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Abstract. Let A be a set of nonnegative integers. Let (h A)(t ) be the set of all integers in the sumset h A
that have at least t representations as a sum of h elements of A. In this paper, we prove that, if k ≥ 2,
and A = {

a0, a1, . . . , ak
}

is a finite set of integers such that 0 = a0 < a1 < ·· · < ak and gcd
(
a1, a2, . . . , ak

) = 1,
then there exist integers ct ,dt and sets Ct ⊆ [0,ct −2], Dt ⊆ [0,dt −2] such that

(h A)(t ) =Ct ∪
[
ct ,hak −dt

]∪ (
hak−1 −Dt

)
for all h≥∑k

i=2(t ai −1)−1. This improves a recent result of Nathanson with the bound h≥(k−1)(t ak −1)ak +1.
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1. Introduction

Let A and B be sets of integers. The sumsets and difference sets are defined by

A+B = {a +b : a ∈ A,b ∈ B}, A−B = {a −b : a ∈ A,b ∈ B}

respectively. For any integer t , we define the sets

t + A = {t }+ A, t − A = {t }− A.

For h ≥ 2, we denote by h A the h-fold sumset of A, which is the set of all integers n of the
form n = a1 +a2 +·· ·+ah , where a1, a2, . . . , ah are elements of A and not necessarily distinct.

In [3, 4], Nathanson proved the following fundamental beautiful theorem on the structure of
h-fold sumsets.
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Nathanson’s Theorem A. Let A = {a0, a1, . . . , ak } be a finite set of integers such that

0 = a0 < a1 < ·· · < ak and gcd(A) = 1.

Let h1 = (k −1)(ak −1)ak +1. There are nonnegative integers c1 and d1 and finite sets C1 and D1

with C1 ⊆ [0,c1 −2] and D1 ⊆ [0,d1 −2] such that

h A =C1 ∪ [c1,hak −d1]∪ (hak −D1)

for all h ≥ h1.

Later, Wu, Chen and Chen [6] improved the lower bound of h1 to
∑k

i=2 ai−k. Recently, Granville
and Shakan [1], and Granville and Walker [2] gave some further results on this topic.

Let A be a set of integers. For every positive integer h, the h-fold representation function
r A,h(n) counts the number of representations of n as the sum of h elements of A. Thus,

r A,h(n) = ]

{(
a j1 , . . . , a jh

) ∈ Ah : n =
h∑

i=1
a ji and a j1 ≤ ·· · ≤ a jh

}
.

For every positive integer t , let (h A)(t ) be the set of all integers n that have at least t representa-
tions as the sum of h elements of A, that is,

(h A)(t ) = {
n ∈ Z : r A,h(n) ≥ t

}
Recently, Nathanson [5] found that the sumsets (h A)(t ) have the same structure as the sumset

h A and proved the following theorem.

Nathanson’s Theorem B. Let k ≥ 2, and let A = {a0, a1, . . . , ak } be a finite set of integers such that
0 = a0 < a1 < ·· · < ak and gcd(A) = 1. For every positive integer t , let ht = (k−1)(t ak−1)ak+1. There
are nonnegative integers ct and dt , and finite sets Ct and D t with Ct ⊆ [0,ct −2] and D t ⊆ [0,dt −2]
such that

(h A)(t ) =Ct ∪ [ct ,hak −dt ]∪ (hak −D t )

for all h ≥ ht .

In this paper, motivated by the idea of Wu, Chen and Chen [6], we improved the lower bound
of h in Nathanson’s Theorem B.

Theorem 1. Let k ≥ 2, and let A = {a0, a1, . . . , ak } be a finite set of integers such that

0 = a0 < a1 < ·· · < ak and gcd(A) = 1

For every positive integer t , let

ht =
k∑

i=2
(t ai −1)−1

There are nonnegative integers ct and dt and finite sets Ct and D t with

Ct ⊆ [0,ct −2] and D t ⊆ [0,dt −2]

such that

(h A)(t ) =Ct ∪ [ct ,hak −dt ]∪ (hak −D t ) (1)

for all h ≥ ht .

Remark 2. Theorem 1 is optimal.

We shall prove Theorem 1 and Remark 2 in Section 3. In Section 2, we give some lemmas.
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2. Some Lemmas

Lemma 3 (see [5, Lemma 1]). Let A be a set of integers. For any positive integer h and t, we have

(h A)(t ) + A ⊆ ((h +1)A)(t ).

Lemma 4. Let k ≥ 2, and let A = {a0, a1, . . . , ak } be a set of integers satisfying 0 = a0 < a1 < ·· · < ak

and gcd(A) = 1. For every positive integer t , let ht =∑k
i=2(t ai −1)−1 and c ′t =

∑k−1
i=1 ai (t ai+1−1). If

c ′t −ak < n < c ′t , then there exist at least t distinct nonnegative k-tuples (x1,s , x2,s , . . . , xk,s ) (1 ≤ s ≤ t )
satisfying

n = x1,s a1 +x2,s a2 +·· ·+xk,s ak

and x1,s +x2,s +·· ·+xk,s ≤ ht for s = 1,2, . . . , t .

Proof. Since gcd(a1, . . . , ak ) = 1, there exist integers x1, . . . , xk such that

n = x1a1 +·· ·+xk ak .

For any positive integer s, [(s−1)a2, sa2−1] is a complete residue system modulo a2. Hence there
exists an integer q such that x1 = a2q +x1,s with (s −1)a2 ≤ x1,s ≤ sa2 −1. This gives

n = x1,s a1 +
(
a1q +x2

)
a2 +·· ·+xk ak .

Let x ′
2 = a1q + x2. Similarly, there exists an integer q ′ such that x ′

2 = a3q ′+ x2,s with (s − 1)a3 ≤
x2,s ≤ sa3 −1. Now we have

n = x1,s a1 +x2,s x2 + (a2q ′+x3)a3 +·· ·+xk ak .

By continuing this process, we obtain

n = x1,s a1 +x2,s a2 +·· ·+xk,s ak

with (s−1)ai+1 ≤ xi ,s ≤ sai+1−1 for i = 1, . . . ,k −1 and xk,s is some integer. Hence, for any integer
s ∈ [1, t ], we have

0 ≤ xi ,s ≤ t ai+1 −1.

Since n > c ′t −ak , it follows that

xk,s ak = n − (
x1,s a1 +x2,s a2 +·· ·+xk−1,s ak−1

)
≥ n − (t a2 −1) a1 −·· ·− (t ak −1) ak−1 = n − c ′t >−ak ,

and then xk,s > −1. Noting that xk,s is an integer, we have xk,s ≥ 0. By the bound of xi ,s , the
following nonnegative k-tuples

(x1,s , x2,s , . . . , xk−1,s , xk,s ) (1 ≤ s ≤ t )

are distinct.
Next, we shall prove that x1,s +x2,s +·· ·+xk,s ≤ ht for s = 1,2, . . . , t .
For any integer s ∈ [1, t ], let x1,s +x2,s +·· ·+xk,s = us . Since n < c ′t , it follows that

n = x1,s a1 +x2,s a2 +·· ·+xk,s ak

= x1,s a1 +·· ·+xk−1,s ak−1 +
(
us −x1,s −x2,s −·· ·−xk−1,s

)
ak

= us ak −x1,s (ak −a1)−·· ·−xk−1,s (ak −ak−1)

≥ us ak − (t a2 −1)(ak −a1)−·· ·− (t ak −1)(ak −ak−1)

= us ak −ak [(t a2 −1)+·· ·+ (t ak −1)]+a1 (t a2 −1)+·· ·+ak−1 (t ak −1)

= us ak − (ht +1) ak + c ′t
> us ak − (ht +1) ak +n.

Hence us ak − (ht +1) ak < 0, and then us < ht +1. Therefore, us ≤ ht .
This completes the proof of Lemma 4. �
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Lemma 5. Let c ′t and ht be defined in Lemma 4. Then

c ′t =
k−1∑
i=1

ai (t ai+1 −1) ∈ ((ht +1) A)(t ) .

Proof. For i = 1,2, . . . ,k −1, let pi = t ai+1 −1. Then

c ′t = (t a2 −1) a1 +·· ·+ (t ak −1) ak−1 = p1a1 +·· ·+pk−1ak−1.

Noting that

p1 +·· ·+pk−1 =
k∑

i=2
(t ai −1) = ht +1,

we have c ′t ∈ (ht +1) A.
Moreover, for any integer r ∈ [0, t −1], we have

c ′t =
k−1∑
i=1

(t ai+1 −1) ai =
k−1∑
i=1

((t − r )ai+1 −1) ai + r
k−1∑
i=1

ai ai+1

= ((t − r )a2 −1) a1 +
k−1∑
i=2

((t − r )ai+1 −1+ r ai−1)ai + r ak−1ak

:= p1,r a1 +p2,r a2 +·· ·+pk−1,r ak−1 +pk,r ak ,

where p1,r = (t − r )a2 − 1, pk,r = r ak−1 and pi ,r = (t − r )ai+1 − 1+ r ai−1 (2 ≤ i ≤ k − 1). Hence
pi ,r ≥ 0 for all i ∈ [1,k] and

k∑
i=1

pi ,r = (t − r )a2 −1+ (t − r )a3 −1+ r a1 +·· ·+ (t − r )ak −1+ r ak−2 + r ak−1

= ht +1− r (a2 +·· ·+ak )+ r (a1 +·· ·+ak−1)

= ht +1− r (ak −a1) ≤ ht +1.

Thus, r A,ht+1(c ′t ) ≥ t , and so c ′t ∈ ((ht +1) A)(t ). �

Lemma 6. Let n and a1, a2 be positive integers with gcd(a1, a2) = 1. For any positive integer t , if
n > t a1a2 −a1 −a2, then the diophantine equation

a1x +a2 y = n (2)

has at least t nonnegative integer solutions. The lower bound of n is also best possible.

Proof. Suppose that n > t a1a2−a1−a2. Let (x0, y0) be a solution of the equation (2). Then all the
integer solutions of the equation (2) is{

x = x0 +ka2,

y = y0 −ka1,
k ∈Z. (3)

In order to have x ≥ 0 and y ≥ 0, we only need x >−1 and y >−1, that is,

−1−x0

a2
< k < y0 +1

a1
. (4)

Since

y0 +1

a1
− −1−x0

a2
= a1 +a2 +a1x0 +a2 y0

a1a2
= a1 +a2 +n

a1a2
> a1 +a2 + t a1a2 −a1 −a2

a1a2
= t ,

there exist at least t integers k such that (4) holds.
Therefore, the equation (2) has at least t nonnegative integer solutions.

C. R. Mathématique — 2021, 359, n 4, 493-500



Jun-Yu Zhou and Quan-Hui Yang 497

Now suppose that l = t a1a2 − a1 − a2. Then (t a2 −1,−1) is a solution of (2). Take x0 = t a2 −1
and y0 =−1. Then (3) becomes {

x = t a2 −1−ka2,

y =−1+ka1,
k ∈Z.

Since x ≥ 0 and y ≥ 0, it follows that 1 ≤ k ≤ t − 1. Hence there exist at most t − 1 nonnegative
integer solutions.

This completes the proof of Lemma 6. �

3. Proofs

Proof of Theorem 1. Let c ′t =
∑k−1

i=1 ai (t ai+1−1). By Lemma 4, there exist smallest integers ct and
dt satisfying [

c ′t −ak +1,c ′t −1
]⊆ [ct ,ht ak −dt ] ⊆ (ht A)(t ) .

It follows that ct −1 ∉ (ht A)(t ) and ht ak −dt +1 ∉ (ht A)(t ). Additionally

ct ≤ c ′t −ak +1, (5)

c ′t −1 ≤ ht ak −dt . (6)

Define the finite sets Ct and D t by

Ct = (ht A)(t ) ∩ [0,ct −2]

and

ht ak −D t = (ht A)(t ) ∩ [ht ak − (dt −2),ht ak ] .

Then

(ht A)(t ) =Ct ∪ [ct ,ht ak −dt ]∪ (ht ak −D t ) . (7)

Therefore, (1) holds for h = ht .
Now we prove (1) by induction on h. Suppose that (1) holds for some h ≥ ht . Define

B (t ) =Ct ∪ [ct , (h +1)ak −dt ]∪ ((h +1)ak −D t ) .

Firstly we prove that B (t ) ⊆ ((h +1)A)(t ).
Take an arbitrary integer b ∈ B (t ).

Case 1: b ∈Ct ∪ [ct ,ht ak −dt ]. By (7), we have

b ∈ (ht A)(t ) ⊆ ((h +1)A)(t ).

Case 2: b ∈ [ct +ak , (h +1)ak −dt ]∪ ((h +1)ak −D t ). It follows that

b −ak ∈ [ct ,hak −dt ]∪ (hak −D t ) ⊆ (h A)(t ).

Thus, By Lemma 3, b ∈ (h A)(t ) +ak ⊆ ((h +1)A)(t ).

Case 3: ht ak −dt +1 ≤ b ≤ ct +ak −1. By (5) and (6), we have

ct +ak −1 ≤ c ′t ≤ ht ak −dt +1. (8)

Thus b = c ′t . By Lemma 5, we have

b = c ′t ∈ ((ht +1) A)(t ) ⊆ ((h +1)A)(t ).

Therefore, B (t ) ⊆ ((h +1)A)(t ).
Next we shall prove that ((h +1)A)(t ) ⊆ B (t ). Take an arbitrary integer a ∈ ((h +1)A)(t ).
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Case 1: a = c ′t . By (8) and h ≥ ht , we have

ct ≤ c ′t ≤ ht ak −dt +1 ≤ (h +1)ak −dt .

Hence a = c ′t ∈ B (t ).

Case 2: a 6= c ′t and a ∉ (h A)(t ). Since a ∈ ((h + 1)A)(t ), there exist t nonnegative integer k-tuples
(x1,s , x2,s , . . . xk,s ) (1 ≤ s ≤ t ) satisfying

a = x1,s a1 +x2,s a2 +·· ·+xk,s ak and x1,s +x2,s +·· ·+xk,s ≤ h +1.

Furthermore, we can get

0 ≤ xi ,s ≤ t ai+1 −1, 1 ≤ i ≤ k −1, 1 ≤ s ≤ t . (9)

Otherwise, without loss of generality, assume that x1,1 ≥ t a2, then for j = 1,2, . . . , t , we have

a = x1,1a1 +x2,1a2 +·· ·+xk,1ak

= (
x1,1 − j a2

)
a1 +

(
x2,1 + j a1

)
a2 +·· ·+xk,1ak .

Noting that for j = 1,2, . . . , t ,

(x1,1 − j a2)+ (x2,1 + j a1)+x3,1 +·· ·+xk,1 = h +1− j (a2 −a1) < h +1,

we have a ∈ (h A)(t ), a contradiction. Hence the inequality (9) holds.
By a ∉ (h A)(t ), there exists s ∈ [1, t ] such that a = x1,s a1 +x2,s a2 +·· ·+xk,s ak and

x1,s +x2,s +·· ·+xk,s = h +1.

By (9), we have

a = x1,s a1 +x2,s a2 +·· ·+xk,s ak

= x1,s a1 +·· ·+xk−1,s ak−1 +
(
h +1−x1,s −x2,s −·· ·−xk−1,s

)
ak

= (h +1)ak −x1,s (ak −a1)−·· ·−xk−1,s (ak −ak−1)

≥ (h +1)ak − (t a2 −1)(ak −a1)−·· ·− (t ak −1)(ak −ak−1)

= (h +1)ak −ak [(t a2 −1)+·· ·+ (t ak −1)]+a1 (t a2 −1)+·· ·+ak−1 (t ak −1)

= (h +1)ak − (ht +1) ak + c ′t
≥ c ′t .

Since a 6= c ′t , it follows that a ≥ c ′t +1. By (5), we have a ≥ c ′t +1 ≥ ct +ak .
If xk,s = 0 for some s with 1 ≤ s ≤ t , by (9), then

a ≤ (t a2 −1) a1 +·· ·+ (t ak −1) ak−1 = c ′t ,

a contradiction.
Hence xk,s ≥ 1 for all integers s = 1,2, . . . , t .
Therefore, a −ak ∈ (h A)(t ) and a −ak ≥ ct . By the induction hypothesis,

a ∈ ak + [ct ,hak −dt ]∪ (hak −D t ) = [ct +ak , (h +1)ak −dt ]∪ ((h +1)ak −D t ) ⊆ B (t ).

Case 3: a 6= c ′t and a ∈ (h A)(t ). By the induction hypothesis, we have

(h A)(t ) =Ct ∪ [ct ,hak −dt ]∪ (hak −D t ) .

Since Ct ∪ [ct , (h +1)ak −dt ] ⊆ B (t ), we can suppose that a > (h +1)ak −dt . By a ∈ (h A)(t ), there
exist at least t distinct nonnegative k-tuples (x1,s , x2,s , . . . , xk,s ) (1 ≤ s ≤ t ) such that

a = x1,s a1 +x2,s a2 +·· ·+xk,s ak

and

x1,s +x2,s +·· ·+xk,s ≤ h.
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As in the proof of Lemma 4, assume that 0 ≤ xi ,s ≤ t ai+1−1 for i = 1,2, . . . ,k−1. If xk,s ≤ 0, then
by (6) we have

a ≤ x1,s a1 +x2,s a2 +·· ·+xk−1,s ak−1

≤ a1 (t a2 −1)+·· ·+ak−1 (t ak −1)

= c ′t ≤ ht ak −dt +1

≤ (ht +1) ak −dt ≤ (h +1)ak −dt ,

which contradicts with a > (h + 1)ak − dt . Therefore xk,s ≥ 1 and a − ak ∈ (h A)(t ). Since a >
(h +1)ak −dt , it follows that a −ak ∈ hak −D t . Hence

a ∈ (h +1)ak −D t ⊆ B (t ),

and so ((h +1)A)(t ) ⊆ B (t ).
This completes the proof of Theorem 1. �

Proof of Remark 2. Let n ≥ 3 be an integer and A = {0, n, n+1}. By Theorem 1, there exist integers
ct , dt and sets Ct ⊆ [0,ct −2], D t ⊆ [0,dt −2] such that

(h A)(t ) =Ct ∪ [ct ,hak −dt ]∪ (hak −D t )

for all h ≥ ht = t (n +1)−2.
For any integer m ≥ ct , choose an integer h′ ≥ t (n+1)−2 such that h′ak −dt ≥ m, then we have

m ∈ (h′A)(t ).
Hence, there exist t nonnegative integer tuples (ui , vi ) (1 ≤ i ≤ t ) such that m = ui n+vi (n+1).
On the other hand, there does not exist t nonnegative integer tuples (ui , vi ) (1 ≤ i ≤ t ) such

that ct − 1 = ui n + vi (n + 1). Otherwise, if exist, choose h > max1≤i≤t {ui + vi }, then we have
ct − 1 ∈ (h A)(t ), a contradiction. Hence, by Lemma 6, it follows that ct − 1 = t a1a2 − a1 − a2 =
tn(n +1)−n − (n +1), and then ct = tn(n +1)−2n.

Let p ∈ ((ht −1)A)(t ). Then there exist t nonnegative integer tuples (ui , vi ) (1 ≤ i ≤ t ) such that
p = ui n + vi (n +1) and u1 > u2 > ·· · > ut are the maximal t numbers in all the representations.
Hence

p = u1n + v1(n +1) = [u1 − (n +1)]n + (v1 +n)(n +1)

= [u1 −2(n +1)]n + (v1 +2n)(n +1)

= . . .

= [u1 − (t −1)(n +1)]n + [v1 + (t −1)n](n +1).

It follows that ut = u1 − (t −1)(n +1), vt = v1 + (t −1)n. Noting that

ut + vt < ut−1 + vt−1 < ·· · < u1 + v1 ≤ ht −1,

we have
ut + vt = u1 − (t −1)(n +1)+ v1 + (t −1)n

= u1 + v1 − (t −1) ≤ ht −1− (t −1) = tn −2.

Hence, for every p ∈ ((ht −1)A)(t ),

p = ut n + vt (n +1) ≤ (ut + vt )(n +1) ≤ (tn −2)(n +1)

= tn(n +1)−2(n +1) < tn(n +1)−2n = ct .

By (1), it follows that
((ht −1)A)(t ) ⊆ [0, tn(n +1)−2(n +1)].

Therefore, (1) cannot hold for h = ht −1, and so Theorem 1 is optimal. �
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