
Comptes Rendus

Mathématique

Najmeddine Attia and Bilel Selmi

On the Billingsley dimension of Birkhoff average in the countable
symbolic space

Volume 358, issue 3 (2020), p. 255-265

Published online: 10 July 2020

https://doi.org/10.5802/crmath.21

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.21
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2020, 358, n 3, p. 255-265
https://doi.org/10.5802/crmath.21

Dynamical Systems / Systèmes dynamiques

On the Billingsley dimension of Birkhoff

average in the countable symbolic space

Najmeddine Attiaa and Bilel Selmib

a Faculty of sciences of Monastir, Department of mathematics, 5000-Monastir, Tunisia

b Faculty of sciences of Monastir, Department of mathematics, 5000-Monastir, Tunisia.

E-mails: najmeddine.attia@gmail.com, bilel.selmi@fsm.rnu.tn.

Abstract. We compute a lower bound of Billingsley–Hausdorff dimension, defined by Gibbs measure, of the
level set related to Birkhoff average in the countable symbolic spaceNN.

2020 Mathematics Subject Classification. 28A80, 37A05, 37A35, 37B10, 37C45.

Manuscript received 2nd July 2019, revised 14th February 2020, accepted 18th February 2020.

1. Introduction and main result

Let X be the countable symbolic spaceNN endowed with the product topology. Consider the shift
map σ : X → X defined by σ(x1x2 . . .) = x2x3 . . .. An element x1 . . . xn ∈ Nn is called an n-length
word. Let A ∗ = ⋃

n≥0N
n stand for the set of all finite words, where N0 denotes the set of empty

word. If x ∈A ∗ and y ∈A ∗∪X , then x y denote the concatenation of x and y . Let x = x1x2 . . . ∈X

and m ≥ n ≥ 1, we set x|mn = xn . . . xm denotes a subword of x. Forω=ω1 . . .ωn ∈Nn , the n-cylinder
[ω] is defined by

[ω] = {
x ∈X ; x|n1 =ω}

.

We will denote by C n the set of all n-cylinders for n ≥ 0. There is a one-to-one correspondence
betweenNn and C n . Let C ∗ =⋃

n≥0 C n denote the set of all cylinders. For k, N ≥ 1 we will write

Σk
N = {1, . . . , N }k and C k

N = {
[ω]; ω ∈Σk

N

}
.

Let ϕ be a potential on X and ν be the Gibbs measure associated to ϕ (see Section 4.1 for
the definition). without loss of generality, under the Remark 7, we suppose that P (ϕ) = 0 in the
rest of this paper. Recall that ν induces a metric ρν on X : for any x, y ∈ X , if x = y , we define
ρν(x, y) = 0; otherwise

ρν(x, y) = ν(
[x|n1 ]

)
,

where n = min{k ≥ 0; xk+1 6= yk+1}. In addition the metric ρν admits some kind of uniform
property. In deed, if we define for n ≥ 1, the integer

δn = sup
{
ν([u]); u ∈Nn}

,
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256 Najmeddine Attia and Bilel Selmi

then from Proposition 9 in [11], we have limn→∞δn = 0. Let us recall the definition of Hausdorff
dimension of set E ⊆ X with respect to ρν. Since ν is non-atomic probability measure. For any
t ≥ 0 and δ> 0,

H t
ν,δ

(
E

)= inf

{∑
i
ν(Ei )t : {Ei } countable cover of E , ν(Ei ) ≤ δ

}
and

H t
ν

(
E

)= lim
δ→0

H t
ν,δ

(
E

)
.

The Billingsley dimension (for more details, see [3, 5]) dimν(E) of E is

dimν(E) = inf
{

t ≥ 0; H t
ν

(
E

)= 0
}
= sup

{
t ≥ 0; H t

ν

(
E

)=+∞
}

.

Let us come back to our problem. For f ∈ Cb(X ), the space of all bounded real-valued
continuous functions on X , we will be interested in the level sets determined by the Birkhoff
averages of f defined as

E f (α) =
{

x ∈X ; lim
n→+∞

1

n
Sn f (x) =α

}
,

where Sn f (x) =∑n−1
k=0 f

(
σk x

)
is the n-th ergodic sum of f and α ∈R.

The central question in the multifractal analysis of Birkhoff averages is to study geometrically
the sets E f (α) by computing their Hausdorff dimensions. Indeed, for any ergodic probability
measure µ (see [3] for the definition), it follows from the Birkhoff ergodic theorem that,

for µ-almost all x, lim
n→+∞

1

n
Sn f (x) =

∫
X

f dµ.

However, the Birkhoff ergodic theorem provides no structural information about the exceptional
set of measure zero. The classical multifractal analysis of Birkhoff averages was studied initially
by Pesin and Weiss in finite symbolic space and for Hölder potentials in [25]. Then, Fan et al., [8,9]
extended this to continuous potentials. We must also mention the work of [1, 2, 6, 7, 13, 17–
19, 26], under always a different assumptions. Later, Li and Ma in [22], compute the Billingsley
dimension, defined by Gibbs measure, of the set E f (α). All these works deal with compact space.

The difference is the (countable) infinity of the alphabet and then the space X is not com-
pact [27–29]. In addition, in this case, some particular phenomenon does not hold, see [16] for an
example showing the difference between finite and infinite alphabet. There has also been a great
deal of work dealing in the case of infinite symbolic space see [10–12, 14–16, 21, 23, 24].

For n ≥ 1 and x ∈X , we define the orbit measure by

∆x,n = 1

n

n−1∑
k=0

δσk x

and we denote by Vx the set of all limit points in w∗-topology of
{
∆x,n

}
n≥1. In the case of finite

symbols, Vx is a non-empty connected compact while, in our case, Vx maybe empty for some
x ∈X . For this raison, let us consider the set

Ê f (α) =
{

x ∈X ; Vx 6= ; and lim
n→+∞

1

n
Sn f (x) =α

}
.

In this paper, we estimate the sizes of these levels sets by the Billingsley dimension, defined by
Gibbs measures.

Let P (X ) denotes the set of Borel probability measures on X and Pσ(X ) denotes the set of
σ-invariant Borel probability measures on X . For µ ∈Pσ(X ), define the entropy dimension of ν
with respect to µ by

β(ν,µ) = limsup
k→∞

limsup
N→∞

Hk,N (µ,µ)

Hk,N (ν,µ)
,
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where
Hk,N (ν,µ) =− ∑

ω∈Σk
N

µ([ω]) logν([ω])

and define the convergence exponent of ν by

αν = inf

{
t > 0;

∞∑
n=0

ν([n])t <+∞
}
∈ [0,1].

Our main result is the following

Theorem 1. Letϕ be a potential function of summable variations. Assume thatϕ admits a unique
Gibbs measure ν. We have

dimν Ê f (α) ≤ sup

{
γ(ν,µ);

∫
f dµ=α

}
,

where
γ(ν,µ) = max

{
αν,β(ν,µ)

}
.

This result should be compared the result in [22] in the case of finite symbols. In deed in this
case, the convergent exponent is zero and is not involved [11, 14].

2. Proof of the main result

We consider the set of quasi generic points with respect to ν,

E(ν,γ) =
{

x ∈X ; ∃µ ∈Vx with γ(ν,µ) ≤ γ
}

, (0 ≤ γ≤ 1).

Proposition 2. Let ϕ be a potential function of summable variations. Assume that ϕ admits a
unique Gibbs measure ν with convergence exponent αν. Then, for any 0 ≤ γ≤ 1, we have

dimνE(ν,γ) ≤ γ.

Remark 3. It’s clear that Proposition 2 generalizes Bowen’s result [4] in the case of infinite
symbolic space.

Let α ∈R and x ∈ Ê f (α), we have limn→+∞
∫

f d(∆x,n) =α. That means, since Vx is not empty,
there exists µ ∈Vx such that

∫
f dµ=α. It follows that

Ê f (α) ⊆
{

x ∈X ; ∃µ ∈Vx , and
∫

f dµ=α
}

.

Thus we have Ê f (α) ⊆ E(ν,γα), where

γα = sup

{
γ(ν,µ),

∫
f dµ=α

}
.

We deduce the result from Proposition 2.

3. Proof of Proposition 2

Let µ ∈Pσ(X ), define the relative entropy of ν with respect to µ by

h(ν,µ) = limsup
k→∞

− 1

k

∑
ω∈Nk

µ([ω]) logν([ω])

and, when µ = ν, h(µ,µ) will be denoted by hµ. We have h(ν,µ) = −∫
X ϕdµ (see [11, Proposi-

tion 8]). We define for a ∈Q∗+,

Ea(ν,γ) =
{

x ∈X ; ∃µ ∈Vx with h(ν,µ) ≥ a and γ(ν,µ) ≤ γ
}

C. R. Mathématique, 2020, 358, n 3, 255-265
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and
E0(ν,γ) =

{
x ∈X ; ∃µ ∈Vx with h(ν,µ) = 0 and γ(ν,µ) ≤ γ

}
.

It is clair that

E(ν,γ) =
( ⋃

a∈Q∗+
Ea(ν,γ)

)
∪E0(ν,γ).

Proposition 4. dimν

(
E0(ν,1)

)≤ 1 and, for all γ ∈ [0,1[, we have dimν

(
E0(ν,γ)

)= 0.

Proof. Recall that h(ν,µ) = 0 imply that µ= ν (Subsection 4.3), then

E0(ν,γ) ⊆
{

x ∈X ; ∃µ ∈Vx with ν=µ and γ(ν,µ) ≤ γ
}

=
{

x ∈X ; Vx = {ν} with γ(ν,ν) = 1 ≤ γ
}

.

It’s clear that, if γ 6= 1, we have E0(ν,γ) =; and then dimν

(
E0(ν,γ)

) = 0. Else, the set E0(ν,1) is a
subset of the set of generic points Gν defined by

Gν =
{

x ∈X ; Vx = {ν}
}

.

We deduce the result since dimνGν = 1 ([11]). �

Suppose that we have shown, for all a ∈Q∗+,

dimνEa(ν,γ) ≤ γ. (1)

Then by the stability of ν-Hausdorff dimension, we have, for all γ ∈ [0,1]

dimνE(ν,γ) = sup

{
sup
a∈Q∗+

dimνEa(ν,γ),dimνE0(ν,γ)

}
≤ γ.

We only need to prove (1). Let ε > 0 and x ∈ Ea(ν,γ), there exist µ ∈ Vx such that for any k, N
large enough,

Hk,N (µ,µ)+5kε

Hk,N (ν,µ)
≤ hµ+6ε

h(ν,µ)
≤ γ+ 6ε

a
. (2)

Thus, we have
E(ν,γ) ⊆ ⋃

l≥1

⋂
k≥l

⋃
l1≥1

⋂
N≥l1

A(ε,k, N ),

where
A(ε,k, N ) =

{
x ∈X ; ∃µ ∈Vx with h(ν,µ) ≥ a and (2) hold

}
.

By the σ-stability and monotony of ν-Hausdorff dimension, we have

dimνE(ν,γ) ≤ sup
l≥1

dimν

(⋂
k≥l

⋃
l1≥1

⋂
N≥l1

A(ε,k, N )

)

= lim
l→+∞

dimν

(⋂
k≥l

⋃
l1≥1

⋂
N≥l1

A(ε,k, N )

)

≤ liminf
k→+∞

dimν

( ⋃
l1≥1

⋂
N≥l1

A(ε,k, N )

)

= liminf
k→+∞

sup
l1≥1

dimν

( ⋂
N≥l1

A(ε,k, N )

)

= liminf
k→+∞

lim
l1→+∞

dimν

( ⋂
N≥l1

A(ε,k, N )

)
≤ liminf

k→+∞
liminf
N→+∞

dimν

(
A(ε,k, N )

)
. (3)
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Suppose that, for all t > γ,ε> 0 and N ,k ≥ 1, we have

H t
ν

(
A(ε,k, N )

)<∞, (4)

then dimν(A(ε,k, N )) ≤ γ and we get the desire upper bound under (3).
Let us prove (4). Let µ ∈ Vx , then, for any s ≥ 1, there exists n(s) such that, for all n ≥ n(s), we

have

d∗(∆x,n ,µ) ≤ 1

s
.

Then, according to (2), we get

Hk,N (∆x,n ,∆x,n)+5kε

Hk,N (ν,∆x,n)
≤ hµ+7ε

h(ν,µ)
≤ γ+ 7ε

a
. (5)

By the uniform continuity of Hk,N (., .), we have

A(ε,k, N ) ⊆ ⋂
s≥1

⋃
n≥s

Cn(ε,k, N ), (6)

where

Cn(ε,k, N ) =
{

x ∈X ; ∃µ ∈Mσ(X ) with h(ν,µ) ≥ a and (5) hold
}

.

In order to estimate the dimension of A(ε,k, N ), let us consider the (n +k −1)-prefixes of the
points in Cn(ε,k, N ) defined as

Λn(ε,k, N ) =
{

x|n+k−1
1 ∈Nn+k−1; x ∈Cn(ε,k, N )

}
.

Let δn = {
ν([u]); u ∈ Nn

}
and recall that limn→∞δn = 0. Let s ≥ 1, then the cylinder set

{
[u]; u ∈⋃

n≥n(s)Λn(ε,k, N )
}

forms a δn(s)+k−1-covering of A(ε,k, N ).
By the definition of (ν, t )-Hausdorffmeasure, we have, for t > γ,

H t
δn(s)+k−1

(
A(ε,k, N )

)≤ ∑
n≥n(s)

∑
u∈Λn (ε,k,N )

ν([u])t .

3.1. Decomposition ofΛn(ε,k, N )

Here we use a general decomposition introduced in [11]. For u ∈ Σk
N and ω ∈ Λ(n,k), we define

the number

τu(ω) = ]
{

1 ≤ j ≤ n −k +1; ω j . . .ω j+k−1 = u
}
∈ {

0,1, . . . ,n
}
.

Then, for ω ∈ Λ(n,k), we consider the appearance distribution with respect to Σk
N of ω denoted

by
(
τu(ω)

)
u∈Σk

N
. We set

Dn(ε,k, N ) =
{(
τu(ω)

)
u∈Σk

N
; ω ∈Λn(ε,k, N )

}
and, for a distribution (τu) ∈D,

E
(
(τu)

)= {
ω ∈Λn(ε,k, N ); τu(ω) = τu , ∀ u ∈Σk

N

}
.

ThenΛn(ε,k, N ) is partitioned into E((τu))’s. Since, there are N k possible words u inΣk
N , It follows

that

]Dn(ε,k, N ) ≤ (2n)N k
. (7)

Now we will decompose the set E((τu)) into disjoint union of some sets. Forω=ω1 . . .ωn+k−1 in
E((τu)), we sayω jω j+1 . . .ω j+m−1 is a maximal (N ,k)-run subword ofω if the following conditions
are satisfied

(1) m ≥ k,
(2) ∀ 0 ≤ i ≤ m −1, ω j+i ≤ N and ω j−1 > N , ω j+m > N .

C. R. Mathématique, 2020, 358, n 3, 255-265



260 Najmeddine Attia and Bilel Selmi

On the other hand, a subword between maximal (N ,k)-run subwords is called “bad subword”.
The set E((τu)) is just a collection of words like

ω= Br1Wn1 Br2 . . .Wnp Brp+1 (8)

where Bri denotes “bad subword” with length ri and Wni denotes maximal (N ,k)-run subword
with length ni . Write

K = ∑
u∈Σk

N

τu and q =
⌊n −K

k

⌋
+1.

Note that p ≤ q , in other word, every element in E((τu)) has at most s maximal (N ,k)-run
subwords. Furthermore, by writing Kp =∑p

i=1 ni , we have

Kp = K +p(k −1)

and

r1 ≥ 0, rp+1 ≥ 0, ri ≥ 1 and
p+1∑
i=1

ri = n +k −1−Kp . (9)

For 0 ≤ p ≤ q , we denote by Ep the set of words in E((τu)) with p maximal (N ,k)-run subwords. It
is clear that E((τu)) is partitioned into Ep ’s, i.e.

E
(
(τu)

)= q⋃
p=1

Ep . (10)

Next, we partition Ep by the length pattern of “bad subword” and maximal (N ,k)-run subword.
Recall (8), then for every word ω ∈ Ep , we associate the length pattern of “bad subword” and
maximal (N ,k)-run subword (r1,n1,r2, . . . ,np ,rp+1). Denote by Lp the set of all such length
pattern of ω in Ep . For a length pattern (r,n) := (r1,n1, . . . ,np ,rp+1) ∈Lp , we set

B(r,n) =
{
ω ∈ Ep with the length pattern (r,n)

}
so that we have, for N ,k ≥ 1,

Λn(ε,k, N ) = ⋃
(τu )∈Dn (ε,k,N )

E
(
(τu)

)= ⋃
(τu )∈Dn (ε,k,N )

q⋃
p=1

Ep

= ⋃
(τu )∈Dn (ε,k,N )

q⋃
p=1

⋃
(r,n)∈Lp

B(r,n). (11)

Finally, we consider E ′
p the set of finite words by deleting all “bad subwords” of ω in Ep .

3.2. Estimation of ]Lp

We start with two technical lemmas, the first is a general fact in the element combinatorial theory
and the second lemma is a consequence of Stirling formula.

Lemma 5. For n ∈N∗ and m ∈N, then

]
{

(x1, . . . , xn) ∈Nn x1 +·· ·+xn = m
}
= (n +m −1)!

(n −1)! m!
.

Lemma 6. Let n, N ∈N∗ and m1, . . . ,mN ∈N, such that n =∑N
k=1 mk . For n large enough, we have

1

n
log

n!

m1! . . .mN !
=

N∑
k=1

φ
(mk

n

)
+O

(
logn

n

)
,

where φ(t ) =−t log t .
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Which will be useful in the estimation of cardinally of Lp . Recall that

(1)
∑p

i=1 ni = Kp , ni ≥ k (1 ≤ i ≤ p).

(2)
∑p+1

i=1 ri = n +k −1−Kp , r1 ≥ 0, rp+1 ≥ 0, ri ≥ 1(2 ≤ i ≤ p).

Then, by Lemma 5, we get the following estimate

]Lp ≤ (K −1)!

(K −p)!(p −1)!

(n −K − (p −1)k +p)!

p !(n −K − (p −1)k)!
.

For any δ′ > 0, one can choose N large enough such that

1− K

n
≤ 2δ′. (12)

Noting that k is a fixed integer relative to n, by Lemma 6, for δ> 0, for n large enough, we have

]Lp ≤ (K −1)!

(K −p)!(p −1)!

n!

p !
(
n −K − (p −1)k

)
!(K + (p −1)k −p)!

≤ e
nδ
2 . (13)

3.3. Estimation of ]E ′
p

In order to estimate the cardinally of the set E ′
p we will introduce the set

Ẽp =
{

B̃r1Wn1 B̃r2 . . .Wnp B̃rp+1 ; ω= Br1Wn1 Br2 . . .Wnp Brp+1 ∈ Ep

}
,

where B̃ri is a finite word composed of digit N + 1 with length ri . Thus ]Ẽp = ]E ′
p and each

subword u ∈Σk
N appears τu times in ω of Ẽp . Take

h = 1

k

 ∑
u∈Σk

N

−τu

n
log

τu

n
− n −K

n
log

n −K

n

 and δ= ε (14)

in Lemma 7.6 in [20]. Then, for n large enough we have

]E ′
p = ]Ẽp ≤ exp

(
n(h +ε)

)
. (15)

Let us return to the proof of Proposition 2. It follow, from the decomposition (11), that∑
u∈Λn (ε,k,N )

ν([u])t ≤ ]Dn(ε,k, N ) max
(τu )∈Dn (ε,k,N )

q max
1≤p≤q

]Lp max
(r,n)∈Lp

∑
ω∈B(r,n)

ν([ω])t

5 (2n)N k
max

(τu )∈Dn (ε,k,N )
max

1≤p≤q
]Lp max

(r,n)∈Lp

∑
ω∈B(r,n)

ν([ω])t . (16)

Thus by the quasi Bernoulli property (Lemma 8), we have∑
ω∈B(r,n)

ν([ω])t ≤C 2t (p+1)
∑

ω∈B(r,n)

p+1∏
i=1

ν([Bri (ω)])t
p∏

i=1
ν([Wni (ω)])t

≤C 2t (p+1)
∑

ω∈B(r,n)

p+1∏
i=1

ν([Bri (ω)])t
∑

ω∈B(r,n)

p∏
i=1

ν([Wni (ω)])t

≤C t (4p+5)

[ ∑
ω∈B(r,n)

ν
(
[Br1 (ω) . . .Brp+1 (ω)]

)t

] ∑
ω∈E ′

p

ν
(
[ω]

)t . (17)

Remark that
∑p+1

i=1 ri ≤ n −K and recall that t > γ≥αν. This yields, by Lemma 10∑
ω∈B(r,n)

ν([Br1 (ω) . . .Brp+1 (ω)])t ≤ ∑
ω∈Nn−K

ν([ω])t ≤C0M n−K .

Then, ∑
ω∈B(r,n)

ν([ω])t ≤C0C t (4p+5)M n−K
∑
ω∈E ′

p

ν([ω])t . (18)

C. R. Mathématique, 2020, 358, n 3, 255-265
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According to the definition of q and the fact that p ≤ q , for any δ> 0, when N is taken big enough
(recall (12)), we have

C0C t (4p+5)M n−K ≤C0C 9t e
nδ
2 . (19)

Given ω ∈ E ′
p , denote by (τ′u) the appearance distribution with respect to Σk

N of ω. Then, we have

|ω| = Kp and τu ≤ τ′u ≤ τu + (p −1)(k −1) ≤ τu +n −K . (20)

By the Gibbsian property (see (24)) and (25), we have

k logν([w1 . . . wKp ]) ≤ k logC +k
Kp+1∑
i=0

ϕ(σi x)

= k logC +
k−2∑
i=0

(k − i −1)ϕ(σi x)+
Kp−1∑

i=Kp− j+1
(Kp − i )ϕ(σi x)+

Kp−k∑
i=0

k−1∑
j=0

ϕ(σi+ j x)

≤ (Kp +k2 −k +1)logC + ∑
u∈Σk

N

τ′u logν([u]).

Together with (15), this yields∑
ω∈E ′

p

ν([ω])t ≤ ]E ′
p max
ω∈E ′

p

ν([ω])t

≤ exp

n(h +ε)+ t

k

 ∑
u∈Σk

N

τ′u logν([u])+ (Kp +k2) logC


 .

Given ω ∈ E((τu)), there exists x ∈ [ω] such that x ∈Cn(ε,k, N ) and

∀ u ∈Σk
N , ∆x,n([u]) = τu

n
.

From (20) and by the definition of Cn(ε,k, N ), there exists µ ∈Pσ(X ) such that

h(µ,ν) ≥ a and
− 1

k

∑
u∈Σk

N

τu
n log τu

n +5ε

− 1
k

∑
u∈Σk

N

τ′u
n logν([u])

≤ γ+ 7ε

a
.

Recall that t > γ. Take ε> 0 small enough such that t > γ+ 7ε
a . Then, we have

1

k

∑
u∈Σk

N

τu

n
log

τu

n
+5ε≥ t

k

∑
u∈Σk

N

τ′u
n

logν([u]). (21)

Choose n large enough such that
1

kn
(Kp +k2) logC ≤ ε. (22)

It follows from (21), (22) and (14) that

∑
ω∈E ′

p

ν([ω])t ≤ exp

n

h +ε+ t

k

 ∑
u∈Σk

N

τ′u
n

logν([u])+ 1

n
(Kp +k2) logC




≤ exp

n

h + 1

k

∑
u∈Σk

N

τu

n
log

τu

n
−3ε


≤ exp

{
n

(
− 1

k

n −K

n
log

n −K

n
−3ε

)}
.

By (12), we can take δ′ small enough such that

− 1

k

n −K

n
log

n −K

n
≤ ε.
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Thus, we have ∑
ω∈E ′

p

ν([ω])t ≤ exp(−2nε). (23)

Take δ= ε in (13) and (19). In combination with (16), (17) and (23), this yields∑
u∈Λn (ε,k,N )

ν([u])t ≤C0C 9t q (2n)N k
exp(−nε).

Which implies that for any t > γ≥ γ(ν,µ),

H t
ν,δn(s)+k−1

(
A(ε,k, N )

)≤C0C 9t q
∑

n≥n(s)
(2n)N k

exp(−nε)

and, finally, we get (4).

4. Appendix

4.1. Gibbs measure

Let us recall some facts of Gibbs measures, to induce metrics on X . For n ∈ N∗, a ∈ N and
potential function ϕ : X →Rwe define the function

Pn(ϕ) = 1

n
log

∑
σn x=x

exp(Snϕ(x))1[a](x)

and the n-order variation of ϕ by

varnϕ= sup
x|n1 =y |n1

{
|ϕ(x)−ϕ(y)|; x, y ∈X

}
.

We say that a potential ϕ has summable variations if
∑∞

n=2 varnϕ < +∞. In this case, ϕ is
uniformly continuous on X and the Gurevich pressure of ϕ,

P (ϕ) = lim
n→∞Pn(ϕ),

is well defined and is independent of a (see [27]).
An invariant probability measure ν is called a Gibbs measure associated to a potential function

ϕ if it satisfies the Gibbsian property :

∃ C > 1, P ∈R such that C−1 ≤ ν[x1x2 . . . xn])

exp(Snϕ(x)−nP )
≤C (24)

holds for any n ≥ 1 and any x ∈ X . It is known [11] that a potential function ϕ with summable
variations admits a unique Gibbs measure ν if and only if var1ϕ<+∞ and P (ϕ) <+∞.

Remark 7. Assume that ϕ admits a unique Gibbs measure denoted by νϕ. Then the constant P
in (24) is equal to the Gurevich pressure P (ϕ). If we consider the potential ϕ∗ =ϕ−P (ϕ), we get
P (ϕ∗) = 0 and νϕ∗ = νϕ.

A trivial fact is that the Gibbsian property (24) implies that

∀ x ∈X , ϕ(x) ≤ logC . (25)

As a consequence, for any probability measure µ, we have
∫
X ϕdµ is defined as a number in

[−∞,+∞) Also, the Gibbsian property implies the quasi Bernoulli property.

Lemma 8. Let ν be a Gibbs measure associated to potentialϕ. For any k wordsω1, . . . ,ωk , we have

C−(k+1)ν([ω1 . . .ωk ]) ≤ ν([ω1]) . . .ν([ωk ]) ≤C (k+1)ν([ω1 . . .ωk ]).
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4.2. Metrization of the w∗-topology

Let Cb(X ) denote the set of bounded continuous functions on X . We endow P (X ) with the
w∗-topology induced by Cb(X ). For µ and ν ∈P (X ), we define

d∗(µ,ν) = ∑
[ω]∈C ∗

a[ω]|µ([ω])−ν([ω])|,

where a[ω] is a positive number such that
∑

[ω]∈C ∗ a[ω] = 1. In addition (see [11, Proposition 3]),
for all sequence (µn) ∈P (X ), we have

µn converges in w∗-topology to µ if and only if lim
n→∞d∗(µn ,µ) = 0

4.3. Some useful inequalities

Recall the definitions of h(ν,µ) and β(ν,µ). By the concavity of the logarithm function, it is easy
to show h(ν,µ) ≥ hµ. It follows that when ν 6= µ, we have h(ν,µ) > hµ, which implies h(ν,µ) > 0
(see [11] for more details). In addition, also from [11], we have the following result.

Lemma 9. Let µ ∈Mσ(X ) and ϕ be a potential function of summable variations. Assume that ϕ
admits a unique Gibbs measure ν with convergence exponent αν.
If ν 6=µ and h(ν,µ) <+∞, then

β(ν,µ) = hµ
h(ν,µ)

,

if h(ν,µ) =+∞, we have
β(ν,µ) ≤αν.

Finally, we recall a basic property of the convergence exponent a αν.

Lemma 10. Let a αν be the convergence exponent of Gibbs measure ν associated to a potential
function ϕ. Then for any ε> 0 there exist constants C0 and M such that∑

ω∈Nk

ν([ω])αν+ε ≤C0M k , ∀ k ≥ 1.
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