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Abstract. Over the (1, N)-dimensional supercircle S UN e classify n(1|N)-invariant linear differential oper-

ators acting on the superspaces of weighted densities on SUN where n(1|N) is the Heisenberg Lie superal-
gebra. This result allows us to compute the first differential n(1|N)-relative cohomology of the Lie superal-
gebra £ (N) of contact vector fields with coefficients in the superspace of weighted densities. For N =0,1,2,
we investigate the first n(1|N)-relative cohomology space associated with the embedding of £ (N) in the
superspace of the supercommutative algebra #22(N) of pseudodifferential symbols on S 1N and in the Lie
superalgebra Y20 (S 1INy of superpseudodifferential operators with smooth coeffcients. We explicity give
1-cocycles spanning these cohomology spaces.

Résumé. Sur le supercercle (1, N)-dimensionnel SN , nous classifions les opérateurs différentiels linéaires
n(1|N)-invariant agissant sur les densités tensorielles sur SN , ol n(1|N) est la superalgebre de Lie de
Heisenberg. Ce résultat permet de calculer le premier espace de cohomologie différentiels n(1|N)-relative
de la superalgebre de Lie des champs de vecteurs de contact £ (N) a coefficients dans le superespace des
densités tensorielles. Pour N = 0,1,2, nous etudions le premier espace de cohomologie n(1|N)-relative de
& (N) dans le superespace de 'algebre supercommutative #2?(N) des symboles pseudodifférentiels sur
SUN et dans la superalgebre de Lie FY90SH) des opérateurs superpseudodifférentiels. Nous donnons
explicitement les 1-cocycles engendrent ces espaces de cohomologie.
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46 Hafedh Khalfoun and Ismail Laraiedh

1. Introduction

Let Vect(S!) is the Lie algebra of smooth vector fields on the circle S!. Consider the 1-parameter
deformation of the Vect(S')-action on C2(S"):

L;l(di(f):Xf’+/1X’f,

where X, f € CX(S!) and X’ := 9%, Denote by Z, the Vect(S!)-module structure on C(S!)
defined by L* for a fixed A. Geometrically, %) = {f dxt| fe cZ (Sl)} is the space of weighted
densities of weight A € R. The space &) coincides with the space of vector fields, functions and
differential 1-forms for A = —1, 0 and 1, respectively.

Denote by D A= Homyg;tt (5, F ) the Vect(S!)-module of linear differential operators with
the natural Vect(S')-action denoted L?}’“ (A). Each module D, , has a natural filtration by the
order of differential operators; the graded module /) ;, := grD, , is called the space of symbols.
The quotient-module Dk /DK #1 is isomorphic to the module of weighted densities &, ) ; the
isomorphism is prov1ded by the principal symbol map o defined by:

k 0 i
A=Y ai(x) (—) — 0pr(A) = ap(x)dx)* K,
i=0 0x

We study the classification of n(1|N)-invariant linear differential operators on SV acting in
the spaces §. Ovsienko and Roger [11] calculated the space H'(Vect(S"), Y20 (")), where
Vect(S!) is the Lie algebra of smooth vector fields on the circle S' and Y26 (S!) is the space
of pseudodifferntial operators. The action is given by the natural embedding of Vect(S!) in
vYg906(Sh). They used the results of D. B. Fuks [5] on the cohomology of Vect(S!) with coeffi-
cients in tensor densities to determine the cohomology with coefficients in the graded mod-
ule Grad(¥20(S')), namely H! (Vect(S'), Grad” (Y26 (S'))); here Grad” (Y206 (S')) is isomor-
phic, as Vect(S')-module, to the space of tensor densities Z,, of degree p on S'. To compute
H!(Vect(S!), Y26 (S')), V. Ovsienko and C. Roger applied the theory of spectral sequences to a
filtered module over a Lie algebra.

In this paper we consider the superspace equipped with the contact structure determined
by a 1-form a y, and the Lie superalgebra % (N) of contact vector fields on S'"V. We introduce the
J (N)-module Sﬁv of A-densities on SV and the % (N)-module of linear differential operators,

o 2= Homyir (5}, §,) ), which are super analogues of the spaces %, and D, ,, respectively. We
SllN

SllN

classify all n(1|N)-invariant linear differential operators on acting in the spaces Sﬁv . We use
the result to compute H(liiff(Jf (), n(1|N), Si\’ ). We show that, the non-zero cohomology only
appear for resonant values of weights. Moreover, we give explicit bases of these cohomology
spaces. For N = 0,1,2, we follow again the same methods by V. Ovsienko and C. Roger [11] to
compute the n(1|N)-relative cohomology H! (% (N),n(1|N), #¥Y26 (S'N)), where n(1|N) is the
Heisenberg Lie superalgebra, and .# W26 (S'V) is the space of superpseudodifferential operators
on S'V. Moreover, we give explicit bases of these cohomology spaces.

2. Definitions and notations

In this section, we recall the main definitions and facts related to the geometry of the superspace
SYUN: for more details, see [6, 7, 8, 9, 10].
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2.1. The Lie superalgebra of contact vector fields on S'V

We define the supercircle SV in terms of its superalgebra of functions, denoted by C°(S'"V) and
consisting of elements of the form:

N
F= Z Z fl'll'g...is(x)eil...eix,
5=0 1<i)<ip<--<issN

where fi,, i, € CEO(Sl), and where x is the even indeterminate, 64, ...,0 are the odd indetermi-
nates, i.e., 0;0; = —0;0;. Consider the standard contact structure given by the following 1-form:

N
ay=dx+ Z 6;do;.
i=1

On the space CZ(S'V), we consider the contact bracket
1 P o
{(FEG}=FG -F G- 5(—1)"( N 7)) 1;(G),
i=1

where7); = aiei -0; % and p(F) is the parity of F. Let Vectc (S''V) be the superspace of vector fields
on SN

N
Vecte (S'Y) = {Foax +Y F;0;
i=1

Fie cg"(s”N)},
where 0; = a%i and 0, = %, and consider the superspace % (N) of contact vector fields on S'V:

H (N) = {X € Vectc (") | there exists F € C°(S'™) such that £x(an) = Fay},

The Lie superalgebra % (N) is spanned by the fields of the form:
1 N
Xp=Foy— 5(—1)”(” Y 7;(F)7;, where Fe C2(S').
i=1

In particular, we have % (0) = Vectc (S'). The bracket in % (N) can be written as:
[XF, Xl = Xir6)-
The Lie superalgebra % (N — 1) can be realized as a subalgebra of £ (N):
K (N—-1)={Xpe X (N)|ONF =0}.
Note also that, for any i in {1,2,..., N}, £ (N — 1) is isomorphic to
H(N-1)' = {XpeH(N)|0;F = 0}.

2.2. The Heisenberg subalgebran(1|N)

The Heisenberg Lie superalgebra n(1|N) can be realized as a subalgebra of £ (N):
n(1IN) =Span(Xi, Xp,), 1<i<N.
We easily see that n(1|N — 1) is a subalgebra of n(1|N):
n(1IN-1)={Xren(l|N-1)|0nF =0}.
Note also that, for any i in {1,2,..., N -1}, n(1|N — 1) is isomorphic to
n(1IN-1)" = {(Xpen(1|N - 1)|8;F = 0}.

C. R. Mathématique, 2020, 358, n° 1, 45-58
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2.3. Modules of weighted densities

For every contact vector field X, define a one-parameter family of first-order differential opera-
tors on C2(S'V):
£, =Xp+AF, AeC.
We easily check that
=gl

XirGy*

A A
SXF’ £XG

We thus obtain a one-parameter family of £ (IN)-modules on CEO(S”N ) that we denote Sflv , the
space of all weighted densities on SV of weight A with respect to a y:

Y ={Fa} |Feces'™).

2.4. Differential operators on weighted densities

A differential operator on $'V is an operator on C(S''V) of the form:
A=Y Y ape(x,00%05 .00 €, =0,1; MeN.

Of course any differential operator defines a linear mapping F “;lv — (AF)aﬁ, from Siv to %\’ for
any A, u € R, thus the space of differential operators becomes a family of £ (N)-modules O u for
the natural action:

Xp-A=€h 0 A= (-DPWPD Ao gl .

Every differential operator A € i)f , can be expressed in the form
AFal)= Y aixom . gV Fak,

where the coefficients ay(x,0) are arbitrary functions.
Lemma 1 ([2]). Asa % (N — 1)-module, we have

oll|@NV ! a0N1 |, (1

N _oN-1 N-1
Q/Lu_@/w GB:D/H%, + Ap+3 A+3.u

1
2

wherell is the change of parity operator.

2.5. Pseudodifferential operators on S'"N

Let T*S”_N be the cotangent bundle on S'W with local coordinates (x,61,...,0,¢,01,...,0n),
where p(6;) = 1. The superspace of the supercommutative algebra #22(N) of pseudodifferential
symbols on SV with its natural multiplication is spanned by the series

FP(N) = { Y A, (X, 00505 .0

Qj,c € CEO(S”N); €,=0,1;Me I\I}.
k=—M e=(€1,...€N)

This space has a structure of the Poisson Lie superalgebra given by the following bracket:
N
(A, B} = 0g A0, B~ 0, A0¢ B~ (-1)P Y (0,405, B+ 0, A0, B),
i=1

where 0, = ai’ 0¢ = %, 0; = % and 05 = &i. Of course .#272(0) is the classical space of symbols,
X ¢ i i gi

usually denoted 2.

C. R. Mathématique, 2020, 358, n° 1, 45-58
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The associative superalgebra of pseudodifferential operators .#¥26(S'"W) on S'W has
the same underlying vector space as #Z?(N), but the multiplication is now defined by the

following rule:
(_ 1) p(A)+1

AOB: Z

a=0,v;=0,1 a!

Denote by #¥Y26 (S'WV)s; the Lie superalgebra with the same superspace as VY26 (S'V) and
the supercommutator defined on homogeneous elements by:

[A,B] = Ao B— (—1)PWrBip, 4,

(0¢0y7 4)(0%0}" ).

In particular, we have FYP0(S10 = w0 (Sh).

3. The structure of 22 (N) as a £ (N)-module

The natural embedding of £ (N) into 2 (N) defined by
(-1 p(F) N

m(XF) = F¢~ 7;(F){;, where {;=0;-0;¢,

i=1
induces a £ (N)-module structure on .# % SN).
Setting degx = deg0; = 0, deg¢ = degf; = 1 for all i, we endow the Poisson superalgebra
F P (N) with a Z-grading:

FSPN) = D S P(N),

nez
where @nez = (Bn<0) DIln=0 and
FPp(N) = {FE"+G1E" 01+ G "0y + -+ HipE""20102+ ... | E, G, Hy j € C(S'M)}
is the homogeneous subspace of degree —n.

Note that each element of #¥Y2G (S'V) can be expressed as

A=Y (Fp+ G0y +-+ HPE 2010, + .07k,
kez

where F, G;'C, H;;’j € C2(S"N). We define the order of A to be
ord(A) = sup{k‘ Fi #0or G,i #0or H]i'j # 0}.
This definition of order equips .#¥2@ (S''V) with a decreasing filtration as follows: set
Fp={Ae #Y20(S")|ord(A) < -n},
where n € Z. So we have

cFpacF,c....

This filtration is compatible with the multiplication and the super Poisson bracket, that is, for
A€F,and BeFy, onehas AoB € F,,pand {A, B} € F4 1. This filtration makes Y26 (S'™V) an
associative filtered superalgebra. Moreover, this filtration is compatible with the natural £ (V)-
action on . Y26 (S'V). Indeed,

Xr(A)=[XFp, Al € F, forany Xp € £ (N) and A€ F,,.

The induced % (N)-module structure on the quotient F,,/F,.; is isomorphic to that of the £ (IV)-
module %, (N). Therefore,

FSP(N) =@ FplFps.

nez
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4. n(1|N)-invariant linear differential operators

Now, we describe the spaces of n(1|N)-invariant linear differential operators Sﬁv — Sﬁl for NeN.
Our main result of this section is the following:

Theorem 2. Let ,/VAAL 3N = 3N, Fay) — ,/VA]\L(F)aZ be a non-zero N (1|N)-invariant linear
differential operator. Then, up to a scalar factor, the map ‘/V)LAL is given by:

Y0 YkF®, forNeN

57 7 (Fh @
Yk=0Ykh - IyET), forN=1,

A (F) = {

whereyy €R.

Proof. (i). For N =0, the generic form of any such a differential operator is
0 0 0 P - (i)
Q/V/W 18y — Fyp Fdx" — ;)YiF’ dx*,
i=
where y; € C*°(S") are arbitrary functions and F”) stands for %. The invariance property with
d dyi

respect to the vector field X = 3 implies that - =0.

(ii). By induction on N. For N =1, let ‘/V/Ilu : S}I — 3;11 be an n(1|1)-invariant linear differential
operator. The n(1]|1)-invariance of J/Alu is equivalent to invariance with respect just to the
subalgebra n(1/0) and the vector fields Xp, . Using the fact that, as vect(S 1)-modules,

gi:gg@l‘[({?’&%), 3)

we can deduce, by induction hypothesis, the restriction of Q/V)Ll,” to each component of the right-
hand side of (3). The invariance of ‘/V)LI,u with respect Xy, determine thus completely the space of
n(1]1)-invariant linear differential operator Si — 8’}1

Now, assume that the result holds for N > 1. Observe that the n(1|N)-invariance of any
linear differential operators “/VAAL : &Y — 3, is equivalent to invariance with respect just to the

subalgebras n(1|N — 1) and n(1|N — 1i,i=1,...,N—1, and that ‘/V/IAL is decomposed into four
n(1|N —1)-invariant maps:

N-1 N-1 _
Hl(S’M%)—»Hl(gwé), 1,]=0,1. (4)

Thus, by induction assumption, we exhibit the n(1|/NV — 1)-invariant linear differential operators
Sﬁv - 3’2’ . More precisely, any n(1| N — 1)-invariant binary differential operators ‘/V/IAL : Sflv - Sﬁ[
can be expressed as:

ANF) = B (1= On0p, ) (A =0, (~D)P P 3, (AN O,
A0 E) = (DO, (1-60,00) (A 0N + T @, (A,

where the coefficients Q Aw L Eau and © A,u are, a priori, arbitrary constants, but the invari-
ance of,/VAAL with respect n(1|N—-1)%,i =1,..., N — 1, shows that

Dpv e =~ 8 e Eaek = Oaask

Therefore, we easily check that JV/{\L is expressed as in Theorem 2. This completes the proof of
Theorem 2. O

C. R. Mathématique, 2020, 358, n° 1, 45-58
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5. Cohomology

51

Let us first recall some fundamental concepts from cohomology theory (see, e.g., [4]). Let g =
95 © g7 be a Lie superalgebra acting on a superspace V = V; @ V; and let ) be a subalgebra of g. (If
h is omitted it assumed to be {0}). The space of h-relative n-cochains of g with values in V is the

g-module

C"(g,b; V) := Homy (A" (g/h); V).

The coboundary operator &, : C"(g,b; V) — C"*1(g,bh; V) is a g-map satisfying §,06,-1 = 0. The
kernel of §,,, denoted Z" (g, h; V), is the space of h-relative n-cocycles, among them, the elements
in the range of §,_; are called h-relative n-coboundaries. We denote B"(g,h; V) the space of n-

coboundaries.
By definition, the n‘" h-relative cohomolgy space is the quotient space

H"(g,h; V) = Z"(g,b; V)/B" (g,b; V).

5.1. The spaces H} (% (N), n(1|N), )

In this subsection, we will compute the first differential cohomology
Héiﬁ(Jf (N), n(1|N), Siv ). Our main result is the following:

Theorem 3. The space H(lﬁff(l’ (N), n(1|N), SAN ) has the following structure:

R2 if N=2 and A=0
N=0 and 1=0,1,2

N=1and 1=0,1,3
HY(F (N), n(1IN), FY) =4 R if{N=2 and A=1

N=3 and 1=0,}

N=4 and 1=0

0 otherwise.
The following 1-cocycles Yflv span the corresponding cohomology spaces:
3
YY(Xp)=F; NeN, YL(Xp)=mEFE"a?,
2

YO(Xp) = F"dx!, Y5(Xp) = i (B)az,
Y)(Xp) = F"dx?, YI(Xp) = f1f2(F)az,

1 o 1
Yl%(XF) =7 (Fhaf, Y5 (Xp) =mieisFal.
2

spaces

(5)

The proof of Theorem 3 will be the subject of subsection 5.2. In fact, we need first the following

classical fact:

Lemma 4 ([3]). Any 1-cocycle Y on A& (N) vanishing on n(1|N), with values in Sflv, the linear

differential operator N : & (N) — Sﬁv defined by
N (X)=Y(X),

isn(1|N)-invariant.

C. R. Mathématique, 2020, 358, n° 1, 45-58
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5.2. Proof of the Theorem 3

Let YZ_VLH be a 1-cocycle on £ (N) vanishing on n(1|N), with values in 32’ By Lemma 4, up to a
scalar factor, YI_VI is a linear differential operator n(1|N)-invariant JV_IY ut Sﬂ — Sﬁ’ . Thus, by
Theorem 2, we get the explicit formulae for JV_]Y i

For N =0, {4 ,(Xe) = Lm0 7P ¥ dch

NN (XE) = Tizo v F P aly

For N=1, _ _ _
{w_fY,H(XF) = Y k=0 YT, - N (FO)aly.

Now let us check if each of the maps A} N 1, are 1- -cocycles. If the maps A1) N are 1-cocycles one
has to check the 1-cocycles one has to check the 1-cocycle relation. It reads as follows:

SN ) = (DPEPILD b (AN (v)) = ()PP PEPADD b AN x))~ AN L (1X, Y]
_O,

where X,Y € & (N). By direct computation, we can see that only the operators JV_A{‘ u= Yﬁ’
expressed as in (5) are 1-cocycles vanishing on n(1|N).

Finally, we study the non-triviality of these 1-cocycles ./Vj\{, ,- For instance, assume that the
1-cocycle JVPl,z is trivial, then there exists a density ¢(x)dx? € Sg such that

N (Xp) = L @(x)dx®. 6)

The coefficient of F"” is zero in the expression of the coboundary and the coefficient of F" is 1
in the expression of 1-cocycle A° 12- Thus, the relation (6) implies 1 = 0 which is absurd. With

the same arguments, we prove the non-triviality of 1-cocycles A Y 107 NO L1 NO 120 N 11 v N 11 v
N2 1,07 N2 1 and JV . - Therefore, we easily check that Yflv is expressed as in (5). This completes

the proof of Theorem 3

6. HL (A (N),n(1|N); #2,(N)) and HL (& (N),n(1|N); ¥ 26 (S'))
6.1. The space HéiH(Z(N),n(l IN); 2P, (N))

The space HéiH(Z(N),n(IIN);yg’n(N)) inherits the grading (3) of .#22,(NN), so it suffices to
compute it in each degree. The main result of this section for N =0, 1,2, is the following.

Theorem 5. The space H(lﬁff(lf (N),n(1|N); S 2,,(N)) has the following structure:

N=2and n=1
R if{N=0and n=0,1,2
N=1and n=1
Hlyie(H (N), n(1IN); P (N)) = ¢ l_f{sz and n=-1 (7)
N=1and n=0
R® if N=2 and n=0
0  otherwise.

C. R. Mathématique, 2020, 358, n° 1, 45-58
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The following 1-cocycles Y span the corresponding cohomology spaces:

N =F, forN=0,2, 1 =miLBE G,

L =FE Ty=F&an,

Xa=F¢72 Xo = M2 (F),

Xo =+ EDPVE 47, (FYET', 25X = (CDPP (7, (FY +T,(FE) €71 ®)
o =T (F)E g1 — 2007, (1, ToXp) = F & 20100 + (PP (1PN =T (F)52) €7

0 =MmENE =200 (FNET 0 (Xp) = (FE 002,
2 _ _ _ _ _
X3 (Xp) = gF“)f*‘clcz +=(PD (7, (F") 1~ 1, (F)2) E72 + 211, (FE.

Proof. The case where N =0. In this case, we can see that the map ¢ : &, — 27, defined by
¢G(Fdx™) = FE™" provide us with an isomorphism of Vect(S!)-modules. So, we can deduce the
structure of H}..(Vect(S1), n(110); 22,) from HY(Vect(S'), n(1/0);.%,) given in Theorem 3.
The case where N = 1. In this case, as a £ (1)-module, we have

FP,1) =S P &SP,
where

S Py =1+ CDPOYFET 47, (R, FeCRs™hy,

PP = {FEI —20,FE", Fe CR(S'M).
The natural maps
P1: Ty — ISP, _
Fa? — (L+ (-DPEYFE+ 7 (F)E1E,
@2 H(%}H%) — FPL
n+}

H(Fa1 ) — FEI —20,FE™,

provide us with isomorphisms of £ (1)-modules. Hence, as £ (1)-modules, we have .#22,(1) =

L HGS’LJ- This isomorphism induces the following isomorphism between cohomology
z

spaces:

Hgiffu((l),n(1|1);%7’n(1))=Héiffw(1),n(1|1);s}1)@Hgiﬂ(x(n,n(un;n(s 1))

1
n+l
We deduce from this isomorphism and Theorem 3, the 1-cocycles (8).
The case where N = 2. To prove Theorem 5 in this case, we need first the following:
Proposition 6. The space H(lﬁff(l’ (M, n1D)f, Sﬁ) has the following structure:
R ifA=0
Hyg(# ), n1D,§)=4R ifr=-1113

- Z » E )
0 otherwise.

The following 1-cocycles Yfl span the corresponding cohomology spaces:

Yo=F, Y
To=CDPR;_(FN0;, v

=1, (F"), Yh =T ),
2
= 0PI (FMe:, v, = F6;.
2

ol =

9)

—

C. R. Mathématique, 2020, 358, n° 1, 45-58



54 Hafedh Khalfoun and Ismail Laraiedh

Proof of Proposition 6. Let Faé1 =(fo+ fi01 + 202+ f12t9192)a§1 € Si The map
.2 1,i Li
Q: F — Iy @H(SM%)

Faj — ((1 —0;0p,)(F)af,1I ((—1)P(F)+109i (F)a’lu%)),

provides us with an isomorphism of .# (1)-modules. This map induces the following isomor-
phism between cohomology spaces:

Hy (2 0 (D5 §3) = By (2 (0 n 01D 55, ) 0 Hyg (J(l)",n(lmi;n (S;'il)). (10)
2

Of course, we can deduce the structure of
Hie(# ) nain%(5)7)) from  HYyg (2 ) nain’ssY).

Indeed, to any Y € H(ljiff (I(l)i,n(lll)i;gi'i) corresponds Ye H<1iiff (J,’(l)i,n(lll)"; II (Sil)) where
Y (Xp) = (00 Y (Xp)) with o(F) = (-1)P®F. Obviously,Y is a coboundary if and anly if Y is a
coboundary. We deduce from isomorphism (10) and formula (5), the 1-cocycles (9). O

Lemma?7. Forn € Z, any element on1 (£ (2),n(1]2); L2, (2)) is an(1]|2)-relative coboundary over
K (2) if and only if its restriction to the subalgebra % (1)* is n(1|1)" -relative coboundary for i = 1
and 2.

Proof of Lemma 7. It is easy to see that if C is a n(1]2)-relative coboundary over % (2), then
Gy isa n(1|1)-relative coboundary of J (1)'. Now, assume that Glxq) isa n(1]1)-relative
coboundary of £ (1)* fori=1 and 2. Using the condition of a 1-cocycle, we prove that there exists
an element n(1|1)! -invariant G € %, (2) such that

€ (Xpyefi0,) = {po(Xpyepe,), Gt forany fo, e CZ(S'), i=1,2
€ (Xf10,0,) = {00 (Xfi,0,0,), G} forany fio € CX(S").

We deduce that € (Xr) = {po (XF),G}, forany F e c (S'12), and therefore € is a n(1|2) -relative
coboundary of £ (2). O

We also need the following:

Proposition 8 ([1]).
(1) Asa % 1) -module, i = 1,2, we have

y%(z)=g§len(gi+%aasfwé)@giﬂ,for n=0,-1. (11)

(2) Forn#0,—-1:
(@) The following subspace of ¥ 27,,(2) :

; o _ 1_ o
9%,1:{3;”'” = FO:0,67"" +0; (ni—ing_i)(F)cg_icif " Fecg"(sl‘z)} (12)

2

isa # (1)'- module, i = 1,2, isomorphic to 3>, .

(b) Asa % (1) -module we have

S Pn(2)| S P :5%,@11(32 @Si+1), i=1,2. (13)
2

1
n+z
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Moreover, in [1] it was proved that the natural maps

Vi 80 — S Pumoi Vit S — L P
n (n,0,1) ’ n (n,1,i)
Fa2 — AF Fa2 — AF

i 2 =i . 2 D op (14)
w”’% . H(g’”%) 5”32’(,1,%,,-) and w”’% . H(g’”%) y(@(n’%’i)
n+i (n,3,0) n+} ~(n,%,0)
H(Focz 2)—>AF2 H(Focz 2)—>AF2

provide us with isomorphisms of £ (1)-modules.

Now, according to Lemma 7, the restriction of any nontrivial n(1]2)-relative 1-cocycle of £ (2)
with coefficients in 22, (2) to A (1) ! is a nontrivial n(1|1)! -relative 1-cocycle. Using Proposition 6
and Propositions 8, we obtain:

R* if n=-1
1 i i N RS if n=0
Hgige (A (1), n(111)5 S P (2)) = R if nel (15)

0 otherwise.

In the case n = —1, the space H(ljif_f(l/(l)", n(11)};. 2 _, (2)) is spanned by the following 1-cocyles:

CHXp) =yt o vh(Xe), CHXp) =y! ol (){l (Xp)) ,
’2 2
C*(Xp) =yl oTh(Xp), CHXp) =9 ol (yil (XF)) :
’2 2
In the case n =0, the space H(lﬁff(J,’(l) I n(1D) . #Py(2)) is spanned by the following 1-cocyles:
o (XF)=wg0070(XF), o (XF) 1!/0'% Y%( 121
CoH(XF) = W g o T (Xp), Cy'(Xp) =yl | ol (yi (XF)) ,
’2 2

Co'(Xp) =y, 07} (Xp),

In the case n = 1, the space H(lﬁff(J,’(l)i,n(lll)i;ygl(Z)) is spanned by the following 1-cocyles:

Crl(Xp) =yl gorl (Xp),

C'(Xp =y oll (yg (Xp)),
2

L}
C3,i _ i i
1 (XF) - wl,% oIl (Y% (XF)))

where the cocycles yg,7),v:,v" ,,v% and y] are defined by the formulae (9) and ¢/, ].,i[/f% jareas
in (14). e

Now, note that any nontrivial n(1|2)-relative 1-cocycle of £ (2) with coefficients in 22 ,,(2)
should retain the following general form Y = Y! + Y2 + Y3 + Y*, where

Y! svect(l) — FP2,(2),
Y2,Y3 g_% — FP,(2),

Y4 : g() - ygn@),

are linear maps. The space H(lﬁff(ﬂ,/(l)i,n(1|1)",5”92’n(2)),i = 1,2, determines the linear maps
Y!,Y? and Y3. The 1-cocycle conditions determines Y*. More precisely, we get:
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For n = -1, the space H! aieeKZ (2),n(112), 2 _1(2)) is generated by the nontrivial n(1]2)-
relative cocycles y? pand ¥ ¥ , corresponding to the n(1/1)’-relative cocycles C2 " and C3! | respec-
tively, via their restrictions to & (1)".

For n =0, the space H}iiff(J{ (2),n(1]2), 2, (2)) is generated by the nontrivial n(1|2)-relative
cocycles x2, 2, ¥2, X5 and 7(3 corresponding to the n(1/1)’-relative cocycles Cy"', C>, C3', C3' and

Cg 4 respectively, via their restrictions to & (1)".

For n =1, the space H! ff(Jf (2),n(1]2), £221(2)) is generated by the nontrivial n(1]2)-relative
cocycles )(1 corresponding to the n(1/1)’-relative cocycles C1 , via their restrictions to & (1)’
Theorem 5 is proved. g

6.2. The spectral sequence for a filtered module over a Lie (super)algebra

The reader should refer to [12], for the details of the homological algebra used to construct

spectral sequences. We will merely quote the results for a filtered module M with decreasing

filtration {M}} ,cz over a Lie (super)algebra g so that M, +1 € M, Upez My, = M and gM;, € Mj,.
Consider the natural filtration induced on the space of cochains by setting:

E"(C*(g,M)) = C* (g, Mp),
then we have:
dF"™(C* (g, M)) = F*(C* (g, M)) (i.e., the filtration is preserved by d);
F"™1(C* (g, M)) c F"(C* (g, M)) (i.e. the filtration is decreasing).
Then there is a spectral sequence (E*'* d,) for r e N with d, of degree (r,1—r) and
EPT = FP(CP*(g, M)/ FP*H(CP*9(g,M)) and E}'? = HP*9(g,Grad” (M)).
To simplify the notations, we have to replace F"(C* (g, M)) by F"C*. We define
ZP q _ chp+q nd~ (Fp+rcp+q+l)
Bl = FPCP*Ind(FP~"CPHI7Y),
EPT =7z 4 BPY).
The differential d maps Z/"? into Z/ *4-7+1 and hence includes a homomorphism
dy: BP9 . pprraTel
The spectral sequence converges to H*(C, d), that is
ERA ~ FPHPY4(C,d)|FPTYHPTI(C, d),

where FPH*(C,d) is the image of the map H*(FPC,d) — H*(C,d) induced by the inclusion
FPC—C.

6.3. ComputingHY..(# (N),n(1|N),.# Y20 (S'))

Since the cohomology space HY (& (N),n(1|N); Y206 (S'V)) is upper bounded by cohomol-
ogy space H ff(Jf (N),n(1|N); y,@(N)), we can check the behavior of the cocycles with values in
FYD0(S ) ) under the successive differentials of the spectral sequence. More precisely we con-
sider a cocycle with values in #22(N); but we compute its boundary as it was in FYP0(SIN)
for N =0,1,2, and keep the symbolic part of the result. This gives a new cocycle of degree equal
to the degree of the previous one plus one. We iterate this procedure, we establish a recurrence
formula between successive terms. A straightforward computations leads to the following result:
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Theorem 9. The space H(lﬁff(l’ (N), n(1|N); Y20 (SYN)) has the following structure:

R® if N=0,1
Hl i (H (N),n(1IN); Y26 (S'N) = { R® if N=2 (16)
0 otherwise.

; =N P .
The following 1-cocycles Z;* span the corresponding cohomology spaces:

EN(Xp) =F, forN=0,1,2, E(Xp)=mna(F),

2 3
E3(Xp) = F'E1 00, 25(Xp) = Z( 0 e )F‘")(x)f‘””.
1
E3Xp) =mm(F)E 0, ES(Xp) = Z( n" (TI)F(”“)(x)é_”,
n=2
25 (Xp) = Z( n" ( PP @, (F™)E "y —%F"*lgt*”),

Eé(XF)—Z( n" ( PP @ EME "y —n—_lF"“f‘"),
frou n+1

oo (_1)p(F)+n
=2

=22 (XFp) = _—
5( F) nzzb n+l
X 2(-1)"

L

=0 n+2

=Z5(Xp) = Z O PG g (F )

(771 (Fy) + 772(F(”+D)(2)f_n_1

F(n+2) g—n 1

+Z( 1 E2 s 2(1(2+Z( D o (FU)E™,

n=0 n=1
22(Xp) = Z (=D 2 (FE200(,
n=0
+Z( PO (g (D) 4 (FU D)
n+
+Z( 1) F(n+2)€ n— 1

=2 — _1\ntl (n+2) r—=n-2
Eg(XF) Z( 1) —n+2F MGG

n=1
o p(Fy+n 2N (n+1)y z—n—1
+) (-1 g METTEE
n—l
2n
+Z( 1)p(F)+n+1n+ (F(n+l))€—n lc
n—l

+ Z 2(=1)" o (FU)E,

n=1
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