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Abstract. Over the (1, N )-dimensional supercircle S1|N , we classify n(1|N )-invariant linear differential oper-
ators acting on the superspaces of weighted densities on S1|N , where n(1|N ) is the Heisenberg Lie superal-
gebra. This result allows us to compute the first differential n(1|N )-relative cohomology of the Lie superal-
gebra K (N ) of contact vector fields with coefficients in the superspace of weighted densities. For N = 0,1,2,
we investigate the first n(1|N )-relative cohomology space associated with the embedding of K (N ) in the
superspace of the supercommutative algebra S P (N ) of pseudodifferential symbols on S1|N and in the Lie
superalgebra S ΨDO (S1|N ) of superpseudodifferential operators with smooth coeffcients. We explicity give
1-cocycles spanning these cohomology spaces.

Résumé. Sur le supercercle (1, N )-dimensionnel S1|N , nous classifions les opérateurs différentiels linéaires
n(1|N )-invariant agissant sur les densités tensorielles sur S1|N , où n(1|N ) est la superalgèbre de Lie de
Heisenberg. Ce résultat permet de calculer le premier espace de cohomologie différentiels n(1|N )-relative
de la superalgèbre de Lie des champs de vecteurs de contact K (N ) à coefficients dans le superespace des
densités tensorielles. Pour N = 0,1,2, nous etudions le premier espace de cohomologie n(1|N )-relative de
K (N ) dans le superespace de l’algèbre supercommutative S P (N ) des symboles pseudodifférentiels sur
S1|N et dans la superalgèbre de Lie S ΨDO (S1|N ) des opérateurs superpseudodifférentiels. Nous donnons
explicitement les 1-cocycles engendrent ces espaces de cohomologie.
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1. Introduction

Let Vect(S1) is the Lie algebra of smooth vector fields on the circle S1. Consider the 1-parameter
deformation of the Vect(S1)-action on C∞

C
(S1):

Lλ
X d

dx

( f ) = X f ′+λX ′ f ,

where X , f ∈ C∞
C

(S1) and X ′ := dX
dx . Denote by Fλ the Vect(S1)-module structure on C∞

C
(S1)

defined by Lλ for a fixed λ. Geometrically, Fλ = {
f dxλ | f ∈C∞

C
(S1)

}
is the space of weighted

densities of weight λ ∈ R. The space Fλ coincides with the space of vector fields, functions and
differential 1-forms for λ=−1, 0 and 1, respectively.

Denote by Dλ,µ := Homdiff(Fλ,Fµ) the Vect(S1)-module of linear differential operators with

the natural Vect(S1)-action denoted Lλ,µ
X (A). Each module Dλ,µ has a natural filtration by the

order of differential operators; the graded module Sλ,µ := grDλ,µ is called the space of symbols.
The quotient-module Dk

λ,µ/Dk−1
λ,µ is isomorphic to the module of weighted densities Fµ−λ−k ; the

isomorphism is provided by the principal symbol map σr defined by:

A =
k∑

i=0
ai (x)

(
∂

∂x

)i

7→σpr(A) = ak (x)(dx)µ−λ−k ,

We study the classification of n(1|N )-invariant linear differential operators on S1|N acting in
the spaces FN

λ
. Ovsienko and Roger [11] calculated the space H1(Vect(S1),ΨDO (S1)), where

Vect(S1) is the Lie algebra of smooth vector fields on the circle S1 and ΨDO (S1) is the space
of pseudodifferntial operators. The action is given by the natural embedding of Vect(S1) in
ΨDO (S1). They used the results of D. B. Fuks [5] on the cohomology of Vect(S1) with coeffi-
cients in tensor densities to determine the cohomology with coefficients in the graded mod-
ule Grad(ΨDO (S1)), namely H1(Vect(S1),Gradp (ΨDO (S1))); here Gradp (ΨDO (S1)) is isomor-
phic, as Vect(S1)-module, to the space of tensor densities Fp of degree p on S1. To compute
H1(Vect(S1),ΨDO (S1)), V. Ovsienko and C. Roger applied the theory of spectral sequences to a
filtered module over a Lie algebra.

In this paper we consider the superspace S1|N equipped with the contact structure determined
by a 1-formαN , and the Lie superalgebra K (N ) of contact vector fields on S1|N . We introduce the
K (N )-module FN

λ
of λ-densities on S1|N and the K (N )-module of linear differential operators,

DN
λ,µ := Homdiff(FN

λ
,FN

µ ), which are super analogues of the spaces Fλ and Dλ,µ, respectively. We

classify all n(1|N )-invariant linear differential operators on S1|N acting in the spaces FN
λ

. We use
the result to compute H1

diff(K (N ), n(1|N ), FN
λ

). We show that, the non-zero cohomology only
appear for resonant values of weights. Moreover, we give explicit bases of these cohomology
spaces. For N = 0,1,2, we follow again the same methods by V. Ovsienko and C. Roger [11] to
compute the n(1|N )-relative cohomology H1(K (N ),n(1|N ),S ΨDO (S1|N )), where n(1|N ) is the
Heisenberg Lie superalgebra, and S ΨDO (S1|N ) is the space of superpseudodifferential operators
on S1|N . Moreover, we give explicit bases of these cohomology spaces.

2. Definitions and notations

In this section, we recall the main definitions and facts related to the geometry of the superspace
S1|N ; for more details, see [6, 7, 8, 9, 10].
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2.1. The Lie superalgebra of contact vector fields on S1|N

We define the supercircle S1|N in terms of its superalgebra of functions, denoted by C∞
C

(S1|N ) and
consisting of elements of the form:

F =
N∑

s=0

∑
1≤i1<i2<···<is≤N

fi1i2...is (x)θi1 . . .θis ,

where fi1i2...is ∈C∞
C

(S1), and where x is the even indeterminate, θ1, . . . ,θN are the odd indetermi-
nates, i.e., θiθ j =−θ jθi . Consider the standard contact structure given by the following 1-form:

αN = dx +
N∑

i=1
θi dθi .

On the space C∞
C

(S1|N ), we consider the contact bracket

{F,G} = FG ′−F ′G − 1

2
(−1)p(F )

N∑
i=1

ηi (F ) ·ηi (G),

where ηi = ∂
∂θi

−θi
∂
∂x and p(F ) is the parity of F . Let VectC(S1|N ) be the superspace of vector fields

on S1|N :

VectC(S1|N ) =
{

F0∂x +
N∑

i=1
Fi∂i

∣∣∣∣∣Fi ∈C∞
C (S1|N )

}
,

where ∂i = ∂
∂θi

and ∂x = ∂
∂x , and consider the superspace K (N ) of contact vector fields on S1|N :

K (N ) = {
X ∈ VectC(S1|N )

∣∣ there exists F ∈C∞
C (S1|N ) such that LX (αN ) = FαN

}
,

The Lie superalgebra K (N ) is spanned by the fields of the form:

XF = F∂x − 1

2
(−1)p(F )

N∑
i=1

ηi (F )ηi , where F ∈C∞
C (S1|N ).

In particular, we have K (0) = VectC(S1). The bracket in K (N ) can be written as:

[XF , XG ] = X{F,G}.

The Lie superalgebra K (N −1) can be realized as a subalgebra of K (N ):

K (N −1) = {XF ∈K (N ) |∂N F = 0} .

Note also that, for any i in {1,2, . . . , N }, K (N −1) is isomorphic to

K (N −1)i = {XF ∈K (N ) |∂i F = 0} .

2.2. The Heisenberg subalgebra n(1|N )

The Heisenberg Lie superalgebra n(1|N ) can be realized as a subalgebra of K (N ):

n(1|N ) = Span
(
X1, Xθi

)
, 1 ≤ i ≤ N .

We easily see that n(1|N −1) is a subalgebra of n(1|N ):

n(1|N −1) = {XF ∈ n(1|N −1) |∂N F = 0} .

Note also that, for any i in {1,2, . . . , N −1}, n(1|N −1) is isomorphic to

n(1|N −1)i = {XF ∈ n(1|N −1) |∂i F = 0} .

C. R. Mathématique, 2020, 358, n 1, 45-58
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2.3. Modules of weighted densities

For every contact vector field XF , define a one-parameter family of first-order differential opera-
tors on C∞

C
(S1|N ):

LλXF
= XF +λF ′, λ ∈C.

We easily check that [
LλXF

,LλXG

]
=LλX{F,G}

.

We thus obtain a one-parameter family of K (N )-modules on C∞
C

(S1|N ) that we denote FN
λ

, the
space of all weighted densities on S1|N of weight λ with respect to αN :

FN
λ =

{
FαλN

∣∣∣F ∈C∞(S1|N )
}

.

2.4. Differential operators on weighted densities

A differential operator on S1|N is an operator on C∞
C

(S1|N ) of the form:

A =
M∑

k=0

∑
ε=(ε1,...,εN )

ak,ε(x,θ)∂k
x∂

ε1
1 . . .∂εN

N ; εi = 0,1; M ∈N.

Of course any differential operator defines a linear mapping FαλN 7→ (AF )αµN from FN
λ

to FN
µ for

any λ, µ ∈R, thus the space of differential operators becomes a family of K (N )-modules DN
λ,µ for

the natural action:

XF · A =L
µ

XF
◦ A− (−1)p(A)p(F ) A ◦LλXF

.

Every differential operator A ∈DN
λ,µ can be expressed in the form

A(FαλN ) = ∑
`=(`1,...,`N )

a`(x,θ)η`1
1 . . .η`N

N (F )αµN ,

where the coefficients a`(x,θ) are arbitrary functions.

Lemma 1 ([2]). As a K (N −1)-module, we have

DN
λ,µ 'DN−1

λ,µ ⊕DN−1
λ+ 1

2 ,µ+ 1
2
⊕Π

(
DN−1
λ,µ+ 1

2
⊕DN−1

λ+ 1
2 ,µ

)
, (1)

whereΠ is the change of parity operator.

2.5. Pseudodifferential operators on S1|N

Let T ∗S1|N be the cotangent bundle on S1|N with local coordinates (x,θ1, . . . ,θN ,ξ, θ̄1, . . . , θ̄N ),
where p(θ̄i ) = 1. The superspace of the supercommutative algebra S P (N ) of pseudodifferential
symbols on S1|N with its natural multiplication is spanned by the series

S P (N ) =
{ ∞∑

k=−M

∑
ε=(ε1,...,εN )

ak,ε(x,θ)ξ−k θ̄
ε1
1 . . . θ̄εN

N

∣∣∣∣∣ak,ε ∈C∞
C (S1|N ); εi = 0, 1; M ∈N

}
.

This space has a structure of the Poisson Lie superalgebra given by the following bracket:

{A,B} = ∂ξA∂x B −∂x A∂ξB − (−1)p(A)
N∑

i=1

(
∂i A∂θ̄i

B +∂θ̄i
A∂i B

)
,

where ∂x = ∂
∂x

, ∂ξ = ∂
∂ξ

, ∂i = ∂
∂θi

and ∂
θi

= ∂
∂
θi

. Of course S P (0) is the classical space of symbols,

usually denoted P .
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The associative superalgebra of pseudodifferential operators S ΨDO (S1|N ) on S1|N has
the same underlying vector space as S P (N ), but the multiplication is now defined by the
following rule:

A ◦B = ∑
α≥0,νi=0,1

(−1)p(A)+1

α!

(
∂αξ ∂

νi

θ̄i
A

)(
∂αx ∂

νi
i B

)
.

Denote by S ΨDO (S1|N )SL the Lie superalgebra with the same superspace as S ΨDO (S1|N ) and
the supercommutator defined on homogeneous elements by:

[A,B ] = A ◦B − (−1)p(A)p(B)B ◦ A.

In particular, we have S ΨDO (S1|0) =ΨDO (S1).

3. The structure of S P (N ) as a K (N )–module

The natural embedding of K (N ) into S P (N ) defined by

π(XF ) = Fξ− (−1)p(F )

2

N∑
i=1

ηi (F )ζi , where ζi = θ̄i −θiξ,

induces a K (N )-module structure on S P (N ).
Setting deg x = degθi = 0, degξ = deg θ̄i = 1 for all i , we endow the Poisson superalgebra

S P (N ) with a Z-grading:

S P (N ) = ⊕̃
n∈Z

S Pn(N ),

where
⊕̃

n∈Z = (
⊕

n<0)
⊕∏

n≥0 and

S Pn(N ) = {
Fξ−n +G1ξ

−n−1θ̄1 +G2ξ
−n−1θ̄2 +·· ·+H1,2ξ

−n−2θ̄1θ̄2 + . . .
∣∣F, Gi , Hi , j ∈C∞

C (S1|N )
}

is the homogeneous subspace of degree −n.
Note that each element of S ΨDO (S1|N ) can be expressed as

A = ∑
k∈Z

(Fk +G1
kξ

−1θ̄1 +·· ·+H 1,2
k ξ−2θ̄1θ̄2 + . . . )ξ−k ,

where Fk , G i
k , H i , j

k ∈C∞
C

(S1|N ). We define the order of A to be

ord(A) = sup
{

k
∣∣∣Fk 6= 0 or G i

k 6= 0 or H i , j
k 6= 0

}
.

This definition of order equips S ΨDO (S1|N ) with a decreasing filtration as follows: set

Fn = {
A ∈S ΨDO (S1|N )

∣∣ord(A) ≤−n
}

,

where n ∈Z. So we have

· · · ⊂ Fn+1 ⊂ Fn ⊂ . . . .

This filtration is compatible with the multiplication and the super Poisson bracket, that is, for
A ∈ Fn and B ∈ Fp , one has A◦B ∈ Fn+p and {A,B} ∈ Fn+p−1. This filtration makes S ΨDO (S1|N ) an
associative filtered superalgebra. Moreover, this filtration is compatible with the natural K (N )-
action on S ΨDO (S1|N ). Indeed,

XF (A) = [XF , A] ∈ Fn for any XF ∈K (N ) and A ∈ Fn .

The induced K (N )-module structure on the quotient Fn/Fn+1 is isomorphic to that of the K (N )-
module S Pn(N ). Therefore,

S P (N ) ' ⊕̃
n∈Z

Fn/Fn+1.

C. R. Mathématique, 2020, 358, n 1, 45-58



50 Hafedh Khalfoun and Ismail Laraiedh

4. n(1|N )–invariant linear differential operators

Now, we describe the spaces of n(1|N )-invariant linear differential operators FN
λ
→FN

µ for N ∈N.
Our main result of this section is the following:

Theorem 2. Let N N
λ,µ : FN

λ
→ FN

µ , (FαλN ) 7→ N N
λ,µ(F )αµN be a non-zero N (1|N )-invariant linear

differential operator. Then, up to a scalar factor, the map N N
λ,µ is given by:

N N
λ,µ(F ) =

{∑
k≥0γk F (k), for N ∈N∑
k≥0γkη1η2 . . .ηN (F (k)), for N ≥ 1,

(2)

where γk ∈R.

Proof. (i). For N = 0, the generic form of any such a differential operator is

N 0
λ,µ :F0

λ→F 0
µ ,F dxλ 7→

m∑
i=0

γi F (i )dxµ,

where γi ∈ C∞(S1) are arbitrary functions and F (i ) stands for di F
dxi . The invariance property with

respect to the vector field X = d
dx implies that dγi

dx = 0.

(ii). By induction on N . For N = 1, let N 1
λ,µ : F1

λ
→ F1

µ be an n(1|1)-invariant linear differential

operator. The n(1|1)-invariance of N 1
λ,µ is equivalent to invariance with respect just to the

subalgebra n(1|0) and the vector fields Xθ1 . Using the fact that, as vect(S1)-modules,

F1
λ 'F0

λ⊕Π
(
F 0
λ+ 1

2

)
, (3)

we can deduce, by induction hypothesis, the restriction of N 1
λ,µ to each component of the right-

hand side of (3). The invariance of N 1
λ,µ with respect Xθ1 determine thus completely the space of

n(1|1)-invariant linear differential operator F1
λ
→F1

µ.
Now, assume that the result holds for N > 1. Observe that the n(1|N )-invariance of any

linear differential operators N N
λ,µ : FN

λ
→ FN

µ is equivalent to invariance with respect just to the

subalgebras n(1|N − 1) and n(1|N − 1)i , i = 1, . . . , N − 1, and that N N
λ,µ is decomposed into four

n(1|N −1)-invariant maps:

Πı
(
FN−1
λ+ ı

2

)
−→Π 

(
FN−1
µ+ 

2

)
, ı ,  = 0,1. (4)

Thus, by induction assumption, we exhibit the n(1|N −1)-invariant linear differential operators
FN
λ
→ FN

µ . More precisely, any n(1|N −1)-invariant binary differential operators N N
λ,µ : FN

λ
→ FN

µ

can be expressed as:

N N
λ,µ(F ) =Ξλ,µ (1−θN∂θN )(N N−1

λ,µ )−Θλ,µ(−1)p(F )∂θN (N N−1
λ,µ )θN ,

Ñ N
λ,µ(F ) = (−1)p(F )Ωλ,µ(1−θi∂θi )(Ñ N−1

λ,µ )θN +Γλ,µ(∂θi (Ñ N−1
λ,µ ),

where the coefficients Ωλ,µ,Γλ,µ,Ξλ,µ and Θλ,µ are, a priori, arbitrary constants, but the invari-
ance of N N

λ,µ with respect n(1|N −1)i , i = 1, . . . , N −1, shows that

Γλ− N
2 ,λ+k =−Ωλ− N

2 ,λ+k , Ξλ,λ+k =Θλ,λ+k .

Therefore, we easily check that N N
λ,µ is expressed as in Theorem 2. This completes the proof of

Theorem 2. �

C. R. Mathématique, 2020, 358, n 1, 45-58
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5. Cohomology

Let us first recall some fundamental concepts from cohomology theory (see, e.g., [4]). Let g =
g0̄ ⊕g1̄ be a Lie superalgebra acting on a superspace V =V0̄ ⊕V1̄ and let h be a subalgebra of g. (If
h is omitted it assumed to be {0}). The space of h-relative n-cochains of g with values in V is the
g-module

C n(g,h;V ) := Homh(Λn(g/h);V ).

The coboundary operator δn : C n(g,h;V ) −→C n+1(g,h;V ) is a g-map satisfying δn ◦δn−1 = 0. The
kernel of δn , denoted Z n(g,h;V ), is the space of h-relative n-cocycles, among them, the elements
in the range of δn−1 are called h-relative n-coboundaries. We denote B n(g,h;V ) the space of n-
coboundaries.

By definition, the nth h-relative cohomolgy space is the quotient space

Hn(g,h;V ) = Z n(g,h;V )/B n(g,h;V ).

5.1. The spaces H1
diff(K (N ), n(1|N ), FN

λ
)

In this subsection, we will compute the first differential cohomology spaces
H1

diff(K (N ), n(1|N ), FN
λ

). Our main result is the following:

Theorem 3. The space H1
diff(K (N ), n(1|N ), FN

λ
) has the following structure:

H1
diff(K (N ), n(1|N ), FN

λ ) =



R2 if N = 2 and λ= 0

R if



N = 0 and λ= 0,1,2

N = 1 and λ= 0, 1
2 , 3

2

N = 2 and λ= 1

N = 3 and λ= 0, 1
2

N ≥ 4 and λ= 0

0 otherwise.

The following 1-cocyclesΥN
λ

span the corresponding cohomology spaces:

ΥN
0 (XF ) = F ′; N ∈N, Υ1

3
2

(XF ) = η̄1(F ′′)α
3
2
1 ,

Υ0
1(XF ) = F ′′dx1, Υ2

0(XF ) = η̄1η̄2(F )α2,

Υ0
2(XF ) = F ′′′dx2, Υ2

1(XF ) = η̄1η̄2(F ′)α2,

Υ1
1
2

(XF ) = η1(F ′)α
1
2
1 , Υ3

1
2

(XF ) = η̄1η̄2η̄3(F )α
1
2
3 .

(5)

The proof of Theorem 3 will be the subject of subsection 5.2. In fact, we need first the following
classical fact:

Lemma 4 ([3]). Any 1-cocycle Υ on K (N ) vanishing on n(1|N ), with values in FN
λ

, the linear
differential operator N : K (N ) →FN

λ
defined by

N (X ) =Υ(X ),

is n(1|N )-invariant.

C. R. Mathématique, 2020, 358, n 1, 45-58
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5.2. Proof of the Theorem 3

Let ΥN
−1,µ be a 1-cocycle on K (N ) vanishing on n(1|N ), with values in FN

µ . By Lemma 4, up to a

scalar factor, ΥN
−1,µ is a linear differential operator n(1|N )-invariant N N

−1,µ : FN
−1 → FN

µ . Thus, by

Theorem 2, we get the explicit formulae for N N
−1,µ:

For N = 0,
{
N 0

−1,µ(XF ) =∑
k≥0γk F (k)dxµ

For N ≥ 1,

{
N N

−1,µ(XF ) =∑
k≥0γk F (k)α

µ

N

N N
−1,µ(XF ) =∑

k≥0γkη1η2 . . .ηN (F (k))αµN .

Now let us check if each of the maps N N
−1,µ are 1-cocycles. If the maps N N

−1,µ are 1-cocycles one
has to check the 1−cocycles one has to check the 1-cocycle relation. It reads as follows:

δ(N N
−1,µ) = (−1)p(X )p(N N

−1,µ)
L
µ

X (N N
−1,µ(Y ))− (−1)p(Y )(p(X )+p(N N

−1,µ))
L
µ

Y (N N
−1,µ(X ))−N N

−1,µ([X ,Y ])

= 0,

where X ,Y ∈ K (N ). By direct computation, we can see that only the operators N N
−1,µ = ΥN

µ

expressed as in (5) are 1-cocycles vanishing on n(1|N ).
Finally, we study the non-triviality of these 1-cocycles N N

−1,λ. For instance, assume that the
1-cocycle N 0

−1,2 is trivial, then there exists a density ϕ(x)dx2 ∈F0
2 such that

N 0
−1,2(XF ) = L2

XF
ϕ(x)dx2. (6)

The coefficient of F ′′′ is zero in the expression of the coboundary and the coefficient of F ′′′ is 1
in the expression of 1-cocycle N 0

−1,2. Thus, the relation (6) implies 1 = 0 which is absurd. With
the same arguments, we prove the non-triviality of 1-cocycles N N

−1,0, N 0
−1,1, N 0

−1,2, N 1
−1, 1

2
, N 1

−1, 3
2

,

N 2
−1,0, N 2

−1,1 and N 3
−1, 1

2
. Therefore, we easily check thatΥN

λ
is expressed as in (5). This completes

the proof of Theorem 3.

6. H1
diff(K (N ),n(1|N );S P n(N )) and H1

diff(K (N ),n(1|N );S ΨDO (S1|N ))

6.1. The space H1
diff(K (N ),n(1|N );S P n(N ))

The space H1
diff(K (N ),n(1|N );S P n(N )) inherits the grading (3) of S P n(N ), so it suffices to

compute it in each degree. The main result of this section for N = 0,1,2, is the following.

Theorem 5. The space H1
diff(K (N ),n(1|N );S P n(N )) has the following structure:

H1
diff(K (N ),n(1|N );S P n(N )) '



R if


N = 2 and n = 1

N = 0 and n = 0,1,2

N = 1 and n = 1

R2 if

{
N = 2 and n =−1

N = 1 and n = 0

R5 if N = 2 and n = 0

0 otherwise.

(7)
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The following 1-cocycles χN
n span the corresponding cohomology spaces:

χN
0 = F ′, for N = 0,2, χ2

−1 = η1η2(F )ξ−1ζ1ζ1,

χ0
1 = F ′′ξ−1, χ̃2

−1 = F ′ξ−1ζ1ζ1,

χ0
2 = F ′ξ−2, χ̃2

0 = η1η2(F ),

χ1
0 = (1+ (−1)p(F ))F ′+η1(F ′)ξ−1ζ1, χ̂2

0(XF ) = (−1)p(F ) (η1(F ′)ζ1 +η2(F ′)ζ2
)
ξ−1,

χ̃1
0 = η1(F ′)ξ−1ζ1 −2θ1η1(F ′), χ2

0(XF ) = F
′′
ξ−2ζ1ζ2 +−(1)p(F ) (η2(F ′)ζ1 −η1(F ′)ζ2

)
ξ−1,

χ1
1 = η1(F ′′)ξ−2ζ1 −2θ1η1(F ′′)ξ−1, χ2

0
(XF ) = η1η2(F ′)ξ−2ζ1ζ2,

χ2
1(XF ) = 2

3
F (3)ξ−3ζ1ζ2 +−(1)p(F ) (η2(F ′′)ζ1 −η1(F ′′)ζ2

)
ξ−2 +2η1η2(F ′)ξ−1.

(8)

Proof. The case where N = 0. In this case, we can see that the map φ : Fn −→ Pn defined by
φ(F d xn) = Fξ−n provide us with an isomorphism of Vect(S1)-modules. So, we can deduce the
structure of H1

diff(Vect(S1),n(1|0);Pn) from H1
diff(Vect(S1),n(1|0);Fn) given in Theorem 3.

The case where N = 1. In this case, as a K (1)-module, we have

S P n(1) =S P 1
n ⊕S P 2

n ,

where

S P 1
n = {(1+ (−1)p(F ))Fξ−n +η1(F )ξ−n−1ζ1, F ∈C∞

C (S1|1)},

S P 2
n = {Fξ−n−1ζ1 −2θ1Fξ−n , F ∈C∞

C (S1|1)}.

The natural maps

ϕ1 : F1
n −→ S P 1

n

Fαn
1 7−→ (1+ (−1)p(F ))Fξ−n +η1(F )ξ−n−1ζ1,

ϕ2 : Π

(
F1

n+ 1
2

)
−→ S P 1

n

Π

(
Fα

n+ 1
2

1

)
7−→ Fξ−n−1ζ1 −2θ1Fξ−n ,

provide us with isomorphisms of K (1)-modules. Hence, as K (1)-modules, we have S P n(1) '
F1

n ⊕ Π(F1
n+ 1

2
). This isomorphism induces the following isomorphism between cohomology

spaces:

H1
diff(K (1),n(1|1);S P n(1)) ' H1

diff(K (1),n(1|1);F1
n)⊕H1

diff

(
K (1),n(1|1);Π

(
F1

n+ 1
2

))
.

We deduce from this isomorphism and Theorem 3, the 1-cocycles (8).

The case where N = 2. To prove Theorem 5 in this case, we need first the following:

Proposition 6. The space H1
diff(K (1)i , n(1|1)i , F2

λ
) has the following structure:

H1
diff(K (1)i , n(1|1)i , F2

λ) =


R2 if λ= 0

R if λ=− 1
2 , 1

2 ,1, 3
2

0 otherwise.

The following 1-cocycles γi
λ

span the corresponding cohomology spaces:

γi
0 = F ′, γi

3
2
= η1(F ′′), γi

1
2
= η1(F ′),

γ̃i
0 = (−1)p(F )η3−i (F ′)θi , γi

1 = (−1)p(F )η3−i (F ′′)θi , γi
− 1

2
= F ′θi .

(9)
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Proof of Proposition 6. Let Fαλ2 = ( f0 + f1θ1 + f2θ2 + f12θ1θ2)αλ2 ∈F2
λ

. The map

Φ : F2
λ

−→ F1,i
λ

⊕Π
(
F1,i
λ+ 1

2

)
Fαλ2 7−→

(
(1−θi∂θi )(F )αλ1 ,Π

(
(−1)p(F )+1∂θi (F )α

λ+ 1
2

1

))
,

provides us with an isomorphism of K (1)i -modules. This map induces the following isomor-
phism between cohomology spaces:

H1
diff

(
K (1)i ,n(1|1)i ;F2

λ

)
' H1

diff

(
K (1)i ,n(1|1)i ;F1,i

λ

)
⊕H1

diff

(
K (1)i ,n(1|1)i ;Π

(
F1,i
λ+ 1

2

))
. (10)

Of course, we can deduce the structure of

H1
diff

(
K (1)i ,n(1|1)i ;Π

(
F1,i
λ

))
from H1

diff

(
K (1)i ,n(1|1)i ;F1,i

λ

)
.

Indeed, to anyΥ ∈ H1
diff

(
K (1)i ,n(1|1)i ;F1,i

λ

)
corresponds Υ̃ ∈ H1

diff

(
K (1)i ,n(1|1)i ;Π

(
F1,i
λ

))
where

Υ̃(XF ) = Π (σ◦Υ(XF )) with σ(F ) = (−1)p(F )F . Obviously,Υ is a coboundary if and anly if Υ̃ is a
coboundary. We deduce from isomorphism (10) and formula (5), the 1-cocycles (9). �

Lemma 7. For n ∈Z, any element of Z 1 (K (2),n(1|2);S Pn(2)) is a n(1|2)-relative coboundary over
K (2) if and only if its restriction to the subalgebra K (1)i is n(1|1)i -relative coboundary for i = 1
and 2.

Proof of Lemma 7. It is easy to see that if C is a n(1|2)-relative coboundary over K (2), then
C|K (1)i is a n(1|1)i -relative coboundary of K (1)i . Now, assume that C|K (1)i is a n(1|1)i -relative
coboundary of K (1)i for i = 1 and 2. Using the condition of a 1-cocycle, we prove that there exists
an element n(1|1)i -invariant G ∈S P n(2) such that

C
(
X f0+ fiθi

)= {
ρ0

(
X f0+ fiθi

)
,G

}
for any f0, fi ∈C∞

C

(
S1) , i = 1,2

C
(
X f12θ1θ2

)= {
ρ0

(
X f12θ1θ2

)
,G

}
for any f12 ∈C∞

C

(
S1) .

We deduce that C (XF ) = {
ρ0 (XF ) ,G

}
, for any F ∈C∞

C

(
S1|2) , and therefore C is a n(1|2) -relative

coboundary of K (2). �

We also need the following:

Proposition 8 ([1]).

(1) As a K (1)i -module, i = 1,2, we have

S Pn(2) 'F2
n ⊕Π

(
F2

n+ 1
2
⊕F2

n+ 1
2

)
⊕F2

n+1, for n = 0,−1. (11)

(2) For n 6= 0,−1 :
(a) The following subspace of S Pn(2) :

S Pn,i =
{

B (n,i )
F = Fθi θ̄iξ

−n−1 +θi

(
ηi −

1

2
η3−i

)
(F )ζ3−iζiξ

−n−2
∣∣∣∣F ∈C∞

C (S1|2)

}
(12)

is a K (1)i - module, i = 1,2, isomorphic to F2
n+1.

(b) As a K (1)i -module we have

S Pn(2)/S Pn,i 'F2
n ⊕Π

(
F2

n+ 1
2
⊕F2

n+ 1
2

)
, i = 1,2. (13)
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Moreover, in [1] it was proved that the natural maps

ψi
n,0 : F2

n −→ S P (n,0,i )

Fαn
2 7−→ A(n,0,i )

F

,
ψi

n,1 : F2
n+1 −→ S P (n,1,i )

Fαn
2 7−→ A(n,1,i )

F

ψi
n, 1

2

: Π

(
F2

n+ 1
2

)
−→ S P (n, 1

2 ,i )

Π

(
Fα

n+ 1
2

2

)
7−→ A

(n, 1
2 ,i )

F

and
ψ̃i

n, 1
2

: Π

(
F2

n+ 1
2

)
−→ �S P (n, 1

2 ,i )

Π

(
Fα

n+ 1
2

2

)
7−→ Ã

(n, 1
2 ,i )

F

(14)

provide us with isomorphisms of K (1)-modules.
Now, according to Lemma 7, the restriction of any nontrivial n(1|2)-relative 1-cocycle of K (2)

with coefficients in S Pn(2) to K (1)i is a nontrivial n(1|1)i -relative 1-cocycle. Using Proposition 6
and Propositions 8, we obtain:

H1
diff(K (1)i ,n(1|1)i ;S P n(2)) '


R4 if n =−1

R5 if n = 0

R3 if n = 1

0 otherwise.

(15)

In the case n =−1, the space H1
diff(K (1)i ,n(1|1)i ;S P −1(2)) is spanned by the following 1-cocyles:

C 1,i
−1 (XF ) =ψi

−1,1 ◦γi
0(XF ), C 3,i

−1 (XF ) =ψi
−1, 1

2
◦Π

(
γi
− 1

2
(XF )

)
,

C 2,i
−1 (XF ) =ψi

−1,1 ◦ γ̃i
0(XF ), C 4,i

−1 (XF ) = ψ̃i
−1, 1

2
◦Π

(
γi
− 1

2
(XF )

)
.

In the case n = 0, the space H1
diff(K (1)i ,n(1|1)i ;S P 0(2)) is spanned by the following 1-cocyles:

C 1,i
0 (XF ) =ψi

0,0 ◦γi
0(XF ), C 4,i

0 (XF ) = ψ̃i
0, 1

2
◦Π

(
γi

1
2

(XF )

)
,

C 2,i
0 (XF ) =ψi

0,0 ◦ γ̃i
0(XF ), C 3,i

0 (XF ) =ψi
0, 1

2
◦Π

(
γi

1
2

(XF )

)
,

C 5,i
0 (XF ) =ψi

0,1 ◦γi
1(XF ).

In the case n = 1, the space H1
diff(K (1)i ,n(1|1)i ;S P 1(2)) is spanned by the following 1-cocyles:

C 1,i
1 (XF ) =ψi

1,0 ◦γi
1 (XF ) ,

C 2,i
1 (XF ) =ψi

1, 1
2
◦Π

(
γi

3
2

(XF )

)
,

C 3,i
1 (XF ) = ψ̃i

1, 1
2
◦Π

(
γi

3
2

(XF )

)
,

where the cocycles γi
0, γ̃i

0,γi
1
2

,γi
− 1

2

,γi
3
2

and γi
1 are defined by the formulae (9) and ψi

n, j ,ψ̃i
n, j are as

in (14).
Now, note that any nontrivial n(1|2)-relative 1-cocycle of K (2) with coefficients in S P n(2)

should retain the following general formΥ=Υ1 +Υ2 +Υ3 +Υ4, where
Υ1 : vect(1) −→ S P n(2),

Υ2,Υ3 : F− 1
2

−→ S P n(2),

Υ4 : F0 −→ S P n(2),

are linear maps. The space H1
diff(K (1)i ,n(1|1)i ,S P n(2)), i = 1,2, determines the linear maps

Υ1,Υ2 andΥ3. The 1-cocycle conditions determinesΥ4. More precisely, we get:
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For n = −1, the space H1
diff(K (2),n(1|2),S P −1(2)) is generated by the nontrivial n(1|2)-

relative cocycles χ2
−1 and χ̃2

−1 corresponding to the n(1|1)i -relative cocycles C 2,i
−1 and C 3,i

−1 respec-
tively, via their restrictions to K (1)i .

For n = 0, the space H1
diff(K (2),n(1|2),S P 0(2)) is generated by the nontrivial n(1|2)-relative

cocyclesχ2
0, χ̂2

0, χ̃2
0,χ2

0 andχ2
0

corresponding to the n(1|1)i -relative cocycles C 1,i
0 ,C 2,i

0 , C 3,i
0 ,C 4,i

0 and

C 5,i
0 respectively, via their restrictions to K (1)i .

For n = 1, the space H1
diff(K (2),n(1|2),S P 1(2)) is generated by the nontrivial n(1|2)-relative

cocycles χ2
1 corresponding to the n(1|1)i -relative cocycles C 1,i

1 , via their restrictions to K (1)i .
Theorem 5 is proved. �

6.2. The spectral sequence for a filtered module over a Lie (super)algebra

The reader should refer to [12], for the details of the homological algebra used to construct
spectral sequences. We will merely quote the results for a filtered module M with decreasing
filtration {Mn}n∈Z over a Lie (super)algebra g so that Mn+1 ⊂ Mn ,

⋃
n∈ZMn = M and gMn ⊂ Mn .

Consider the natural filtration induced on the space of cochains by setting:

F n(C∗(g, M)) =C∗(g, Mn),

then we have:

dF n(C∗(g, M)) ⊂ F n(C∗(g, M)) (i.e., the filtration is preserved by d);

F n+1(C∗(g, M)) ⊂ F n(C∗(g, M)) (i.e. the filtration is decreasing).

Then there is a spectral sequence (E∗,∗
r ,dr ) for r ∈Nwith dr of degree (r,1− r ) and

E p,q
0 = F p (C p+q (g, M))/F p+1(C p+q (g, M)) and E p,q

1 = H p+q (g,Gradp (M)).

To simplify the notations, we have to replace F n(C∗(g, M)) by F nC∗. We define

Z p,q
r = F pC p+q ∩d−1(F p+r C p+q+1),

B p,q
r = F pC p+q ∩d(F p−r C p+q−1),

E p,q
r = Z p,q

r /(Z p+1,q−1
r−1 +B p,q

r−1).

The differential d maps Z p,q
r into Z p+r,q−r+1

r , and hence includes a homomorphism

dr : E p,q
r −→ E p+r,q−r+1

r

The spectral sequence converges to H∗(C ,d), that is

E p,q
∞ ' F p H p+q (C ,d)/F p+1H p+q (C ,d),

where F p H∗(C ,d) is the image of the map H∗(F pC ,d) → H∗(C ,d) induced by the inclusion
F pC →C .

6.3. Computing H1
diff(K (N ),n(1|N ),S ΨDO (S1|N ))

Since the cohomology space H1
diff(K (N ),n(1|N );S ΨDO (S1|N )) is upper bounded by cohomol-

ogy space H1
diff(K (N ),n(1|N );S P (N )), we can check the behavior of the cocycles with values in

S ΨDO (S1|N ) under the successive differentials of the spectral sequence. More precisely we con-
sider a cocycle with values in S P (N ); but we compute its boundary as it was in S ΨDO (S1|N )
for N = 0,1,2, and keep the symbolic part of the result. This gives a new cocycle of degree equal
to the degree of the previous one plus one. We iterate this procedure, we establish a recurrence
formula between successive terms. A straightforward computations leads to the following result:
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Theorem 9. The space H1
diff(K (N ),n(1|N );S ΨDO (S1|N )) has the following structure:

H1
diff(K (N ),n(1|N );S ΨDO (S1|N )) '


R3 if N = 0,1

R8 if N = 2

0 otherwise.

(16)

The following 1-cocycles ΞN
i span the corresponding cohomology spaces:

ΞN
1 (XF ) = F ′, for N = 0,1,2, Ξ2

4(XF ) = η1η2(F ),

Ξ2
2(XF ) = F ′ξ−1ζ1ζ2, Ξ0

2(XF ) =
∞∑

n=2
(−1)n−1 2(n −3)

n
F (n)(x)ξ−n+1,

Ξ2
3(XF ) = η1η2(F )ξ−1ζ1ζ2, Ξ0

3(XF ) =
∞∑

n=2
(−1)n 3(n −1)

n +1
F (n+1)(x)ξ−n ,

Ξ1
2(XF ) =

∞∑
n=1

(−1)n
(

n −2

n
(−1)p(F )(η1(F (n))ξ−nη1 −

n −3

n +1
F n+1ξ−n

)
,

Ξ1
3(XF ) =

∞∑
n=2

(−1)n
(

n −1

n
(−1)p(F )(η1(F (n))ξ−nη1 −

n −1

n +1
F n+1ξ−n

)
,

Ξ2
5(XF ) =

∞∑
n=0

(−1)p(F )+n

n +1

(
η1(F (n+1))ζ1 +η2(F (n+1))ζ2

)
ξ−n−1

+
∞∑

n=0

2(−1)n

n +2
F (n+2)ξ−n−1,

Ξ2
6(XF ) =

∞∑
n=0

(−1)p(F )+n
(
η2(F (n+1))ζ1 −η1(F (n+1))ζ2

)
ξ−n−1

+
∞∑

n=0
(−1)nF (n+2)ξ−n−2ζ1ζ2 +

∞∑
n=1

(−1)nη1η2(F (n))ξ−n ,

Ξ2
7(XF ) =

∞∑
n=0

(−1)nη1η2(F (n+1))ξ−n−2ζ1ζ2

+
∞∑

n=1
(−1)p(F )+n n

n +1

(
η1(F (n+1))ζ1 +η2(F (n+1))ζ2

)
ξ−n−1

+
∞∑

n=1
(−1)n n

n +2
F (n+2)ξ−n−1,

Ξ2
8(XF ) =

∞∑
n=1

(−1)n+1 2n

n +2
F (n+2)ξ−n−2ζ1ζ2

+
∞∑

n=1
(−1)p(F )+n 2n

n +1
η1(F (n+1))ξ−n−1ζ2

+
∞∑

n=1
(−1)p(F )+n+1 2n

n +1
η2(F (n+1))ξ−n−1ζ1

+
∞∑

n=1
2(−1)n+1η1η2(F (n))ξ−n .
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