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Abstract. Our starting point is a theorem of de Leeuw and Rudin that describes the extreme points of the
unit ball in the Hardy space H1. We extend this result to subspaces of H1 formed by functions with smaller
spectra. More precisely, given a finite set K of positive integers, we prove a Rudin–de Leeuw type theorem for
the unit ball of H1

K, the space of functions f ∈ H1 whose Fourier coefficients f̂ (k) vanish for all k ∈K.
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1. Introduction and main result

Let T stand for the unit circle {ζ ∈ C : |ζ| = 1}, endowed with normalized Lebesgue measure, and
let L1 = L1(T) be the space of all complex-valued integrable functions f on T, with norm

‖ f ‖1 := 1

2π

∫
T
| f (ζ)| |dζ|. (1)

The Fourier coefficients of a function f ∈ L1 are the numbers

f̂ (k) := 1

2π

∫
T
ζ

k
f (ζ) |dζ|, k ∈Z,

and the set
spec f := {

k ∈Z : f̂ (k) 6= 0
}

is called the spectrum of f .
Further, the Hardy space H 1 is defined by

H 1 := {
f ∈ L1 : spec f ⊂Z+

}
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and normed as above; here Z+ := {0,1,2, . . .}. The harmonic extension (given by the Poisson
integral) of a function f ∈ H 1 to the disk D := {z ∈ C : |z| < 1} is actually holomorphic there (see,
e.g., [10, Chapter II]), so we may view elements of H 1 as holomorphic functions on D. Recall also
that a non-null function F ∈ H 1 is said to be outer if

log |F (0)| = 1

2π

∫
T

log |F (ζ)| |dζ|,

whereas a function I of class H∞ := H 1∩L∞(T) is termed inner if |I | = 1 a.e. onT. It is well known
that a generic function f ∈ H 1, f 6≡ 0, admits an (essentially unique) factorization of the form

f = I F, (2)

where I is inner and F is outer. We refer to any of [10,11] or [12] for basic facts about Hardy spaces,
including the canonical factorization theorem just mentioned.

This note is motivated by a beautiful theorem of de Leeuw and Rudin, which describes the
extreme points of the unit ball in H 1. Before stating it, we need to introduce yet another piece of
notation. Namely, given a Banach space X = (X ,‖ ·‖), we write

ball(X ) := {x ∈ X : ‖x‖ ≤ 1} .

Finally, we recall that an element x of ball(X ) is said to be an extreme point thereof if it is not
an interior point of any line segment contained in ball(X ). Of course, any such point x satisfies
‖x‖ = 1.

The Rudin–de Leeuw result that interests us here reads as follows.

Theorem A. A function f ∈ H 1 with ‖ f ‖1 = 1 is an extreme point of ball(H 1) if and only if it is
outer.

The original proof can be found in [13]; see also [10, Chapter IV] and [11, Chapter 9] for
alternative presentations.

We are concerned with certain finite-dimensional perturbations of Theorem A. Specifically,
the question is what happens if H 1 gets replaced by a smaller subspace, whose elements are
required to have some additional spectral holes (but not too many of them). To be more precise,
we fix a finite number (say, M) of positive integers

k1 < k2 < . . . < kM

and restrict our attention to the functions f ∈ H 1 that satisfy

f̂ (k1) = . . . = f̂ (kM ) = 0.

The subspace comprised of such functions is thus

H 1
K := {

f ∈ H 1 : spec f ⊂Z+ \K
}

,

where

K := {k1, . . . , kM } . (3)

Our purpose here is to characterize the extreme points of ball(H 1
K), the unit ball of H 1

K endowed
with the L1 norm (1).

Because H 1
K has finite codimension in H 1, one would not expect the situation to be very

different from that in Theorem A. So, a priori, one feels that the extreme points f of ball(H 1
K)

should probably be the unit-norm functions which are fairly close to being outer, in some sense
or other. Our characterization, stated below in terms of the function’s canonical factorization (2),
justifies this guess and gives a precise meaning to the notion of a “nearly outer” function that
arises.
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First of all, it turns out that if f ∈ ball(H 1
K) is extreme, then its inner factor, I , must be a finite

Blaschke product whose degree (i.e., the number of its zeros) does not exceed M(= #K). This
means that I is writable, possibly after multiplication by a unimodular constant, as

I (z) =
m∏

j=1

z −a j

1−a j z
, (4)

where 0 ≤ m ≤ M and a1, . . . , am are points in D. (When m = 0, it is of course understood that
I (z) = 1.) Secondly—and perhaps less predictably—there is an interplay between the two factors,
I and F , in (2) which we now describe.

Assuming that I is given by (4) and F ∈ H 1 is outer, we consider the function

F0(z) := F (z)
m∏

j=1

(
1−a j z

)−2 (5)

and its coefficients

Ck := F̂0(k), k ∈Z.

Since a1, . . . , am ∈D, it follows that F0 ∈ H 1 and so Ck = 0 for all k < 0. Also, we define

A(k) := Re Ck , B(k) := Im Ck (k ∈Z)

and introduce, for j = 1, . . . , M and l = 0, . . . , m, the numbers

A+
j , l :=A

(
k j + l −m

)+ A
(
k j − l −m

)
, B+

j , l := B
(
k j + l −m

)+B
(
k j − l −m

)
and

A−
j , l :=A

(
k j + l −m

)− A
(
k j − l −m

)
, B−

j , l := B
(
k j + l −m

)−B
(
k j − l −m

)
.

(The integers k j are, of course, the same as in (3).) Next, we build the M × (m +1) matrices

A+ :=
{

A+
j , l

}
, B+ :=

{
B+

j , l

}
(6)

and the M ×m matrices

A− :=
{

A−
j , l

}
, B− :=

{
B−

j , l

}
. (7)

Here, the row index j always runs from 1 to M . As to the column index l , it runs from 0 to m for
each of the two matrices in (6), and from 1 to m for each of those in (7).

Finally, we need the block matrix

M=MK
(
F,

{
a j

}m
j=1

)
:=

(
A+ B−

B+ −A−
)

, (8)

which has 2M rows and 2m +1 columns.
Now we are in a position to state our main result, which extends Theorem A from H 1 to H 1

K. To
keep on the safe side, we specify that the number M := #K is also allowed to be 0; in this special
case, we have K = ;, so that H 1

K reduces to H 1 and we are back to the classical situation. Our
main concern is, however, the case where M is a positive integer.

Theorem 1. Suppose that f ∈ H 1
K and ‖ f ‖1 = 1. Assume further that f = I F , where I is inner and

F is outer. Then f is an extreme point of ball(H 1
K) if and only if the following two conditions hold:

(a) I is a finite Blaschke product whose degree, say m, does not exceed M.
(b) The matrix M=MK(F, {a j }m

j=1), built as above from F and the zeros {a j }m
j=1 of I , has rank

2m.
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To see a simple example, suppose that K consists of a single element, an integer k(= k1) with
k ≥ 2. Thus, K= {k} and the subspace in question is

H 1
{k} := {

f ∈ H 1 : f̂ (k) = 0
}

.

Now let F ∈ H 1 be an outer function with ‖F‖1 = 1 and F̂ (k−1) = 0; then put f (z) := zF (z). Clearly,
f ∈ H 1

{k} and ‖ f ‖1 = 1. Using Theorem 1 with M = m = 1, we verify (via a calculation, which we
omit) that f is an extreme point of ball(H 1

{k}) if and only if |F̂ (k −2)| 6= |F̂ (k)|.
As regards possible applications of Theorem 1, one may recall first that Theorem A was crucial

in describing the isometries of H 1; see [14] and [11, Chapter 9]. It is therefore conceivable that
Theorem 1 might serve a similar purpose in the H 1

K setting.
We conclude this section by mentioning several types of subspaces in H 1, other than H 1

K,
where the geometry of the unit ball has been studied. This was done for shift-coinvariant
subspaces [3, 4] and, more generally, for kernels of Toeplitz operators in H 1 [5]. Also considered
were spaces of polynomials of fixed degree, along with their Paley–Wiener type counterparts [6],
and quite recently, spaces of lacunary polynomials with prescribed spectral gaps [7]. This last-
mentioned paper is especially close in spirit to our current topic.

The rest of this note is devoted to proving Theorem 1. The bulk of the proof is deferred
to Section 3 below, while Section 2 provides a couple of preliminary lemmas. The proofs are
somewhat sketchy; full details and a more complete discussion can be found in [8]. There, we
also supplement Theorem 1 with a result concerning the exposed points of ball(H 1

K).

2. Preliminaries

Two lemmas will be needed. When stating them, we write L∞
R

for the set of real-valued functions
in L∞ = L∞(T).

Lemma 2. Let X be a subspace of H 1. Suppose that f ∈ X is a function with ‖ f ‖1 = 1 whose canon-
ical factorization is f = I F , with I inner and F outer. The following conditions are equivalent.

(i) f is not an extreme point of ball(X ).
(ii) There exists a function G ∈ H∞, other than a constant multiple of I , for which G/I ∈ L∞

R

and FG ∈ X .

Proof. We begin by restating condition (i). In fact, for X as above, it is known (see [9, Chapter V,
Section 9]) that a unit-norm function f ∈ X is a non-extreme point of ball(X ) if and only if there
is a nonconstant function h ∈ L∞

R
satisfying f h ∈ X .

Now, if such an h can be found, then g := f h is in X and condition (ii) is fulfilled with
G := I h(= g /F ). To check that this G is in H∞, one may note that I h ∈ L∞ and g /F ∈ N+, where
N+ is the Smirnov class (see [10, Chapter II]).

Conversely, if (ii) holds with a certain G ∈ H∞, then h :=G/I is a nonconstant function in L∞
R

and f h(= FG) ∈ X . �

Before proceeding with the next result, we pause to introduce a certain class of polynomials
that will be needed below.

Given a nonnegative integer N and a polynomial p, we say that p is N -symmetric if zN p(z) ∈R
for all z ∈T. Equivalently, a polynomial p is N -symmetric if (and only if)

p̂(N −k) = p̂(N +k)

for all k ∈ Z; this accounts for the terminology. It follows that the general form of such a
polynomial is

p(z) =
N−1∑
k=0

(
αN−k − iβN−k

)
zk +2α0zN +

2N∑
k=N+1

(
αk−N + iβk−N

)
zk , (9)
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where α0, . . . , αN and β1, . . . , βN are real parameters. Arranging these into a vector(
α0,α1, . . . , αN ,β1, . . . , βN

) ∈R2N+1, (10)

which we call the coefficient vector of p, we arrive at a natural isomorphism between the space of
N -symmetric polynomials and R2N+1.

Lemma 3. Given N ∈Z+ and points a1, . . . , aN ∈D, let

B(z) :=
N∏

j=1

z −a j

1−a j z
.

The general form of a function ψ ∈ H∞ satisfying ψ/B ∈ L∞
R

is then ψ= pΦ, where

Φ(z) :=
N∏

j=1

(
1−a j z

)−2 (11)

and p is an N -symmetric polynomial. (If N = 0, the products are taken to be 1.)

Proof. If ψ= pΦ, with p an N -symmetric polynomial, then it is indeed true that the ratio ψ/B is
real-valued on T (and hence lies in L∞

R
). To see why, use the identity

ψ/B =
(
zN p

)
· (zNΦ/B

)
(12)

and the inequality zNΦ/B ≥ 0, both valid on T.
Conversely, suppose ψ ∈ H∞ is such that ψ/B ∈ L∞

R
. Using this last property in the form ψ/B

=ψ/B , we infer thatψ is orthogonal (in the Hardy space H 2) to the shift-invariant subspace θH 2,
where θ := zB 2. In other words, ψ belongs to the star-invariant (or model) subspace H 2 ªθH 2.
Furthermore, because θ is a finite Blaschke product, it follows (see, e.g., [2] or [15]) that ψ is a
rational function whose poles, counted with their multiplicities, are contained among those of
θ and which satisfies limz→∞ψ(z)/θ(z) = 0. This means that ψ is expressible as pΦ for some
polynomial p of degree at most 2N . Once this is known, we finally verify that p is N -symmetric
by invoking (12) and the inequality stated next to it. �

3. Proof of Theorem 1

We shall proceed in two steps. First, we prove the necessity of condition (a). Second, we show that
condition (b) characterizes the extreme points among those unit-norm functions which obey (a).

Step 1. Assuming that I , the inner factor of f , does not reduce to a finite Blaschke product of
degree at most M (so that (a) fails), we want to conclude that f is not an extreme point of ball(H 1

K).
By Lemma 2, it suffices to construct a function G ∈ H∞, not a constant multiple of I , with the
properties that

G/I ∈ L∞
R (13)

and

FG ∈ H 1
K. (14)

We know from Frostman’s theorem (see [10, Chapter II]) that there exists a point w ∈ D for
which

ϕ := I −w

1−w I
is a (finite or infinite) Blaschke product. Furthermore, our current assumption on I guarantees
that ϕ has at least M +1 zeros. Consequently, ϕ admits a factorization

ϕ=ϕ1ϕ2, (15)

C. R. Mathématique — 2021, 359, n 7, 797-803
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where ϕ1,ϕ2 are Blaschke products and ϕ1 has precisely M + 1 zeros. Setting N := M + 1, we
therefore have

ϕ1(z) =
N∏

j=1

z −a j

1−a j z
(16)

for some a1, . . . , aN ∈ D. Next, we consider the function g := 1 − w I (∈ H∞) and observe that
I /ϕ= g /g a.e. on T. When coupled with (15), this yields

I =ϕ1ϕ2g /g . (17)

Our plan is to construct a function G ∈ H∞ satisfying (13) and (14) in the form

G = g 2pΦϕ2, (18)

where p is an N -symmetric polynomial and Φ is given by (11), with the a j ’s coming from (16).
In fact, any such G belongs to H∞ and makes (13) true. To verify the latter claim, combine (17)
and (18) to find that

G/I =G I = |g |2pΦϕ1

a.e. on T; then apply Lemma 3 with B = ϕ1 to deduce that the function pΦϕ1 (and hence also
|g |2pΦϕ1) is in L∞

R
.

We also need to ensure (14), as well as the condition

G/I 6= const, (19)

by choosing p appropriately. To this end, we set F0 := F g 2Φϕ2 (∈ H 1) and note that FG =F0p, so
that (14) boils down to requiring that the numbers

γ j (p) := �(F0p
)(

k j
)

, j = 1, . . . , M ,

be null. Now let T be the linear map, defined on the space of all N -symmetric polynomials, that
takes p to the vector (

Re γ1(p), Im γ1(p), . . . , Re γM (p), Im γM (p)
)

.

Identifying an N -symmetric polynomial p with its coefficient vector (see Section 2 above), we
may view T as a linear operator from R2N+1(= R2M+3) to R2M . Its rank being obviously bounded
by 2M , we deduce from the rank-nullity theorem (see, e.g., [1, p. 63]) that the kernel of T , to
be denoted by NT , satisfies dim NT ≥ 3. In particular, we can find two linearly independent N -
symmetric polynomials, say p1 and p2, in NT . When plugged into (18) in place of p, each of these
makes (14) true, while at least one of them ensures (19) as well. This completes the construction
and proves the necessity of condition (a) in the theorem.

Step 2. From now on, we assume that (a) holds, so that I is given by (4) with 0 ≤ m ≤ M and
a1, . . . , am ∈ D. In view of Lemma 2, our function f (= I F ) will be an extreme point of ball(H 1

K)
if and only if every G ∈ H∞ satisfying (13) and (14) is necessarily a constant multiple of I . Our
purpose is therefore to prove that the latter condition is equivalent to (b).

The functions G ∈ H∞ we should consider are those of the form

G = pΦ0, (20)

where p is an m-symmetric polynomial and

Φ0(z) :=
m∏

j=1

(
1−a j z

)−2 .

Indeed, Lemma 3 (coupled with our current assumption on I ) tells us that these are precisely
the G’s that enjoy property (13). Now, if F0 ∈ H 1 is the function defined by (5), or equivalently by
F0 := FΦ0, then we have FG = F0p and condition (14) takes the form�(F0p

)(
k j

)= 0, j = 1, . . . , M . (21)
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Rewriting these Fourier coefficients as convolutions and splitting each of the resulting equations
into a real and imaginary part, we arrive at 2M real equations that recast (21) in terms of the
coefficient vector (

α0,α1, . . . , αm ,β1, . . . , βm
)

(22)

of p. (It is understood that p is related to (22) as (9) is to (10), but with m in place of N .)
Once these routine calculations are performed, we eventually rephrase (21)—and hence (14)—by
saying that the vector (22) belongs to the subspace N := ker M, the kernel of the linear operator
M :R2m+1 →R2M given by (8).

This makes it easy to decide whether conditions (13) and (14) imply, for a function G ∈ H∞,
that G/I = const. Namely, this implication is valid if and only if dimN = 1. To see why, one
should observe first that N always contains a nonzero vector. Specifically, the m-symmetric
polynomial p0 := I /Φ0 solves (21), so its coefficient vector is in N . Now, if dimN = 1, then any
other m-symmetric polynomial p solving (21) is given by p = cp0 with some c ∈ R; accordingly,
the functions G produced by (20) are all of the form G = cI . Conversely, if dimN > 1, then we
can find an m-symmetric polynomial p with p/p0 6= const that makes (21) true, so the associated
function G(= pΦ0) satisfies (19).

To summarize, among the unit-norm functions f = I F ∈ H 1
K that obey (a), the extreme points

of ball(H 1
K) are characterized by the property that N , the kernel in R2m+1 of the linear map (8),

has dimension 1. Finally, another application of the rank-nullity theorem allows us to restate the
latter condition as rank M= 2m, and we arrive at (b). The proof of Theorem 1 is complete. �
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