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Abstract. We prove that a “cushioned” Hermitian–Einstein-type equation proposed by Demailly in an ap-
proach towards a conjecture of Griffiths on the existence of a Griffiths positively curved metric on a
Hartshorne ample vector bundle, has an essentially unique solution when the bundle is stable. This result
indicates that the proposed approach must be modified in order to attack the aforementioned conjecture of
Griffiths.
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1. Introduction

The notion of ampleness/positivity is paramount in algebraic geometry. For a holomorphic line
bundle, there is only one notion of differentio-geometric positivity, i.e., there is a smooth Hermit-
ian metric whose curvature form is a Kähler form. By the Kodaira embedding theorem, it coin-
cides with algebro-geometric ampleness. A holomorphic vector bundle E is said to be Hartshorne
ample if OE∗ (1) is an ample line bundle over P(E∗). There is no unique differentio-geometric no-
tion of positivity of curvature Θ of a smooth Hermitian metric h. There are several competing
inequivalent notions. The most natural of these notions are Griffiths positivity (〈v,

p−1Θv〉 is a
Kähler form for all v 6= 0), Nakano positivity (the bilinear form defined by

p−1Θ on T 1,0M ⊗E
is positive-definite), and dual-Nakano positivity (the Hermitian holomorphic bundle (E∗,h∗) is
Nakano negative). Nakano positivity and dual-Nakano positivity imply Griffiths positivity and all
three of them imply Hartshorne ampleness. A famous conjecture of Griffiths [5] asks whether
Hartshorne ample vector bundles admit Griffiths positively curved metrics. This conjecture is
still open. However, a considerable amount of work has been done to provide evidence in its
favour [1–3, 6, 8–10, 13].

Relatively recently, Demailly [3] proposed a programme to prove the aformentioned conjec-
ture of Griffiths for a holomorphic rank−r vector bundle E on a compact Kähler manifold (X ,ω0).
In fact, if Demailly’s method works, it will end up proving a stronger conjecture : Do Hartshorne-
ample bundles admit dual-Nakano positively curved metrics? Demailly’s approach involves solv-
ing a family (depending on a parameter 0 ≤ t ≤ 1) of vector bundle Monge–Ampère equations
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(distinct from the one introduced in [11]) in conjunction with “cushioned” Hermitian–Einstein-
type equations (see [3, Theorem 2.17]):

det
T X⊗E∗

(
ΘT

ht
+ (1− t )αω0 ⊗ IE∗

)1/r = ft
(deth0)λ

(detht )λ
ωn

0 , (1)(p−1Fht −
p−1

r
trFht

)
ωn−1

0 =−ε (deth0)µ

(deth)µ
ln

(
hh−1

0

det(hh−1
0 )1/r

)
ωn

0 , (2)

where h0 is a smooth background Hermitian metric, µ,λ ≥ 0 are fixed constants, α > 0 is a
large enough constant so that Θh0 +αω is dual-Nakano positively curved, and ft > 0 are smooth
positive functions. We focus on the cushioned Hermitian–Einstein-type equation in the following
theorem.

Theorem 1. Let E be an ω0-stable rank−r holomorphic bundle on X . Let H0 be a Hermitian–
Einstein metric on E with respect to ω0, that is,

p−1FH0ω
n−1
0 = λωn

0 . Let h be a smooth metric on
E solving the following cushioned Hermitian–Einstein equation for given parameters ε≥ 0,µ≥ 0.(p−1Fh −

p−1

r
trFh

)
ωn−1

0 =−ε (det H0)µ

(deth)µ
ln

(
hH−1

0

det(hH−1
0 )1/r

)
ωn

0 , (3)

where h, H0 are matrices (any holomorphic trivialisation will do). Then h = H0e− f for some
smooth function f .

As a result, if we consider the system of the vector bundle Monge–Ampère equation and the
cushioned Hermitian–Einstein-type equation on an ω0-stable ample E , and if solutions exist all
the way till t = 1, the final t = 1 solution, by virtue of the fact that it satisfies the cushioned
Hermitian–Einstein-type equation, has to be of the form H0e f . This condition might be a strong
restriction (which is unlikely to be met owing to [7, 12] without a restriction on the second Chern
character). On the other hand, if we replaceω0 by say (1− t )ω0+ t

p−1tr(Fht ) (or the choice in [3,
Section 2.19] for instance), the above argument will not be applicable and there might be some
hope for the approach to yield an affirmative solution to the Griffiths Conjecture.
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2. Proof of uniqueness

In a holomorphic trivialisation, our conventions are : 〈v, w〉H = vT H w̄ , if g is an endomorphism
then g .s = [g ]T~s, ∇s = d s + AT s, A = ∂H H−1, F = d A− A∧ A = ∂̄A, and ∇g = d g + [g , A].

The proof is motivated by a similar one by Donaldson for Riemann surfaces [4]. In general,
h = q H0 where q is some smooth H0-Hermitian positive-definite endomorphism of E . We
decompose q further as q = e− f g where det(g ) = 1 and f is a smooth function. Thus, Fh =
FH0 +∂∂̄ f + ∂̄(∂0g g−1). The trace-free part of the curvature is F ◦

h = F ◦
0 + ∂̄(∂0g g−1). Substituting

these expressions in 3 and using the fact that H0 is Hermitian–Einstein with respect to ω0, we getp−1∂̄(∂0g g−1)ωn−1
0 =−εerµ f ln gωn

0 . (4)

Now we compute
1

2

p−1∂̄∂ tr(g 2)ωn−1
0 =p−1∂̄ tr(g∂0g )ωn−1

0 =p−1tr(∂̄g∂0g )ωn−1
0 +p−1tr(g ∂̄∂0g )ωn−1

0

=p−1tr(∂̄g∂0g )ωn−1
0 −εerµ f tr(g 2 ln g )ωn

0 −p−1tr(g∂0g g−1∂̄g )ωn−1
0

≤−εerµ f tr(g 2 ln g )ωn
0 . (5)
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Note that tr(g 2 ln g ) =∑
i λ

2
i ln(λi ) where λi > 0 are the eigenvalues of g such that λ1 ≤ λ2 . . .. The

product of the λi is 1. Thus, ∑
i | λi<1

|ln(λi )| = ∑
i | λi>1

ln(λi )

which implies that∑
1≤i≤p | λp≤1, λp+1>1

λ2
i |ln(λi )| ≤ ∑

1≤i≤p | λp≤1, λp+1>1
λ2

p |ln(λi )| =λ2
p

n∑
i=p+1

ln(λi )

≤
n∑

i=p+1
λ2

i ln(λi ). (6)

Therefore, tr(g 2 ln g ) ≥ 0 and hence
1

2

p−1∂̄∂ tr(g 2)ωn−1
0 ≤ 0. (7)

The strong maximum principle then implies that actually
1

2

p−1∂̄∂ tr(g 2)ωn−1
0 = 0, (8)

and hence g = I . �
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