sense of AL since all we need for a pullback complex structure
is a bundle isomorphism. By definition, the pullback complex structure Jy satisfies df o J¢
mod D = J odf mod D, so by precomposing 8 f with J r» we have that df maps automatically
into D. Moreover it sends tangent planes to Jz-invariant planes since ) f anticommutes with
the complex structures. The directed immersion relation for d f mapping tangent planes into the
isotropy locus I is then well posed.

The reason of interest is due to the following theorem of Demailly and Gaussier [4].
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Theorem 33 (Demailly-Gaussier). For every compact n-dimensional integrable complex mani-
fold (X, ]), there exists an embedding X — Z® transverse to D, contained in the real part of Z, such
that

M J=Jf andd; f is injective;
(i) Im(9yf) is contained in the isotropic locus I of the torsion operator 0 of D, the intrin-

sically defined algebraic locus in the Grassmannian bundle Gr(n, D) — Z of complex n-
dimensional subspaces in D consisting of those subspaces S such that 0|sxs = 0.

Remark. The relation Zimm for immersions, Zp for maps transverse to the distribution, and
Zreq for totally real maps are all open relations. This gives the relation %, the structure of a
smooth subfibration of J1 (X, Z). In contrast, the relation %; is closed and potentially singular.

3. Formal integrability

We are now led to studying these differential relations more closely as we are interested in finding
mappings into the isotropy locus. Recall from Section 2 that there is a tower of affine bundles
= JI(M,N) = "N M, N) = - = J*(M,N) = M x N — M.

Definition 34. Let o be a section of the trivial fibration M x N — M, i.e., 0(x) = (x, f(x)) for a
map f : M — N. Then there is an induced section j" o of the fibration J" (M, N) — M by taking
all derivatives of o up to order r. This is the 1-th jet of 0. A sectionn of J' (M, N) — M such that
1 = j" o for some section o of M x N — M is said to be holonomic.

Example 35. We are only interested in J' (M, N). A holonomic section in coordinates is then of
the form jlo(x) = (x,0(x),do) for o a section of M x N — M.

Definition 36. Let 2 < J" (M, N) be a differential relation. A section ) of J' (M, N) — M whose
image lies in & is said to be a formal solution of Z. If 11 is holonomic with image in &, we say it is
a genuine solution of Z.

Every genuine solution is a formal solution. The goal then is to first see if there are any purely
homotopical obstructions to having a formal solution, before looking for a genuine solution. For
our particular case, we can analyze the Grassmannian bundle directly; i.e., given a map into the
universal space Z and a tangential lift into the Grassmannian bundle, we can try and homotope
the tangential lift to a map into the subspace I.

Remark. If a smooth manifold X admits a genuine solution to Zjmm N%p < J L(X, 7) for Z the
universal space and D the universal distribution, then X will have an almost complex structure.
The genuine solution will correspond precisely to an immersion transverse to D, thereby pulling
back the complex structure J7z,p to an almost complex structure on X. Conversely, if we already
have an almost complex structure, then by Demailly and Gaussier’s theorem, we have a genuine
solution to ZimmNZ pNZ%eal- It's worth noting that any obstructions to having a genuine solution
here should correspond to known homotopical obstructions for admitting an almost complex
structure, but we have not investigated this point.

To homotope a given tangential lift through a fiberwise homotopy, we must study the rela-
tive homotopy groups 7. (Gr(n, N — n), I;) where I, denotes the fiber over z of the subspace I,
and Gr(n, N — n) is the Grassmannian of n-planes in (N — n)-space. For dimension reasons, we
only need to consider whether there are obstructions up to * = 2n, as the obstructions lie in
H*(X,m._1(Gr(n, N—n), I)) by classical obstruction theory. However, as I may have possibly sin-
gular fibers, the obstruction cocycles may not be a priori well defined. In private communication,
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Demailly informed the author that I is indeed not smooth. It is then not obvious that the “bun-
dles” of interest are amenable to the methods of obstruction theory, as they may not be bundles
(or even Serre fibrations).

However, it is here where work of Clemente [3] comes into play.

Theorem 37 (Clemente). There exists a Zariski open subbundle Gr°(n, D) of the Grassmannian
bundle Gr(n, D) over the universal embedding space Z of Demailly and Gaussier such that the
statement of Theorem 2 holds after replacing Gr(n, D) with Gr°(n, D). Likewise, the isotropy locus I
can be replaced with the bundle I°, whose fibers are the intersection of fibers of I and Gr°(n, D). The
bundle Gr°(n, D) consists of n-planes S in D such that dr|g is injective, where 7 is the projection
map Z — C®" from the universal Demailly-Gaussier space to its first euclidean component.

Indeed, Clemente shows that the above subspaces are actual bundles. Moreover, she shows
that the natural universal map for any almost complex manifold discussed in Section 2 actually
has its antiholomorphic differential map into Gr°(n, D), and that integrability can be expressed
as mapping into I°. She also shows the following:

Theorem 38 (Clemente). The bundles Gr°(n, D) and I° have the same fiberwise homotopy type.

Clemente in fact shows both bundles admit the structure of holomorphic affine bundles over a
separate Grassmannian bundle. This result immediately shows that classical obstruction theory
can be set up, and that the obstructions vanish in all dimensions. The previous version of this
paper did not show that the obstruction theory can be set up properly; moreover, assuming that
the obstruction theory could be set up in the original context, the previous paper only showed
the vanishing of obstructions up to complex dimension 77. This vanishing followed from algebro-
geometric considerations using methods of Sommese; for full disclosure’s sake, we leave below
the arguments of the old paper as they still illustrate some of the algebro-geometric structure of
the original spaces Gr(n, D) and I.

Definition 39. Let E be a holomorphic vector bundle over a complex manifold. We say E is globally
generated if there exist global holomorphic sections that span the fiber Ey at every point x.

Definition 40. Let E be a holomorphic vector bundle with fiber E, over x. We write PE to denote
the associated projective bundle where each fiber over x is the projective spaceP(Ey) of lines in Ej.
We write yg = Opg(—1) for the tautological bundle of lines on PE. Similarly, we write its dual as
Yy = Ope(1). We will use superscript s to denote tensor product of the bundle with itself s times;
e.g., (Y;)®® = Opg(s) is the tensor product of s copies of Y.

We also require the following definition as found in [18].

Definition 41. Let E be a holomorphic vector bundle over a connected projective manifold X.
We say E is k-ample if (y})®° is globally generated for some s and if the map associated to
H(PE, (v)%) has fibers of at most dimension k.

The previous version of the paper used the following theorem of Sommese [19].

Theorem 42 (Sommese). Let E be a k-ample vector bundle on a compact complex manifold W.
Assume that E is globally generated by sections and that B is the zero set of a holomorphic section
of E. Then we haven j(W,B) =0 for j <dim W —rank E — k.

The theorem above is implied by the main results in [19]; a direct proof can also be found
in Sommese and Van de Ven [20, Remark 3.2.1]. The following sequence of lemmas and overall
argument is due to incredibly helpful conversations with J. Sheridan and J. Starr.

We will require the following theorem as stated in Theorem 12.11 in Hartshorne [12, Chap-
ter I1I, p. 290]. We will not define the terms in the statement of the theorem, as that would take us
too far afield. We only require it for the subsequent Corollary 46.
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Proposition 43 (Cohomology and base change). Let f : X — Y be a projective morphism of
noetherian schemes and let & be a coherent sheaf on X, flat over Y. Let y be a point of Y. Then:

(a) ifthe natural map
@' (y): R f(F) @ k(y) — H' (X)), Fy)
is surjective, then it is an isomorphism, and the same is true for all y' in a suitable
neighborhood of y.
(b) Assume that ¢’ (y) is surjective. Then the following conditions are equivalent:
M) ¢'~" () is also surjective;
(i) R'f«(Z) islocally free in a neighborhood of y.

We also need the following sequence of lemmas concerning the Grassmannian Gr(r, s).
For the remainder of this section, let E = (y")* denote the dual of the tautological bundle of
r-planes in s-space over Gr(r, s) unless otherwise stated.

Lemma 44. The projectivization PE is the point-plane incidence variety in Gr(r, s) x P(C®). Then
there is a natural projection map PE L. p(C*). The fiber of p over a line A € P(C®) is then
Gr(r-1,C%/ Q).

Proof. The first statement is immediate from the definition of PE, as the fiber over the r-plane S
is exactly the projectivization of S. g

Lemma 45. There is a bundle isomorphism p*Opcs)(1) = Opg(1).

Proof. This again follows from the definition of p, since over a point (A, 1) € PE where A is an r-
plane and A is a line in A, each bundle has as fiber all linear functionals defined on C® restricted
toAcA. O

We can now state the corollary of Proposition 43.

Corollary 46. If the groups H7(Gr(r —1,C*/A),Opp(1)|Gr(r—1,c5/2)) vanish, then so do the groups
HP(P(C*),R9p.Opg(1)).

Proof. This follows from Proposition 43 (a) of applied to X = PE and Y = P(C®), with f = p the
projection, as in the statement of the theorem. The fiber X, is then Gr(r -1, C%/A) asin Lemma 44.
The sheaf & is the sheaf of sections of the bundle Opg(1). Il

Lemma 47. The bundle Opg(1)|rr—1,c5/2) over Gr(r — 1,C%/A) is isomorphic to the trivial line
bundle@Gr(r_LCs/M.

Proof. We have the bundle isomorphism Opg(1) = p*Op(cs) (1) from Lemma 45. We are restricting
the bundle to Gr(r —1,C*/1), which is exactly the fiber of p. That is, it is mapped to a point. The
pullback of a bundle over a point is trivial. O

We now need to recall some basic definitions and one famous theorem from algebraic
geometry.

Definition 48. Let L be a holomorphic line bundle over a projective variety X. We say L is
basepoint-free if the intersection of zero sets of all global sections of L is empty. We say L is
ample if there is some integer r such that L®" is basepoint-free and the associated morphism
f: X —PHYX,L®") is a closed immersion.

Definition 49. The canonical bundle % on a smooth variety X is defined as the top exterior power
of the cotangent bundle T* X. The anticanonical bundle — % is the inverse bundle of % .

The following theorem is stated from Remark 7.15 in Hartshorne [12, Chapter III, p. 248].
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Theorem 50 (Kodaira vanishing). Let X be a smooth projective variety of dimension n and Xx
be its canonical bundle. If L is an ample line bundle on X, then

(@) H/(X,Le #x)=0fori>0

(b) H(X,L ) =0 fori<n.

The following fact is well known. We present an argument due to G. Elencwajg found on Math
Stack Exchange [5].

Lemma 51. Let —Kg(5) denote the anticanonical bundle of the Grassmannian Gr(r, s). Then
—KaGr(r,5) is ample.

Proof. Let X = Gr(r, s). Let T X denote the tangent bundle and T* X denote the cotangent bundle.
The anticanonical bundle is then AP T X. We have that TX = Hom(y",y$ ") where ys " denotes
the tautological quotient bundle of rank s — r. Thus we have that TX = (yQ’ ) e ys 4 Thls implies
that APTX = (APP(y")*)®S7 7 g (A‘Opys")m. Consider the short exact sequence

()—w}/ _’@’X_’Ys " 0.

From this sequence it follows that /\“’pySQ T = A©P(y")*, We then obtain that APTX =
(APP(y")*)®S, Let P : Gr(r,s) — P(A"C®) be the Pliicker embedding. The pullback P*Gp(rcs)(1)
is precisely A'°P(y")*, so we conclude that AP (y")* is ample. It then follows that T X is ample,
being the s-th tensor power of A™P (y")*. O

Corollary 52. The cohomology groups HY(Gr(r — 1,C%/A), Oy (r-1,c512)) all vanish for q > 0.

Proof. Let X = Gr(r —1,C%/1). We have that the anticanonical —Kx is ample. Using Kodaira
vanishing with L = —Kx, we obtain H7(X,0x) = H7(X,L® %x) =0 for all g > 0. O

Corollary 53. The groups H” (P(C*), R9p.Opg (1)) all vanish for g > 0.
Proof. This follows from Corollary 52 and Corollary 46. U

We lastly require the following projection formula, again found in of Hartshorne [12, Chap-
ter II, p. 124] as an exercise 5.1.d. Again we will not define the terms here, for sake of brevity. Our
only concern will be its corollary.

Proposition 54 (Projection formula). If f: (X,0x) — (Y,0y) is a morphism of ringed spaces,
if & is an Ox-module, and if & is a locally free Oy -module of finite rank, then there is a natural
isomorphism f.(F ®g, f*&) = fu(F) g, &

Corollary55. Let p.Opg(1) denote the pushforward sheaf under the projection PE L. p(c). Then,
p«Ope(1) = Op(cs) (1).

Proof. We have that p.Opg(1) = p«(Opg ® p*Op(cs)(1)) by Lemma 45. But this latter sheaf, by the
projection formula, is p. (Opg) ®Opcs) (1). But this sheaf is isomorphic to Opcs) (1), since the fibers
of p are connected, which implies that the sheaf for the trivial bundle Gpg, is pushed forward to
the sheaf for the trivial bundle Gpcs) under p. 0

We now need the following corollary regarding the sheaf cohomology of projective space,
phrased more generally as Theorem 5.1 in Hartshorne [12, Chapter III, p. 255]. We state it as a
proposition specific to our case here so as to avoid excessive terminology.

Proposition 56. H” (P(C*),Op(cs)(1)) = 0 for p >0 and H°(P(C®), Opcs) (1)) = (C*)*.

Lemma 57. The dimension of the space of global sections of p*Opcs)(1) over PE, denoted
h(PE, p*Opcs(1), is precisely equal to s.
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Proof. To compute the above dimension, we apply the Leray spectral sequence to the point-
plane incidence fibration PE LN P(C*) whose fiber over a line A is Gr(r — 1,C*/A). On the E, page
we have terms H? (P(C*), R9p.Opg(1)) which abut to HP*9(PE, Opg(1)). However, by Corollary 53
we have that the groups H? (P(C®), R p..Opg(1)) all vanish for g > 0.

For g = 0, we have the ordinary pushforward sheaf p.0pg(1) instead of the higher derived
ones. But HP (P(C*®), p.Opg(1)) is isomorphic to HP (P(C?),Op(cs)(1)) by Corollary 55. These latter
groups all vanish for p > 0 and is isomorphic to the dual space (C*)* for p = 0, by Proposition 56.
Thus the E, page of the spectral sequence only has one nonzero term, at (p,q) = (0,0). We
conclude that h°(PE, p* Opcs)(1)) = s. O

We conclude with one last definition from algebraic geometry.
Definition 58. A map f: X — P(C®) isnondegenerate if it does not map into a hyperplane.

It is well known that a map f to projective space P(C®) is given by taking all global sections of
f*Opcs)(1) if and only if f is nondegenerate and the dimension of the space of global sections of
f*Opcs(1) is equal to s. See Griffiths & Harris [10].

Lemma 59. The natural projection map PE 2, P(C%) is the map associated to global sections of
Opg(1). That is, p is nondegenerate and h°(PE, p* Opcs)(1)) = s.

Proof. The map p is nondegenerate, since it is the identity in the projective space component,
being a projection. By Lemma 57, we have h’(PE, p* Op(cs)(1)) = s. Thus it is the associated map
to global sections of Opg(1). O

Proposition 60. The bundle (y")* over the Grassmannian Gri(r,s) of r-planes in s-space is k-
ample fork = (r—1)(s—r).

Proof. Let E = (y")*. Its projectivization PE is the point-plane incidence correspondence in
Gr(r, s) x P(C%), since one is projectivizing each r-plane tautologically. Thus there is a natural
projection PE 2, p(c*). The bundle Y} = Opg(1) is already globally generated, so we are interested
in the map associated to H(PE,Gpg(1)).

By Lemma 59, the projection PE 2 peyis exactly the map associated to global sections of
Opg(1). The fiber of p has dimension k = (r —1)(s—r). O

We now return from algebraic geometry to our particular case with I, < Gr(n, D;) over a point
zin the universal space Z. Recall from Lemma 28 that I, is the zero locus of an algebraic section of
a holomorphic bundle over Gr(n, D;). This is how the previous paper obtained the 77 dimension
bound.

Lemma61. The relative homotopy groups 7t j(Gr(n, N — n), I) vanish for j < %(—n3 +77n%+12n).

Proof. Let E = /\2(}/")* ® C" over Gr(n,D;). Since it is a quotient of the trivial bundle, (y")*
is globally generated. Being k-ample is closed under the operations of direct sum, quotient,
and tensor [14, p. 26-27], for globally generated bundles. So is the property of being globally
generated. Thus, our bundle E is globally generated and k-ample for k = 38n3 — 32n? — 6n. The
relative homotopy groups then vanish by Sommese’s theorem. g

The following construction is due to a helpful discussion with A. Viktorova, who very helpfully
explained how to obtain the bundle automorphisms on D.

Lemma 62. Let Z be the universal space with D its universal distribution. Let X be an almost
complex manifold with an immersion f : X — Z and tangential lift 0 f into Gr°(n, D). Then there
is a family of complex bundle automorphisms ®; : D — D that cover the Identity on Z such that
@y = Id and ®, o d f maps into the isotropy locus I°.
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Proof. Equip Z with a hermitian metric and consider the fibration SU(D) over Z, where a fiber
over z is the space SU(D;). This is a fiber subbundle of Hom(D, D), not to be confused with a
bundle of frames; indeed, SU(D) admits sections. Then we can define a projection map SU(D) —
Gr°(n, D)| r(x) by the fiberwise quotient map SU(N — n) — SU(N - n)/(SU(n) x SU(N —2n)). Note
this quotient map is only well defined as a fibration over Gr(n, D)| feo since otherwise there
are no canonical choices of n-planes to take quotients by. With the immersion, we can choose
our n-planes to be df(T,X). By Clemente’s theorem, we have a fiberwise deformation retract
H: f(X) x[0,1] — Gr°(n,D)| X0 that deforms the tangential map F) f into the isotropy locus I°.
We then apply homotopy lifting to lift the tangential homotopy f(X) x [0,1] — Gr(n, D)°|f(x) to
a homotopy f(X) x [0,1] — SU(D), by lifting the initial time H(-,0) = df to the Identity map in
SU(D). We now have a homotopy H : f(X) x [0,1] — SU(D) with H(-,0) = Idp.

We have that SU(D) — Z has a canonical section over Z, given by choosing the identity Idp
at each point. By homotopy extension with respect to (Z, f(X)), this extends H to a homotopy
Z x [0,1] — SU(D). For each time f, we then obtain a section H(-, ) = ®; of SU(D). This gives
us a family of complex bundle automorphisms ®,: D — D covering the Identity on Z, such that
@ = Id and @ 03 f maps the tangent planes of X into the isotropy locus. g

Theorem 63. There are always formal solutions to the differential relation ;.

Proof. By Clemente’s theorem there is a fiberwise deformation retract from Gr°(n,D,) to I?.
Equip Z with a hermitian metric and take the family of bundle automorphisms ®; as constructed
in Lemma 62. Choose a Jz-invariant complementary subbundle of D. Extend @, to be the identity
on the complementary subspace and consider @, od f. Since we extended as the Identity on D,
we have ®;odf mod D = df mod D, so we also have for the pullback complex structures that
Jo,odf = J . Since @ is Jz-linear, we conclude 5]®[°df (D;odf) = @,05]ff. Moreover, ® od f is still
an injective, totally real linear map transverse to D for all ¢. Finally, ®; 0 d f (T X) is still contained
in Gr°(n, D) since the family ®; in SU(D) projects exactly to the homotopy in Gr°(n, D) by the
images of ®; on5f(TX). U

Definition 64. Let Z be a relation in J'(X,Z). Let T'(X,%) denote the space of sections of
JY(X, Z) — X whose image is in %.

Corollary 65. There is a deformation retract fromT'(X, Zac) toT' (X, ).

Proof. In the argument of Lemma 62, the constructed family ®, = <I>{ depends continuously on
the 0-jet component f and its tangential lift  f. More generally, it depends continuously on the
whole 1-jet section. Define a homotopy F : T'(X, Zac) x [0,1] — I'(X, Zac) where F(o,t) = ®J o0,
whereif o = (x, z, L) then ®7 oo (x) = (x, 2z, ®J oL). The claim is that this is a deformation retraction.

The space I'(X, %) clearly includes into I' (X, Z,.). For sections o that already map to 2, the
constructed family (D‘tT is the Identity for all time ¢. We have that F(o,0) = 0 since ®( = Id over all
o. Moreover, F(o,1) = CIJ‘IT oo which maps into I'(X, %) by construction. Thus F is a homotopy
between the retract F(-, 1) and the Identity on I'(X, Zac). Il

We now recall there is a natural action of the diffeomorphism group Diff X on J!(X, Z).
For a 1-jet (x,z,L), and a diffeomorphism g in Diff X, the action is defined as g- (x,z,L) =
(g(x),z,Lo dg’l). This action then naturally extends to sections of JYX, Z).

Definition 66. We say a relation % < J'(X, Z) is Diff X-invariant ifg- % c % for all g in Diff X.
It is immediate that 2,. and % are Diff X-invariant relations.

Lemma 67. The deformation retract from T'(X, R,c) to T'(X, ) is Diff X -invariant. That is, if g
is an element of Diff X, then g- F(o,t) = F(g-0,t) forall time t.
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Proof. Recall that the deformation retract is defined as F(o, t) = ®¢ o g, where if o(x) = (x,z,L)
then ®? o g (x) = (x,z,®Y o L). Fix a time . Then (g F(g, 1) (x) = (g(x),2,®¢ o Lodg™!). On the
other hand, we have that F(g- o, )(x) = (g(x), 2, (1)‘:’7'0 oLo dg’l). The only thing to check is that
o7 = dbfﬂ. But this is true since the constructed bundle automorphisms ®¢ only depend on the
image of the 0-component of ¢ and the images of the tangent planes under all the dL. But &
and g - o have the same 0-component, and the images of the tangent planes under all the L and
Lodg™! are the same. O

Remark. We conclude that there are always formal solutions to the directed immersion problem.
The question remains as to when ®@; o df is actually a genuine solution, or at least homotopic to
a genuine solution. In fact, ®; odf as constructed above in Theorem 63 will never be holonomic
unless the initial complex structure was integrable to begin with, since the pull back complex
structure by the constructed formal solution is the initial complex structure. There may be
no genuine solutions at all, as mentioned in the introduction. Nonetheless, we can try and
approximate the formal solution by a holonomic section, and see how close we can get to the
isotropy locus.

4. Holonomic approximation of a complex structure

In this section, we prove that given a formal solution, we can always find a holonomic section that
is e-close, albeit after perturbing our manifold within a thickened neighborhood of itself. If A is
a subset, we denote by Op A an open neighborhood of A, following Gromov’s notation [11]. We
now introduce two technical definitions, which can be found in Eliashberg and Mishachev [6].

Definition 68. Let X — V be a fibration and let I* denote the k-dimensional unit cube. A
differential relation % < X" islocally integrable if any formal solution over a point can be locally
extended to a genuine solution in a parametric and relative sense. That is, given amap h: I* — V,
a family of sections parameterized by p in I*:
Fy:h(p) — %, pelk
and a family of local holonomic extensions near dI*:
Fp :0ph(p) — %,

Fp(h(p)) = Fy(h(p)), p € Op(I¥),
there exists a family of local holonomic extensions

F,:Oph(p)— %,

Ep(h(p)) = Fy(h(p)), peI*
such that for p € Op(81¥), these new extensions agree with the original extensions over Op h(p).

Definition 69. Fix n=dim V. Let a 0-pair be any pair (A, B) diffeomorphic to ([-1,11",[-1,1]¥u
o([-1,11).

Definition 70. A differential relation % is microflexible if local deformations of genuine solutions
can be extended to global deformations of genuine solutions for small times. That is, for any
sufficiently small open ball U c V and any families smoothly parameterized by p € I of
e Or-pairs (Ap,Bp) < U,
¢ holonomic sections Fg :0pAy, — X, and
e holonomic homotopies FY : Op B, — #,7 €(0,1], of the sections Fg over Op B, which are
constant over Op(0By,) for all p € I'"* and constant over Op B for p € Op(01™),
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there exists a number o > 0 and a family of holonomic homotopies
F;, :0OpA, — %, 1€(0,0],
which extend the family of homotopies
F; :OpB, — 2, T€(0,01,
and are constant over Op(6Ap,) for all p € I'"* and constant over Op A for p € Op(0I™).

Microflexibility will be used to glue/interpolate from one holonomic section to another when
both are defined on the same open neighborhood.
We can now state the following theorem also in Eliashberg and Mishashev [6].

Theorem 71 (Holonomic %-approximation theorem). Let Z < X" be a locally integrable
microflexible differential relation. Let A<V be a polyhedron of positive codimension and suppose
there is a section F : Op A — R. Assume V is equipped with a metric and the bundle X" admits a
Euclidean structure in a neighborhood of the section F(V) < X", Then for arbitrarily small5,e > 0,
there exists a 6 -small (in the CY-sense) diffeotopy h* : V — V,1 € (0,11, and a holonomic section
F:0ph'(A) — 2 such that

| Fw) = Flop @) o <€
forallve Oph!(A).

Given a formal solution to a locally integrable microflexible differential relation defined on
some positive codimension polyhedron, we can find an C’-approximating holonomic solution in
ther-th jet space X" defined on a perturbation of the polyhedron. In fact, in the case of V = AxR,
we can choose our diffeotopy to be a vertical perturbation (i.e., of the form (x, ) — (x, h(x, 1)).
The diffeotopy itself will only be C°-small. In our situation, we will have V = X x R for X almost
complex equipped with metric g, and V equipped with the metric g;; ® d#?. Equipping the
universal Demailly-Gaussier space Z with a metric, we obtain a canonical metric on all jet spaces
J" (X xR, Z). We will need the following exercise of Gromov, found in [11, p. 84].

Exercise 72 (Gromov). Let Zang denote the differential relation of immersions R — Z that are
tangent to the distribution D. If D is bracket-generating, then %ang is microflexible.

The exercise above is actually not stated correctly; Bryant and Hsu show in [1] that there exist
examples of bracket-generating distributions (e.g., Engel structures) which possess rigid integral
curves, i.e., curves tangent to D that cannot be deformed relative to their ends. We thus need the
following preliminary definitions.

Definition 73. Let M be a smooth manifold equipped with a distribution D. Fix a point p € M.
We write C*°((0,1], M, D, p) for the space of integral mapsy : [0,1] — (M, D) with given initial point
v(0) = p, endowed with the C*-topology.

We define the endpoint map

€p,,: C%(10,11, M, D, p) — (M, )
€p,(y) := y(D).

In fact, the space C*°([0,1], M, D, p) is a Fréchet manifold locally modelled on C*(y,y* D),
where v is any integral curve, and the endpoint map is smooth. This motivates us to look at the
following definition:

Definition 74. A curvey € C*([0,1], M, D, p) is regular if the endpoint map &p , is a submersion
aty. Otherwise, v is said to be singular.
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The condition for a curve to be regular cannot be expressed as a relation in a finite jet space.
Rather, it is a relation in J*°([0, 1], M) the space of germs of curves (suitably topologized). A curve
being singular is equivalent to its lift to the cotangent bundle being contracted with the canonical
symplectic form to zero (see [17]). This yields a set of singularity equations that the curve must
satisfy. What we have are the following:

Definition 75. Let Xsing-tang in J (R, Z) denote the differential relation of immersions R — Z
that are tangent fo a distribution D and singular. Let Zsing.tang,r denote the differential relation in
J" (R, Z) that are r -jets of curves satisfying the singularity equations up to order r. Let Rreg.tang and
PRreg-tang,r denote the complements respectively.

We reformulate Gromov’s proposition as follows.

Theorem 76 (del Pino, S.). If D is bracket-generating and real analytic, then for sufficiently
larger, the relation Ryeg tang,r inJ" (R, Z) is locally integrable and microflexible.

We note that one does not need bracket-generating as an assumption on D to prove local
integrability when considering all integral curves; the assumption is used when restricting to
regular curves. The authors have also only proved the above lemma for the case of analytic D; the
smooth case remains open. Given the above result, combined with the fact that our distribution
D is bracket-generating, we can now prove the main theorem of the paper, following the same
argument as in [6, 11, 17]. We prove some preliminary lemmas first.

Definition 77. Let X be an almost complex manifold. Consider X xR and the modified differential
relation in J*°(X x R, Z): we define X .tang as immersions X x R — Z transverse to D, but totally
real in the horizontal direction, and tangent fo D and regular when restricted to each fiber
{x} xR. Likewise, define R tang r as the modified differential relation in J" (X xR, Z) of immersions
X xR — Z transverse to D, totally real in the horizontal direction, and such that the map is a
section of Rreg-tang,r When restricted to each fiber {x} xR. Let %, denote the preimage of % . under
the projection map J" (X, Z) — J1(X, Z).

The main point of the argument is that holonomic approximation applies t0 % tang after
passing to a large enough jet space, since the conditions in the horizontal directions are all open.
In the following definition and lemmas, we will fix r sufficiently large.

Lemma 78. Forr sufficiently large, Z.tang,r is locally integrable when the parameter is a point.

Proof. Since D is bracket-generating, it follows from Theorem 76 that for r sufficiently large,
Preg-tang,r N J' (R, Z) is both locally integrable and microflexible in the full parametric and rela-
tive sense. The openness of % and local integrability of %reg.tang,» imply the local integrability
of % _tang,r: We will prove first the case when the parameter is a single point.

For a formal solution F = ((x,1),z,L(x) ® V(£),etc) of Rc¢.tang,r Over a point (x, 1), we can
find a small contractible neighborhood around x and a holonomic section (x, f(x),df,etc) of
Z.,r agreeing with (x, z, L(x), etc horizontal) over x, since open relations are locally integrable.
Then we can use the local integrability of Zreg-tang, t0 find a locally defined regular integral
curve y that agrees with V and etc vertical over ¢, nowhere vanishing on the image of f, which
is contractible. Our holonomic section agreeing with F over (x,?) is then defined locally as
(x,0), f(x),dfy @Y (1), etc). O

Lemma79. Forr sufficiently large, Z . tang,r is locally integrable in the full parametric and relative
sense.

Proof. Take any family of sections F;, of Z¢.tangr parameterized by h : I* = X xR for p in
I¥ with given holonomic extensions F), defined on neighborhoods Op h(p) for p in Op(01 ky.
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Restrict the Fj, to the horizontal direction as in Lemma 78. Since %, is locally integrable in
the full parametric and relative sense, we can extend the sections in the horizontal direction
such that they agree with the given horizontal extensions for p in Op(alk). Since Zreg-tang,r
is also locally integrable in the full parametric and relative sense, we can then find vertical
sections that extend the vertical components of the given family, and agree with the vertical
components for p in Op(dI¥). The extensions ﬁp are then defined as the sum of the horizontal
and vertical components, as in Lemma 78. Since the components agree with the horizontal and
vertical components of the sections for p in Op(dI¥) respectively, the newly defined extensions
themselves agree with the given extensions. This proves %c.tang,r is locally integrable in the full
parametric and relative sense. O

We now proceed to prove microflexibility for Zc.tang,r. The idea is that one uses microflexibil-
ity of Xreg-tang,r 10 obtain a family of curves over A such that, when glued together, is the desired
holonomic homotopy (i.e., we foliate the desired holonomic homotopy with our curves); open-
ness of %, guarantees the sections remain holonomic in the transverse direction. Again we will
prove first the case when the parameter is a point, and then generalize to the full parametric and
relative case.

Lemma 80. Suppose we have a 0y -pair (A,B) c U c X xR where U is a sufficiently small open
ball, a holonomic section F° defined on Op A, and a holonomic homotopy F* defined on Op B
and constant on Op(dB). Then there is a smooth family FL of regular integral homotopies defined
on ({x} x R)nOp A, for x such that (x,t) is in A, and which agree with F* when restricted to
({x} xR) nOp B, up to a uniform small time o.

Proof. Astheholonomic homotopy F? is defined on an open neighborhood of B, we may assume
without loss of generality that B meets each fiber {x} x R transversely (in the argument, we will
parameterize a family of curves by B; without transversality, we simply parameterize by a face
transverse to B within the neighborhood Op B). By taking a sufficiently fine subdivision into
pairs where each face is transverse to the fibers, we may also assume that B intersects each fiber
transversely in at most one point.

We restrict F to {x} x R for points (x,#) on A. This gives us a holonomic homotopy FI{, »
over midpoints in the interior of curves (Op({x} x I)) N B in &reg-tang,r» Where I denotes a small
interval over x in Op A. Treating the curves I, and their midpoints as theta pairs in each fiber, we
have a collection of theta pairs smoothly parameterized by those x € X such that {x} xR intersects
B nontrivially (so the parameter space is diffeomorphic to B), with holonomic homotopies along
the midpoints of each theta pair.

By microflexibility of Zreg-tang,r aEplied to these theta pairs parameterized by x, these holo-
nomic homotopies FI,,  extend to F|{,, p for a small time o uniform over the parameter x, over
the curves ({x} x I,). This extension agrees with the homotopy on the midpoints ({x} x R) nOp B
and agrees with F® on Op(dB). Moreover, we can extend them to the rest of ({x} x R) n Op A by
defining them to be F° restricted to the fibers. This gives a smooth family FZ of regular integral
homotopies ﬁ;(t) = ﬁl{Tx} «r (D) parameterized by x € B and defined on ({x} x R) n Op A, and which
agree with F* when restricted to ({x} x R) nOp B, up to a uniform small time o. O

Lemma 81. Forr sufficiently large, the relation %ctang,r is microflexible when the parameter is a
point.

Proof. Define the dgsired hol~onomic homotopy F" of PR tang,r as the smooth family defined in
Lemma 80. That s, F* (x, t) = FL(t). The uniform time o is then the one obtained by microflexibil-
ity of Zreg-tang,r- Since the extended homotopies by the curves are small perturbations interpo-
lating between F and F7, we have that F* restricted to the horizontal direction remains in %, ,,
since this relation is open. Therefore %_tang, is microflexible when the parameter is a point. [
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Lemma 82. For r sufficiently large, the relation % tang r is microflexible in the full parametric
and relative sense.

Proof. Given smooth families of 0-pairs (Ap, Bp), holonomic sections Fg P Ay — @C_tang, and
holonomic homotopies F,fJ defined on Op B), for p in I"", we simply reapply the arguments in
Lemma 80 and Lemma 81. We restrict F, to {x} xR for (x,7) on A, for all p, and again obtain
a smooth family of holonomic homotopies over B, and parameterized smoothly in p. Since
PRreg-tang,r 1s microflexible in the full parametric and relative sense, there is an extension for small
time which is uniform over all x and p. Moreover, these extensions are constant over Op(0A) for
all p in I"™ and constant over Op A for p € Op(d1™). The desired extensions are then the smooth
families over x, for each p. Thus Zc.tang,r is microflexible in the full parametric and relative
sense. |

We can now state the correct theorem proven by the original paper.

Theorem 83. Let X be any almost complex manifold with metric g. For any formal solution o of
R and any € > 0, there exists a smooth function f : X — R such that on the graph Ty of f in X xR,
there exists a holonomic section @ onT y of t* R such that |n* 0 — G|l co < € with norm taken in the
graph metric with respect to f, and n : T ¢ — X the projection from the graph.

Proof. Take a formal solution of Z; c 2. on X. Let Z, < %, denote the preimage of %, for
some sufficiently large r. We can define a formal solution of 2, < %, since the fiber of the
preimage is contractible (there are no conditions on higher derivatives). We take a triangulation of
X and proceed by induction over the dimensions of the simplices. For the base case of 0-simplices
A9, extend the formal solution of % I,r €%, to aformal solution of % _tang,r 0N A xR, using that
A is contractible. By local integrability, we can then find a holonomic section of Zc_tang,r Over
each 0-simplex.

For the inductive step on k-simplices A¥, assume we have a holonomic section defined on
AAk, which is a union of (k — 1)-simplices. By taking a nowhere vanishing vector field defined
on A¥ tangent to D as above, we extend the formal solution of Z; , € %, to a formal solution of
PR tang,r ON A¥ xR, with the extension agreeing with the inductively defined holonomic extension
along the boundaries of the simplices. Then by the above holonomic approximation theorem, we
can perturb an open neighborhood of A x 0 by a vertical diffeotopy / and obtain a holonomic
section defined on an open neighborhood of h(A¥ x 0) that is e-close to our formal solution in
X1 r,again agreeing with the inductively defined holonomic section on the boundary. Restrict the
section to (A* x 0) for a holonomic section of 2., whichis e-close to the original formal solution
of Z1 ;. Moreover, the section is well defined globally on the k-skeleton of X, as the holonomic
extensions agree with the holonomic sections defined on the lower dimensional skeleta. Repeat
the argument on AF*!. Notice that the vertical diffeotopy h is constructed at each step, along
each simplex. Finally, projecting to the first jet space, we end with a holonomic section defined
on h(X x 0) that is e-close to the isotropy locus. Since £ is a vertical diffeotopy, projecting to R
gives the desired function f for which the statement holds. g

We reformulate the above in terms of the main theorem 5 restated below.

Corollary 84. Let (X, ], g) be an almost complex manifold with metric. For any € > 0, there exists
a smooth function f : X — R and almost complex structure J' on X such that

e " J=n*J'llco < Ke wheren™ ] andn* ' denote the pullbacks of ] and J' onT y respectively,
and where the norm is taken with respect to g  and the constant K only depends on ] and g

* the Nijenhuis tensor of J' on T has C° norm less than Ce, again with respect to § r, and
where C is a constant depending onlyon J and g.

C. R. Mathématique — 2021, 359, n° 7, 773-793



792 Tobias Shin

Proof. The constructed holonomic section & pulls back the universal complex structure to an
almost complex structure on h(X x 0). Push this almost complex structure forward by 7 to obtain
J'; the almost complex structure pulled back by & is then 7n*J'. The sections 7*c, & of the jet
space on h(X x 0) being C-close means that the underlying 1-jets are C°-close. In particular, by
taking a trivializing open cover and using compactness to reduce to finite subcovers, we can see
in coordinates that the almost complex structures pulled back by the respective sections are C°-
close, up to possibly a constant depending only on J. This proves the first item. The second item
follows from the fact that the section & is holonomic and C° close to the isotropy locus. 0

In words, this says: given an almost complex manifold, we can deform the almost complex
structure in a particular way so as to make it close to integrable. This is not with respect to
the original metric on the manifold, but with respect to the graph metric associated to the
deformation. The previous version of this paper’s main error conflated these two metrics, which
led to the original paper’s claim that any almost complex manifold could admit a sequence of
almost complex structures whose Nijenhuis norms get arbitrarily close to 0.

In fact, shortly after the previous version of this paper was first announced, Luis Fernandez
and Scott Wilson constructed explicit examples of almost complex manifolds that are known
to have no integrable structure, with almost complex structures that get arbitrarily close to
integrability [7]. We end this paper with a question.

Question 85. Does every almost complex manifold, with any fixed metric, admit almost complex
structures whose Nijenhuis tensors become arbitrarily close to 0 in the C° norm?

One potential strategy to this question may be using convex integration techniques instead of
holonomic approximation; an appropriate version of convex integration would deform the map
pulling back the universal complex structure in such a way that it may still be C!-close to a formal
solution, all pulled back on the original manifold, at the expense of C2. The method of holonomic
approximation presented here can only deform the map to be C°-close to the formal solution, on
the original manifold, at the unfortunate cost of C'.
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