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1. Introduction

Counting lattice walks is a classic problem in combinatorics. A combinatorial walk with nearest-
neighbour step length can be seen as a weighted walk with weight 1 for the allowed directions
and weight 0 for the forbidden directions. If a multiple step length requirement is allowed,
a combinatorial walk can be seen as a weighted walk with integer weights. Without loss of
generality, for a weighted walk, we may assume that the weights sum to 1 by normalization. If
we allow the weights of a walk to take arbitrary non-negative real values that sum to 1, then we
arrive at the realm of probabilistic walks in the quarter plane. So a weighted walk is the same
thing as a probabilistic walk and a weighted walk with rational weights is the same thing as a
combinatorial walk with different step lengths in different directions.

In the probabilistic scenario, an approach called the “kernel method” has been well developed
and summarized in the book [6]. In the kernel method, Malyshev [14] defined a group H , called
the Galois group associated with any walk in Z2+. The finiteness of H turns out to be important.
In fact, the whole Chapter 4 of [6] is devoted to the study of the finiteness of H . Here are some
applications of H :

(1) The finiteness of H helps to find an explicit formula of the generating function of the
walk. See [9, 10] on the 2-demand queueing model and [13] on Gessel’s walks.

(2) The generating function of the walk is holonomic, i.e. satisfying some linear differential
equation if and only if H has finite order. Moreover the generating function is algebraic
if and only if H has finite order and the orbit sum is zero. See [7] and [3, Theorem 42].

Bousquet-Mélou and Mishna [2] defined a similar group W and showed that for combinatorial
walks with nearest-neighbour step length in the quarter plane, W can only have order 4, 6, or 8, if
W has finite order. For a weighted walk, Kauers and Yatchak [12] found three walks with order 10,
which is by far the largest known finite group order. The difference of W and H is that the former
is defined on the whole C2 while H is defined on a compact Riemann surface Q determined by
a biquadratic polynomial Q(x, y). In fact, C2 can be foliated by a pencil of biquadratic curves,
possibly with singular fibers. The theory of QRT (Quispel, Roberts, and Thompson) map in
discrete dynamical system is concerned with this situation. In this paper, we focus on a single
curve Q and consider H .

In this paper, we only consider the generic case when the kernel of the walk determines genus
1 surface. We found 24 as an upper bound on the finite order of H when the weights of the
walk are rationals. In particular, this result says that if the order of H is finite, then it cannot be
arbitrarily large, in contrast to the genus 0 case, where H can have arbitrary finite orders [8]. The
following list summarizes different objects considered in the paper and also serves as an outline
of the proof:

(1) A biquadratic polynomial Q(x, y) defines a connected real curve Q ⊂R2. The composition
of the horizontal and the vertical switches is called a QRT map δ on Q.

(2) By going to complex numbers, Q(x, y) defines a Riemann surface, also called Q ⊂ C2.
The Abel–Jacobi map J determines a lattice Λ generated by ω1,ω2 ∈C, unique up to the
modular group PSL(2,Z) action, such that Q ∼=C/Λ.

(3) The Weierstrass function℘ and its derivative℘′ can be used to construct the uniformiza-
tion map W , an “inverse” of the Abel–Jacobi map J . It is not an actual inverse because
the image of W is not Q but an elliptic curve E in the Weierstrass normal form.

(4) Both J and W are defined analytically. However, their composition turns out to be a
polynomial map. So if we start with a Q(x, y) with rational coefficients, we obtain an
elliptic curve E with rational coefficients.

(5) Moreover, the QRT map δ induces an addition by a rational point on E .
(6) So the Mazur theorem applies and the bound is obtained.
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The organization of the rest of the paper is as follows: in Section 2 we introduce the model;
Section 3 is an introduction of the theory of Riemann surfaces by vector field; Section 4 is an
introduction of the theory of elliptic curves; in Section 5 we study the composition of the Abel–
Jacobi map and the uniformization map; in Section 6 we prove our main results; Section 7 covers
the criteria for H to have order 4m or 4m +2. Section 8 is the conclusion.

2. Probabilistic model

In this section, we introduce the probability model of interest. We shall consider walks inZ2+ with
step length limited to 1 (nearest-neighbor) and the walk is considered to be homogeneous, that
is, the transition probabilities pi , j (−1 ≤ i , j ≤ 1) are independent of the current place.

p1,1

p1,0

p1,−1p0,−1p−1,−1

p−1,0

p−1,1 p0,1

Figure 1. The model. p0,0 is not shown.

To determine the stationary distribution {πi j , i , j ∈N} of the walk, following [6], the generating
function method is applied. The generating function of the stationary distribution πi j (excluding
the probabilities of the boundary states) is

π(x, y) = ∑
i , j≥1

πi j xi−1 y j−1, (1)

where x, y ∈C and |x|, |y | < 1.
π(x, y) satisfies the following functional equation:

Q(x, y)π(x, y) = q(x, y)π(x)+ q̃(x, y)π̃(y)+π0(x, y), (2)

where

Q(x, y) := x y

(∑
i , j

pi , j xi y j −1

)
. (3)

Other terms reflect the boundary conditions on the random walk, which do not enter our study.
Unlike π(x, y), which is defined by a power series in the unit disc, Q(x, y) is a polynomial and thus
can be analytically continued to the whole complex plane C.

Q(x, y) is called the kernel of the random walk and is biquadratic, i.e. both quadratic in x and
quadratic in y :

Q(x, y) := a(x)y2 +b(x)y + c(x) := ã(y)x2 + b̃(y)x + c̃(y) (4)

C. R. Mathématique — 2021, 359, n 5, 563-576
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where

a(x) = p1,1x2 +p0,1x +p−1,1,

b(x) = p1,0x2 + (p0,0 −1)x +p−1,0,

c(x) = p1,−1x2 +p0,−1x +p−1,−1,

and

ã(y) = p1,1 y2 +p1,0 y +p1,−1,

b̃(y) = p0,1 y2 + (p0,0 −1)y +p0,−1,

c̃(y) = p−1,1 y2 +p−1,0 y +p−1,−1.

The following maps are defined on Q:

Definition 1 (Involutions and the QRT map). The vertical switch ξ:

ξ(x, y) :=
(

x,−b(x)

a(x)
− y

)
. (5)

The horizontal switch η:

η(x, y) :=
(
− b̃(y)

ã(y)
−x, y

)
. (6)

The QRT map:
δ := ξ◦η. (7)

Remark. As mentioned in the introduction, the QRT map is usually studied in a foliation of C2

by a pencil of biquadratic curves. We abuse the language and still call our δ here the QRT map, for
a lack of better name and also the restriction of the original QRT map being an automorphism on
each fiber.

ξ and η generate a group H .

Definition 2 (Galois group). The group

H := 〈ξ,η〉 (8)

is called the Galois group of the walk.

Remark. The reason why H is coined as Galois is essentially that Malyshev [14] adopted a
field-theoretic definition of the Riemann surface Q, where a point on Q is defined as a discrete
valuation on the function field C[x, y]/Q(x, y).

Remark. The QRT map δ = η◦ξ generates a subgroup H0 := 〈δ〉 ⊆ H . It’s easy to see the index
of H0 in H is two. Hence H0 is a normal subgroup of H .

3. Results from Riemann surface theory

This section is a brief introduction to the theory of Riemann surfaces. There are various ap-
proaches for the theory of Riemann surfaces. Following [4], we adopt a dynamical system ap-
proach.

The kernel Q(x, y) = 0 determines a compact Riemann surface Q. In order to determine the
topological structure of Q, we need to consider the partial discriminants of Q(x, y).

Definition 3 (Partial discriminant). The partial discriminants of

Q(x, y) = a(x)y2 +b(x)y + c(x) = ã(y)x2 + b̃(y)x + c̃(y)

are defined, respectively, as

∆1(y) := b̃2(y)−4ã(y)c̃(y),

∆2(x) := b2(x)−4a(x)c(x).
(9)
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If the partial discriminant ∆1(y) or equivalently ∆2(x) has no multiple zeros, Q will double
cover the Riemann sphere Ĉ with four distinct branching points [6]. By the Riemann–Hurwitz
formula, the topological genus of Q is

g (Q) = 2(g (Ĉ)−1)+ 4

2
(2−1)+1 = 1. (10)

We shall assume that Q has genus 1, which is generic.
Since Q has genus 1 and is orientable (a complex manifold is always orientable), it is topolog-

ically a torus.
After determining the topological structure, we need to classify the complex structure of Q. In

fact, the complex structure of a torus can be classified by an associated lattice structure. Since
Q has genus 1, there exists a non-vanishing vector field on Q due to the following proposition
proved by Hopf [11]:

Proposition 4. A compact, oriented manifold M possesses a nowhere vanishing vector field if and
only if its Euler characteristic is zero.

In fact, in our case, we have an explicitly nowhere vanishing vector field as follows:

Definition 5 (Hamiltonian vector field). The Hamiltonian vector field vH is defined as

vH := ∂Q

∂y

∂

∂x
− ∂Q

∂x

∂

∂y
= [

2a(x)y +b(x)
] ∂
∂x

− [
2ã(y)x + b̃(y)

] ∂
∂y

. (11)

In fact, Q has genus 1 if and only if the Hamiltonian vector field vH is nowhere vanishing. This
can be seen from the following lemma, which expresses the coefficients of vH in terms of the
partial discriminants.

Lemma 6. [
2a(x)y +b(x)

]2 =∆2(x),[
2ã(y)x + b̃(y)

]2 =∆1(y).

Proof. For the first equation,

[2a(x)y +b(x)]2 =∆2(x)

⇐⇒ b2(x)+4a(x)b(x)y +4a2(x)y2 = b2(x)−4a(x)c(x)

⇐⇒ 4a(x)Q(x, y) = 0.

The second equation can be proved similarly. �

The Hamiltonian vector field vH determines a unique differential form as follows:

Definition 7 (Abelian differential). The Abelian differential ωH is determined by vH via the rela-
tion 〈ωH , vH 〉 = 1, where the pairing is the canonical pairing between vector fields and differential
forms. Moreover, ωH is explicitly given by

ωH = dxp
∆2(x)

=− dy√
∆1(y)

. (12)

Remark. The Abelian differential ωH is well defined for the following reason: first of all, the di-
mension of the vector space of holomorphic differential forms on a Riemann surface is equal to
the genus of the surface, hence two differential forms on Q differ at most by a scalar multiplica-
tion; second, the relation 〈ωH , vH 〉 = 1 completely determines this scalar.

We need to consider the flow generated by this vector field. Since we are dealing with Riemann
surfaces, we let the time variable of the flow take values in C. In this case, the flow is sometimes
called flow box.
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Definition 8 (Integral curve). A complex curve

γv,q :C−→Q

is called the integral curve passing through q at time t = 0 of the vector field v if

γ′v,q (t ) = v(γq,v (t )) and γv,q (0) = q.

Since Q is compact, the existence of the integral curve of a vector field is guaranteed by the
Picard–Lindelöf theorem in ordinary differential equation theory.

Definition 9 (Flow). The flow of the vector field v is the map

expv :C×Q −→Q

(t , q) 7−→ γv,q (t ).

The flow expvH
defines an action of the additive group C on Q.

Lemma 10. The action of C defined by the flow expvH
is transitive on Q, i.e. ∀ q1, q2 ∈ Q, ∃ t ∈ C

such that expvH
(t , q1) = q2.

Proof. Since vH is nowhere vanishing, by the Picard–Lindelöf theorem, ∀ q0 ∈ Q, q ∈ Orb(q0),
there exists a ball Bt (δt ) ⊆C centered at t with radius δt such that expvH

(t , q) = q and expvH
(t , · )

maps Bt (δt ) homeomorphically into Orb(q0). Hence, Orb(q0) is open in Q. These open orbits
form a partition of Q by open sets. Hence, Orb(q0), being the complement of the union of all
other open orbits, is also closed. Since Q is connected, there is only one orbit, i.e. Orb(q0) = Q.
Hence, any two points q1, q2 can be mapped from one to the other by q1 7→ q0 7→ q2, i.e. the action
is transitive. �

Now we investigate the period of the flow. We have shown that for fixed q ∈ Q, the map
expvH

( · , q) is surjective and locally homeomorphic, hence expvH
( · , q) is a covering map. More-

over, since C is simply connected, expvH
( · , q) is a universal covering from C onto Q for all q ∈Q.

The universal covering of a torus is determined by a lattice Λ. Hence we have the following defi-
nition.

Definition 11 (Period group). The period group Λ ⊆ C of the Hamiltonian vector field vH is the
additive subgroup of C consisting of elements t ∈ C such that expvH

(t , q) = q for all q ∈Q. Let ωH

be the Abelian differential determined by vH . ThenΛ can be given explicitly byΛ= 〈ω1,ω2〉, where

ω1 =
∫
γ1

ωH and ω2 =
∫
γ2

ωH ,

where [γ1] and [γ2] form a basis of H1(Q,Z), the first homology group of Q with coefficients in Z.

Remark. Under a modular group PSL(2,Z) action, we may choose Λ = Z⊕τZ, where τ = ±ω2
ω1

.
The ± sign here makes Im(τ) > 0.

After passing to the quotient group, the covering map expvH
( · , q) for an arbitrary q becomes

an isomorphism between complex manifolds.

expvH
( · , q) :C/Λ→Q.

Here we abuse the notation for the covering map and its quotient.
As an isomorphism, the inverse map of expvH

( · , q) exists. Moreover, it has an integral repre-
sentation given by the Abel–Jacobi map.
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Proposition 12 (Abel–Jacobi map). Let q ∈Q be a fixed arbitrary point. Then the Abel–Jacobi map
with base point q is defined by

J : Q −→C/Λ

q ′ 7−→
∫ q ′

q
ω (mod Λ).

(13)

J is well defined and does not depend on the path from q to q ′. Moreover, J is the inverse of
expvH

( · , q) if we choose the same q ∈Q for both functions.

Now we need the transformation property of the QRT map under the Abel–Jacobi map.

Proposition 13. The QRT map δ induces an addition on C/Λ via the Abel–Jacobi map, i.e. the
following diagram is commutative:

Q Q

C/Λ C/Λ

δ

J J

δ∗

The map δ∗ is given by

δ∗ :C/Λ−→C/Λ

z 7−→ z +ω3 (mod Λ),

where ω3 := ∫
γωH (modΛ) for any curve γ : [0,1] →Q such that γ(1) = δ(γ(0)).

4. Results from elliptic curve theory

The theory of Riemann surface is intimately related to the theory of complex algebraic curves. In
particular, a complex torus corresponds to an elliptic curve over C. However, one advantage of
the algebraic theory is that it not only works over C but also works over other fields, for example
Q. Eventually we will use results on elliptic curves over Q. We will write E(K ) to emphasize that
the polynomial defining the elliptic curve E has coefficients over K and there exists a point on E
with coordinates in K .

Our goal is to transform a biquadratic curve Q to an elliptic curve E(C) in the Weierstrass
normal form as defined below. We have already transformed Q to C/Λ via the Abel–Jacobi map
J . Now we show how to transform C/Λ to E(C). For this, we need the Weierstrass uniformization
map.

Definition 14 (Weierstrass normal form). An elliptic curve E(C) is said to be in the Weierstrass
normal form if E(C) is defined by the polynomial

y2 = 4x3 − g2x − g3.

Remark. The nomenclature g2 and g3 here is related to the modular invariants defined later.

An elliptic curve carries an intrinsic abelian group structure + : E × E → E , which can be
defined without any embedding into some ambient space. Hence, in principle, there exists a
group structure on the biquadratic curve Q. However, we do not know any explicit description
of this group. In particular, we do not know the relationship between the Galois group H and the
group structure on Q. On the other hand, in the Weierstrass normal form, the group structure is
well known and has a geometrical description, known as the chord-tangent construction.
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P1
P2

R

P3 = P1 + P2

Figure 2: The group law on an elliptic curve E in Weierstrass normal form.
Only the real part of E is shown.

with derivative being

℘�(z) = −2
�

ω∈Λ

1

(z − ω)3
. (15)

Remark. Both series for ℘ and ℘� converge locally uniformly in C− Λ, hence
they define holomorphic functions on C−Λ. Moreover, by the definition, ℘ and
℘� are doubly periodic functions with period lattice Λ.

Definition 4.4 (Modular invariants). The modular invariants for a lattice Λ
are defined by

g2(Λ) := 60
�

ω∈Λ
ω �=0

ω−4 and g3(Λ) := 140
�

ω∈Λ
ω �=0

ω−6. (16)

Remark. The modular invariants g2 and g3 are related to Eisenstein series.
The Eisenstein series of weight 2k, for k ≥ 2, are defined as

G2k(Λ) =
�

ω∈Λ
ω �=0

ω−2k.

Then, obviously g2(Λ) = 60G4(Λ) and g3(Λ) = 140G4(Λ). Later in Lemma 5,
we will see a relationship between g2 and g3 with Eisenstein invariants.

10

Figure 2. The group law on an elliptic curve E in Weierstrass normal form. Only the real
part of E is shown.

Definition 15 (Chord-tangent construction). The group law

+ : E ×E → E

on an elliptic curve E in Weierstrass normal form is given by

(1) For any two points P1,P2 ∈ E, if P1 6= P2, join P1 and P2; if P1 = P2, draw the tangent line of
E at P1 = P2. Denote the third intersection of the line P1P2 or the tangent line with E by R;

(2) Reflect the point R with respect to the x-axis and the result is P1 +P2.

Remark. For a proof that + is well defined, i.e., it is indeed a group law on E , see [19]. The only
difficulty is to show the associativity of +, which uses the result: if two cubic curves intersect in
nine points and a third cubic curve passes through eight of the intersections, then it also passes
through the ninth intersection. Since the whole construction is algebraic, this group law works
for any base field.

To define the Weierstrass uniformization, we need the Weierstrass elliptic function ℘.

Definition 16 (Weierstrass elliptic function). For a latticeΛ, the Weierstrass function℘ :C−Λ→
C is defined by

℘(z) := 1

z2 + ∑
ω6=0
ω∈Λ

[
1

(z −ω)2 − 1

ω2

]
(14)

with derivative being

℘′(z) =−2
∑
ω∈Λ

1

(z −ω)3 . (15)

Remark. Both series for ℘ and ℘′ converge locally uniformly in C −Λ, hence they define
holomorphic functions on C−Λ. Moreover, by the definition, ℘ and ℘′ are doubly periodic
functions with period latticeΛ.
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Definition 17 (Modular invariants). The modular invariants for a latticeΛ are defined by

g2(Λ) := 60
∑
ω∈Λ
ω6=0

ω−4 and g3(Λ) := 140
∑
ω∈Λ
ω6=0

ω−6. (16)

Remark. The modular invariants g2 and g3 are related to Eisenstein series. The Eisenstein series
of weight 2k, for k ≥ 2, are defined as

G2k (Λ) = ∑
ω∈Λ
ω6=0

ω−2k .

Then, obviously g2(Λ) = 60G4(Λ) and g3(Λ) = 140G4(Λ). Later in Lemma 22, we will see a
relationship between g2 and g3 with Eisenstein invariants.

Now define a function F (z) :=℘′(z)2−4℘(z)3+g2(Λ)℘(z)+g3(Λ). Then, by the definition, F (z)
has period lattice Λ. From the series expansions of ℘,℘′, g2, and g3, F (z) is holomorphic and
F (0) = 0. By the maximum principle, F ≡ 0. Hence, Weierstrass functions and their derivatives
establish an isomorphism between Riemann surfaces of genus 1 and elliptic curves overC. In fact,
this isomorphism is not only a complex analytical isomorphism but also a group isomorphism.
For a proof, see [18, p. 173].

Proposition 18 (Weierstrass Uniformization Map). The map

W :C/Λ−→ E(C)

z 7−→ (℘(z),℘′(z))

is an isomorphism of complex manifolds and also a group isomorphism.

Remark. That the Weierstrass uniformization map is a group isomorphism explains various
addition formulas of elliptic functions. It can be seen as an “inverse” of the Abel–Jacobi map. J

transforms Q to C/Λ and W transforms C/Λ to E(C), which is isomorphic to Q. The composition
W ◦J has the effect of a change of coordinates.

For elliptic curves overQ, the following theorems hold.

Theorem 19 (Mordell). The rational points on an elliptic curve form a finitely generated abelian
group.

The proof of the Mordell theorem can be found in [18].

Theorem 20 (Mazur). For any E(Q), the torsion subgroup T has only the following forms:

(1) Z/NZ, where 1 ≤ N ≤ 10 or N = 12,
(2) Z/2Z⊕Z/2NZ, where 1 ≤ N ≤ 4.

Remark. The proof of the Mazur theorem is rather complicated, and by now there is no simpler
proof than the original papers [15, 16]. The rough idea is to study the modular curves Y1(N ) and
their compactification X1(N ), which are moduli spaces of the elliptic curves with a torsion point
of order N . Mazur showed that for N > 13, Y1(N ) is empty. The result for N = 13 was obtained in
1973 by Mazur and Tate [17]. The result for N = 11 was obtained in 1940 by Billing and Mahler [1].

5. Composition of J and W

In Section 6, we will apply the Mordell theorem and the Mazur theorem to obtain our main
result. First, we need to show that the elliptic curve E = W ◦J (Q) has rational coefficients and
Ω3 =W (ω3) is a rational point.

We consider the action of the QRT map on three objects: the biquadratic curve Q, the complex
torus C/Λ, and the elliptic curve E(C).
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Notice that the modular invariants g2(Λ) and g3(Λ) depend analytically on Λ. However,
Proposition 22 computes g2(Λ) and g3(Λ) algebraically in terms of the coefficients of Q. Before
stating this proposition, we need to introduce the following invariants of a general quartic
polynomial.

Definition 21 (Eisenstein invariants). Let f (x) = ax4 + 4bx3 + 6cx2 + 4d x + e be a quartic
polynomial. The Eisenstein invariants of f are

D( f ) := ae +3c2 −4bd ,

E( f ) := ad 2 +b2e −ace −2bcd + c3.
(17)

The following proposition relates the Eisenstein invariants of the partial discriminants of the
biquadratic curve Q with the modular invariants of the Weierstrass normal curve E(C). The proof
can be found in [4, Corollary 2.4.7].

Proposition 22. Let

W ◦J : Q −→C/Λ−→ E(C)

be the composition of the Abel–Jacobi map and the Weierstrass uniformization map. Then, the E(C)
is given by:

y2 = 4x3 −Dx +E

D := D(∆1) = D(∆2),

E := E(∆1) = E(∆2),
(18)

where D and E are Eisenstein invariants of the partial discriminants ∆1 and ∆2 of Q respectively.

Remark. Although both the Abel–Jacobi map J and the uniformization map W are analytic,
their composition is completely given by polynomial functions.

Denote W (ω3) by Ω3. Since W is a group isomorphism, and by Proposition 13, the QRT map
δ induces an addition operation δ∗ on C/Λ, we know that δ also induces an addition operator
δ∗∗ : P 7→ P +Ω3 for P ∈ E(C).

Proposition 24 calculates the coordinates ofΩ3 in terms of the Frobenius invariants. The proof
can be found in [4, Proposition 2.5.6]. Since the coordinates of Ω3 are important, we sketch the
proof here. First, we study the pullback of the Weierstrass function ℘ on C/Λ by the Abel–Jacobi
map.

Lemma 23. Let J : Q → C/Λ be the Abel–Jacobi map. Then the pullback of the Weierstrass
function ℘ on C/Λ is a rational function P (x, y) on Q. Moreover, assume that (0,0) ∈ Q(x, y), i.e.,
p−1,−1 = 0, then P (x, y) has the following expression:

P (x, y) :=−(p1,−1x +p0,01)(p−1,1 y +p−1,0)/x y

+ (
(p0,0 −1)2 −4p0,1p0,−1 −4p1,0p−1,0 +8p1,−1p−1,1

)
/12. (19)

Proof. Assume that p0,1 6= 0 and p−1,0 6= 0, i.e., Q is not tangent to the x-axis and y-axis at (0,0).
Then the function 1/x y has a pole of order two at (0,0) ∈ Q. From Q(x,0) = (p1,−1x + p0,−1)x
and Q(0, y) = (p−1,1 y + p−1,0)y , it follows that 1/x y has a pole of order one at (−p0,−1/p1,−1,0)
and (0,−p−1,0/p−1,1), respectively. It follows that the function b(x, y) :=−(p1,−1x+p0,01)(p−1,1 y +
p−1,0)/x y has only one pole of order two on the biquadratic curve Q. Let γ(t ) = (x(t ), y(t )) be the
integral curve of the Hamiltonian vector field vH . We need to evaluate the Taylor expansions of
x(t ) and y(t ). The Hamiltonian equations say

dx

dt
= ∂Q

∂y
,

dy

dt
=−∂Q

∂x
.
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Hence, for any meromorphic function f (x, y), we have

d f (x(t ), y(t ))

dt
= ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
= ∂Q

∂y

∂ f

∂x
− ∂Q

∂x

∂ f

∂y
= vH f .

Consequently, dn f
dt n = vn

H f , which means applying vH on f n times. In particular, choosing f to be
the projections on the first and second variables gives the derivatives of x(t ) and y(t ), respectively,
to any order. It follows that

b(x(t ), y(t )) = 1

t 2 − (
(p0,0 −1)2 −4p0,1p0,−1 −4p1,0p−1,0 +8p1,−1p−1,1

)
/12+O (|t |).

Define P (x, y) := b(x, y) + ((p0,0 − 1)2 − 4p0,1p0,−1 − 4p1,0p−1,0 + 8p1,−1p−1,1)/12. Then t 7→
P (x(t ), y(t )) is a meromorphic function of t ∈Cwith a pole of order two atΛ and no other poles.
Moreover, by the periodicity of the Hamiltonian flow, P (x(t ), y(t )) is doubly periodic. By the max-
imum principle, P (x(t ), y(t )) ≡℘(t ). Since P (x, y) depends continuously on the coefficients pi , j ,
Equation (5) also holds true in the case p0,1 = 0 or p−1,0 = 0. �

Remark. Lemma 23 establishes a canonical isomorphism between the function field K (Q)
and K (C/Λ). Since a translation of Q to the origin (0,0) does not affect K (Q), our assumption
(0,0) ∈ Q(x, y) does not lose any generality. The formula of P ′(x, y) is complicated but can be
computed as vH P (x, y). We refer the reader to [4, Lemma 2.4.13].

Proposition 24 (Frobenius Invariants). The addition δ∗∗ on E(C) induced by the QRT map δ

sends the point at infinity O toΩ3 = (X ,Y ), where

X = (p2
0,0 −4p0,−1p0,1 −4p−1,0p1,0 +8p−1,1p1,−1 +8p−1,−1p1,1)/12

Y =−detP,
(20)

where

P=
 p1,1 p1,0 p1,−1

p0,1 p0,0 −1 p0,−1

p−1,1 p−1,0 p−1,−1

 .

Proof. If 0 ∉ Q, but instead we have (r,0) ∈ Q, which is always possible since we work with
complex numbers. A translation x 7→ r +x, where r is a root of p1,−1r 2+p0,−1r +p−1,−1 = 0, may be
applied first and we can assume that (0,0) ∈Q. We take (0,0) as the initial value of the Hamiltonian
flow. The QRT map δ on Q sends (0,0) to (x0, y0), where

x0 =−p0,−1

p1,−1
and y0 =−p1,0x2

0 + (p0,0 −1)x0 +p−1,0

p1,1x2
0 +p0,1x0 +p−1,1

.

Then X = P (x0, y0) and Y = P ′(x0, y0) = vH P (x0, y0), where P (x, y) is the pullback of the
Weierstrass function by the Abel–Jacobi map. �

Remark. The quantities X and Y are called Frobenius invariants by Duistermaat [4]. It would be
interesting if a probabilistic interpretation of (X ,Y ) could be found. The calculation of X and Y
is tedious and in [4], a formula manipulation program is used.
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6. Main result

Results in previous sections can be summarized in the following commutative diagram:

Q Q

C/Λ C/Λ

E(C) E(C)

δ

J J

δ∗

W W

δ∗∗

Gathering around all information, we state the main result of this paper.

Theorem 25. A finite Galois group H of the weighted walk with rational coefficients can have
order at most 24.

Proof. Since the kernel Q(x, y) has rational coefficients, by Proposition 22, the associated elliptic
curve E in the Weierstrass normal form y2 = 4x3 − g2x − g3 also has rational coefficients, i.e.
g2, g3 ∈ Q. By Proposition 24, Ω3 = W (ω3) ∈ E(Q). Then, the group 〈Ω3〉 generated by Ω3 is a
subgroup of E(Q). By Proposition 13 and Proposition 18, H0 is isomorphic to 〈Ω3〉. Hence, H0

is a subgroup of E(Q). By the Mordell theorem, E(Q) is finitely generated. By the fundamental
theorem of finitely generated abelian group, E(Q) ∼= Zr ⊕T , where r ∈ N and T is the torsion
subgroup. Since H is assumed to be finite, H0 is a subgroup of the torsion subgroup T . By the
Mazur theorem, |T | ≤ 12, therefore |H0| ≤ 12. Since |H /H0| = 2, |H | ≤ 24. �

We rederive two known criteria for the weighted walks having order 4 and 6 using geometric
arguments. The original proofs appear in [6, Chapter 4].

Theorem 26 (Criterion for H of order 4). H has order 4 if and only if detP= 0.

Proof. H has order 4 if and only ifΩ3 is a torsion point of order 2 in E(C). The result is obtained
by the fact that a point in a Weierstrass normal curve has order 2 if and only if its Y coordinate
is 0. �

Theorem 27 (Criterion for H of order 6). H has order 6 if and only if∣∣∣∣∣∣
−12X 0 D

0 1 Y
D Y D X +3E

∣∣∣∣∣∣= 0, (21)

where Ω3 = (X ,Y ) is given by Proposition 24 and D := D(∆1) = D(∆2) and E := E(∆1) = E(∆2) are
Eisenstein invariants given by Proposition 22.

Proof. H has order 6 ⇔ Ω3 = (X ,Y ) is a torsion point of order 3 in E(C) ⇔ Ω3 is a flex point ⇔
det

(
Hess( f )

)
vanishes on (X ,Y ,1), where f (x, y, z) is the homogeneous polynomial

f (x, y, z) = y2z −4x3 + g2xz2 + g3z3.

The result is obtained by direct calculation. �

Remark. The following result for H to have order 6 is given by Proposition 4.1.8 in [6]: H has
order 6 if and only if ∣∣∣∣∣∣∣∣

∆11 ∆21 ∆12 ∆22

∆12 ∆22 ∆13 ∆23

∆21 ∆31 ∆22 ∆32

∆22 ∆32 ∆23 ∆33

∣∣∣∣∣∣∣∣= 0,

where ∆i j ’s are cofactors of the matrix P.
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7. Criterion for orders 4m and 4m +2

In this section, we give criteria for H to have orders 4m or 4m + 2 using division polynomials.
The criteria given in [6] are abstract, requiring linear dependence of certain functions in some
function field. Our result is completely given by division polynomials.

Definition 28 (Division Polynomials). Let y2 = 4x3 − g2x − g3 be an elliptic curve. The division
polynomials are given by

Ψ1 = 1,

Ψ2 = y,

Ψ3 = 48x4 −24g2x2 −48g3x − g 2
2 ,

Ψ4 = y
(
64x6 −80g2x4 −320g3x3 −20g 2

2 x2 −16g2g3x + g 3
2 −32g 2

3

)
,

Ψ2m+1 =Ψm+2Ψ
3
m −Ψm−1Ψ

3
m+1, m ≥ 2,

Ψ2m = 1

y
Ψm

(
Ψm+2Ψ

2
m−1 −Ψm−2Ψ

2
m+1

)
, m ≥ 3.

The division polynomials are so called because they satisfy the following proposition.

Proposition 29. Following the notation in Definition 28. m|n ⇒Ψm |Ψn inZ[x, y]. And any point
(x, y) is a torsion point of order dividing n if and only if Ψn(x, y) = 0.

Proposition 29 provides explicit criteria for H to have orders 4m or 4m +2.

Corollary 30 (Criterion for H of order 4m). H has order 4m if and only if Ψn(X ,Y ) 6= 0 for all
n|2m,n 6= 2m andΨ2m(X ,Y ) = 0.

Corollary 31 (Criterion for H of order 4m +2). H has order 4m +2 if and only if Ψn(X ,Y ) 6= 0
for all n|(2m +1),n 6= 2m +1 andΨ2m+1(X ,Y ) = 0.

In particular, for H to have order 8, we have the following result:

Corollary 32 (Criterion for H of order 8). H has order 8 if and only if Y 6= 0 and

64X 6 −80D X 4 −320E X 3 −20D2X 2 −16DE X +D3 −32E 2 = 0,

where D,E are Eisenstein invariants and X ,Y are Frobenius invariants.

Proof. If Y = 0, H will have order 4 by Theorem 26. Hence, in order that H has order 8, Y must
be nonzero. Then, dividing by Y on the both sides of the equationΨ4(X ,Y ) = 0, we have

H has order 8 ⇐⇒ 64X 6 −80D X 4 −320E X 3 −20D2X 2 −16DE X +D3 −32E 2 = 0. �

Remark. The following explicit result for H to have order 8 is given in [5]: H has order 8 if and
only if ∣∣∣∣∣∣

A B C
D E F
G H I

∣∣∣∣∣∣= 0,

where A = 2∆22∆32 − (∆21∆33 +∆31∆23), B = 2(∆2
22 −∆12∆31 +∆21∆23) +∆11∆33 +∆31∆13, C =

2∆12∆22− (∆11∆23 +∆21), D = ∆2
32 −∆31∆33, E = −2∆32∆22+∆31∆23 +∆21∆33, F = ∆2

22 −∆21∆23,
G =∆2

22 −∆21∆23, H =−2∆22∆12+∆11∆23 +∆13∆21, and I =∆2
12 −∆11∆13, and ∆i j ’s are cofactors

of the matrix P.
The result of Corollary 32 is equivalent to the Equation (4.1.38) in the proof of Lemma 4.1.10

with m = 2 in [6]. However, there are no explicit formulas for Y , g2 and g3 in their equation.
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8. Conclusion

We found that the finite group H can have order at most 24 for rational weighted walks.
Geometric proofs of the criterion for H to have order 4 and 6 are given. In particular for the
case of order 6, the result is simpler than Proposition 4.1.8 of [6]. Using division polynomial, a
recursive criterion for H to have order 4m or 4m+2 is also obtained and an explicit criterion for
H to have order 8 is given almost with no computations.

By far, the largest order that has been known is 10 [12]. Since 24 is a theoretical upper bound,
further work on finding possible realizations of higher orders is needed.
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