

Comptes Rendus Mathématique

K. Senthil Kumar

Linear dependence of quasi-periods over the rationals

Volume 359, issue 4 (2021), p. 409-414

Published online: 27 May 2021

https://doi.org/10.5802/crmath.171

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569 **2021**, 359, n° 4, p. 409-414 https://doi.org/10.5802/crmath.171

Linear dependence of quasi-periods over the rationals

K. Senthil Kumar^a

^a National Institute of Science Education and Research, HBNI, P.O.Jatni, Khurda, Odisha-752 050. India

E-mail: senthil@niser.ac.in

Abstract. In this note we shall show that a lattice $\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ in \mathbb{C} has \mathbb{Q} -linearly dependent quasi-periods if and only if ω_2/ω_1 is equivalent to a zero of the Eisenstein series E_2 under the action of $\mathrm{SL}_2(\mathbb{Z})$ on the upper half plane of \mathbb{C} .

2020 Mathematics Subject Classification. 11J72, 11J89.

Manuscript received 23rd March 2020, revised 7th August 2020, accepted 17th December 2020.

1. Introduction

ISSN (electronic): 1778-3569

Let $\mathcal{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\omega_2/\omega_1 \in \mathbb{H}$, the upper half plane of \mathbb{C} . Let $\sigma(z;\omega_1,\omega_2)$ and $\zeta(z;\omega_1,\omega_2)$ respectively be the Weierstrass sigma and zeta functions associated to \mathcal{L} . Let g_2 and g_3 be the invariants of \mathcal{L} . The numbers $\eta_1(\mathcal{L}) = \eta(\omega_1) = 2\zeta(\omega_1/2;\omega_1,\omega_2)$, $\eta_2(\mathcal{L}) = \eta(\omega_2) = 2\zeta(\omega_2/2;\omega_1,\omega_2)$ are called *the quasi-periods* associated to \mathcal{L} . When \mathcal{L} is clear from the context, we simply write η_1,η_2 instead of $\eta_1(\mathcal{L})$ and $\eta_2(\mathcal{L})$ respectively. One of the long standing open problem in transcendental number theory is to find the dimension of the vector space $V_{\mathcal{L}}$ generated by

$$1, \omega_1, \omega_2, \eta_1, \eta_2, \pi \tag{1}$$

over \mathbb{Q} , the algebraic closure of \mathbb{Q} . Starting from the work of Siegel [10], Schneider [9], Baker [1], Coates [3,4] and finally by Masser [8], it is now known that for a lattice \mathcal{L} with algebraic invariants g_2, g_3 , the vector space $V_{\mathcal{L}}$ has dimension 4 in the CM case and 6 in the non-CM case. This is because in the CM case, there are two linear relations among the numbers in (1). The first one is

$$\tau \omega_1 - \omega_2 = 0$$

where $\tau = \omega_2/\omega_1 \in \overline{\mathbb{Q}}$ and the other one is given by

$$C\eta_1 - \tau\eta_2 - \kappa\omega_2 = 0, (2)$$

where C is the constant term of the minimal polynomial of τ over \mathbb{Q} and $\kappa \in \mathbb{Q}(\tau, g_2, g_3)$ (see [8, Lemma 3.1] or [2, Theorem 8] for more details). Masser also proved that the number κ in (2)

vanishes if and only if τ is congruent to $i = \sqrt{-1}$ or $\rho = e^{2\pi i/3}$ under $SL_2(\mathbb{Z})$; and in that case, η_1 and η_2 are linearly dependent over $\mathbb{Q}(\tau)$.

Apart from lattices with algebraic invariants, there are two more cases for which we know the dimension of V_C . For example, if $\omega_1 = 1$ and $\omega_2 = i$ then by Siegel [10] at least one of the g_2, g_3 is not algebraic. And by (2), the quotient $\eta_2/\eta_1=-i$ in this case. (Note that we used (2) to find the ratio η_2/η_1 ; because, as we shall see later that, η_2/η_1 depends only on ω_2/ω_1 and not on g_2 , g_3 ; this ratio can also be obtained from (4) and (9) below by choosing an appropriate γ). Hence by the Legendre's relation [7, p. 241] the vector space $V_{\mathcal{L}}$ has dimension two. Similarly, if $\omega_1=1$ and $\omega_2 = \rho$ then in this case also at least one of the g_2, g_3 is not algebraic and by (2) we have $\eta_2/\eta_1 = \rho^{-1}$. Hence in this case also the vector space $V_{\mathcal{L}}$ has dimension two. Except for these cases the author is not aware of any other lattices \mathcal{L} for which the dimension of $V_{\mathcal{L}}$ is known. In [6] Heins shown that a pair of complex numbers (z_1, z_2) occur as quasi-periods of some lattice \mathcal{L} if and only if $|z_1|+|z_2|>0$. Thus there are lattices with \mathbb{Q} -linearly dependent quasi-periods, and therefore, for such lattices \mathcal{L} the vector space $V_{\mathcal{L}}$ has dimension at most five. Unfortunately, Heins method does not allow us to determine the lattices with Q-linearly dependent quasi-periods. The purpose of this note is to classify all such lattices. For $\tau \in \mathbb{H}$, the generalised Eisenstein series of weight 2 is defined by

$$G_2(\tau) = \sum_{c} \sum_{d} (c\tau + d)^{-2}$$
 (3)

where the sum is over all integers c and d with |c| + |d| > 0; while the *normalised Eisenstein series* of weight 2 is defined by

$$E_2(\tau) = 3G_2(\tau)/\pi^2 = 1 - 24\sum_{n=1}^{\infty} \sigma_1(n)q^n$$
 (4)

where $\sigma_1(n)$ is the sum of all positive divisors of n, and $q = e^{2\pi i \tau}$. Our main result is the following.

Main Theorem. Let $\mathcal{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H}$. Then η_1 and η_2 are \mathbb{Q} -linearly dependent if and only if τ is congruent to a zero of $E_2(z)$ under $\mathrm{SL}_2(\mathbb{Z})$.

The following corollary is immediate.

Corollary 1. Let $\mathcal{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H}$ is equivalent to a zero of $E_2(z)$ under $\mathrm{SL}_2(\mathbb{Z})$. Then $V_{\mathcal{L}}$ has dimension at most 4 in the CM case and at most five in the non-CM case.

We shall prove the Main Theorem in the next section. The proof relies on the formula expressing the quasi-periods in-terms of G_2 (see Lemma 3) and the transformation formula of E_2 given by

$$E_2(\gamma,\tau) = (c\tau + d)^2 E_2(\tau) + \frac{6c}{\pi i}(c\tau + d)$$
 (5)

where $\tau \in \mathbb{H}$ and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$.

2. Quasi-periods and Laurent's expansions

Let $\sigma(z;\tau) = \sigma(z;1,\tau)$ and $\zeta(z;\tau) = \zeta(z;1,\tau)$ respectively be the Weierstrass sigma and zeta functions associated to the lattice $\mathcal{L}_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ with $\tau \in \mathbb{H}$. These two functions are connected by the relation $\zeta(z;\tau) = \frac{\sigma'(z;\tau)}{\sigma(z;\tau)}$ For $\omega \in \mathcal{L}_{\tau} \setminus \{0\}$, we write

$$\frac{1}{z-\omega} = -\frac{1}{\omega} - \frac{z}{\omega^2} - \frac{z^2}{\omega^3} - \frac{z^3}{\omega^4} - \cdots$$

for z near the origin. Thus, we have

$$\frac{1}{z-\omega} + \frac{1}{\omega} + \frac{z}{\omega^2} = -\frac{z^2}{\omega^3} - \frac{z^3}{\omega^4} - \cdots$$

Now summing over all non-zero periods of \mathcal{L}_{τ} and adding the term 1/z, we obtain

$$\zeta(z;\tau) = \frac{1}{z} - \sum_{k=2}^{\infty} G_{2k} z^{2k-1}$$
 (6)

where $G_{2k} = G_{2k}(\tau) = \sum_{\omega \in \mathcal{L}_{\tau} \setminus \{0\}} \omega^{-2k}$ for $k \ge 2$ (the coefficients of even powers of z in (6) are zero, since $\zeta(z;\tau)$ is an odd function).

The next lemma gives a connection between quasi-periods and the values of generalized Eisenstein series G_2 .

Lemma 2. Let η_1 be the quasi-period associated to the period 1 of the lattice $\mathcal{L}_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ with $\tau \in \mathbb{H}$. Then $\eta_1 = G_2(\tau)$.

Proof. We follow the strategy as given in [7, Chapter 18]. Accordingly, we express the Laurent's expansion of $\zeta(z;\tau)$ near the origin into two different ways and then comparing the corresponding coefficients we obtain the required representation for η_1 . The first one is given by (6). For obtaining the second representation, let $q_z = e^{2\pi i z}$. Consider the function

$$\phi_1(z) = (2\pi i)^{-1} \left(q_z - 1 \right) \prod_{n=1}^{\infty} \frac{\left(1 - q_{z+n\tau} \right) \left(1 - q_{n\tau-z} \right)}{\left(1 - q_{n\tau} \right)^2} \,. \tag{7}$$

Since $\tau \in \mathbb{H}$, we have $|q_{n\tau}| < 1/2^n$ for large values of n, and hence, for such values

$$\left| \frac{q_{n\tau}}{(1 - q_{n\tau})^2} \right| < \frac{1}{(2^n - 1)^2} \,.$$

It follows that the series

$$\sum_{n=1}^{\infty} \left(\frac{\left(1 - q_{z+n\tau} \right) \left(1 - q_{n\tau-z} \right)}{\left(1 - q_{n\tau} \right)^2} - 1 \right) \tag{8}$$

converges absolutely and uniformly on compact subsets of \mathbb{C} . Thus, the function ϕ_1 is entire. Moreover, it satisfying the following transformation formulas (see [7, p. 247] for more details):

$$\phi_1(z+1) = \phi_1(z)$$
 and $\phi_1(z+\tau) = -\frac{1}{q_z}\phi_1(z)$.

On the other hand, the entire function

$$\phi_2(z) = e^{-\frac{1}{2}\eta_1 z^2} q_z^{1/2} \sigma(z;\tau)$$

also satisfies

$$\phi_2(z+1) = \phi_2(z)$$
 and $\phi_2(z+\tau) = -\frac{1}{q_z}\phi_2(z)$.

Therefore, the quotient $\phi_1(z)/\phi_2(z)$ is elliptic. The product in (7) shows that both ϕ_1 and ϕ_2 have a simple zero at each point of $\mathbb{Z} + \mathbb{Z}\tau$ and no other zeros. Hence $\phi_1(z)/\phi_2(z)$ must be constant. Taking limit $z \to 0$ we see that the constant is 1, and therefore $\phi_1(z) = \phi_2(z)$. We thus have

$$\sigma(z;\tau) = (2\pi i)^{-1} e^{\frac{1}{2}\eta_1 z^2} \left(q_z^{1/2} - q_z^{-1/2}\right) \prod_{n=1}^{\infty} \frac{\left(1 - q_{z+n\tau}\right) \left(1 - q_{n\tau-z}\right)}{\left(1 - q_{n\tau}\right)^2} \,.$$

Since the series in (8) converges absolutely and uniformly on compact subsets of \mathbb{C} , taking logarithmic derivative term by term on the right side of the above equation we obtain

$$\zeta(z;\tau) = \eta_1 z + \pi i \left(\frac{q_z+1}{q_z-1}\right) + 2\pi i \sum_{n=1}^{\infty} \left(\frac{q_{n\tau-z}}{1-q_{n\tau-z}} - \frac{q_{z+n\tau}}{1-q_{z+n\tau}}\right).$$

If we restrict the values of z such that $|q_{\tau}| < |q_z| < |q_{\tau}^{-1}|$, then we have

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{q_{n\tau-z}}{1 - q_{n\tau-z}} - \frac{q_{n\tau+z}}{1 - q_{n\tau+z}} \right) &= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(q_{n\tau-z}^m - q_{n\tau+z}^m \right) \\ &= \sum_{m=1}^{\infty} \left(q_z^{-m} - q_z^m \right) \left(\sum_{n=1}^{\infty} q_{n\tau}^m \right) \\ &= \sum_{m=1}^{\infty} \left(\frac{q_{m\tau}}{1 - q_{m\tau}} \right) \left(q_z^{-m} - q_z^m \right). \end{split}$$

Near the origin, we have

$$i\left(\frac{q_z+1}{q_z-1}\right) = \cot \pi z = \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2k} B_{2k}(\pi z)^{2k-1}}{(2k)!},$$

and

$$q_z^{-m} - q_z^m = -2i \sum_{k=0}^{\infty} (-1)^k \frac{(2\pi mz)^{2k+1}}{(2k+1)!}$$

where B_r is the r^{th} Bernoulli's number. Thus we have,

$$\zeta(z;\tau) = \eta_1 z + \pi \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2k} B_{2k}(\pi z)^{2k-1}}{(2k)!} - 4\pi \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} (-1)^k \left(\frac{q_{m\tau}}{1-q_{m\tau}} \right) \frac{(2\pi m z)^{2k+1}}{(2k+1)!}.$$

Now comparing the coefficients of z on the above equation with that of (6) we get

$$\eta_{1} = \frac{\pi^{2} 2^{2} B_{2}}{2} - 8\pi^{2} \sum_{m=1}^{\infty} \frac{m q_{m\tau}}{1 - q_{m\tau}} \\
= \frac{\pi^{2}}{3} \left(1 - 24 \sum_{m=1}^{\infty} \frac{m q_{m\tau}}{1 - q_{m\tau}} \right) \\
= \frac{\pi^{2}}{3} \left(1 - 24 \sum_{m=1}^{\infty} \sum_{\ell=1}^{\infty} m q_{\tau}^{\ell m} \right) \\
= \frac{\pi^{2}}{3} \left(1 - 24 \sum_{r=1}^{\infty} \sigma_{1}(n) q^{r} \right) = G_{2}(\tau),$$

by (4). This completes the proof of the Lemma 2.

There is a slight change in the notations used in the above lemma from that of [7, Chapter 18]. In [7], lattices in $\mathbb C$ are written in the form $\mathbb Z\omega_1+\mathbb Z\omega_2$ with the assumption $\omega_1/\omega_2\in\mathbb H$. This implies that the quasi-period associated to the period 1 of the lattice $\omega_2^{-1}(\mathbb Z\omega_1+\mathbb Z\omega_2)$ is denoted by η_2 in [7, Chapter 18]. Whereas, in our notation lattices in $\mathbb C$ are written in the form $\mathbb Z\omega_1+\mathbb Z\omega_2$ with the assumption $\omega_2/\omega_1\in\mathbb H$. This implies that the quasi-period associated to the period 1 of the lattice $\omega_1^{-1}(\mathbb Z\omega_1+\mathbb Z\omega_2)$ is denoted by η_1 .

The following lemma is the homogeneous version of Lemma 2.

Lemma 3. Let $\mathcal{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H}$. We have

$$\eta_1 = \frac{G_2(\tau)}{\omega_1} \quad \text{and} \quad \eta_2 = \frac{\tau G_2(\tau) - 2\pi i}{\omega_1}.$$
(9)

Proof. By the Legendre's relation

$$\omega_2 \eta_1(\mathcal{L}) - \omega_1 \eta_2(\mathcal{L}) = 2\pi i$$

hence it is sufficient to show that $\eta_1(\mathcal{L}) = \frac{G_2(\tau)}{\omega_1}$. Since $\eta_1(\mathcal{L})$ is homogeneous of degree -1, it is enough to prove this lemma when $\mathcal{L} = \mathbb{Z} + \mathbb{Z}\tau$ with $\tau \in \mathbb{H}$. We are thus reduced to show that for $\mathcal{L} = \mathbb{Z} + \mathbb{Z}\tau$ with $\tau \in \mathbb{H}$, we have $\eta_1(\mathcal{L}) = G_2(\tau)$; but, this is a consequence of Lemma 2. This completes the proof.

3. Proof of the Main Theorem

Let $\mathcal{L} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\tau = \frac{\omega_2}{\omega_1} \in \mathbb{H}$. By Lemma 3, the quotient $\eta_2(\mathcal{L})/\eta_1(\mathcal{L})$ is a function of τ and we denote it by $F(\tau)$ (this function was first introduced and studied by Heins [5]). Hence by (4) and (9) we have

$$F(\tau) = \frac{\tau E_2(\tau) + 6/\pi i}{E_2(\tau)} \,. \tag{10}$$

It follows from this identity that $\eta_1(\mathcal{L})$ and $\eta_2(\mathcal{L})$ are \mathbb{Q} -linearly dependent if and only if $F(\tau)$ is a rational number (it is convenient here to assume ∞ is a rational). Hence we are reduced to show that $F(\tau)$ is a rational number if and only if there exists a zero τ' of $E_2(z)$ and a matrix $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\tau = \gamma.\tau'$.

If $F(\tau) = \infty$, then we have $E_2(\tau) = 0$. If $F(\tau) = 0$, then we have $\tau E_2(\tau) + 6/\pi i = 0$; and hence $E_2\left(\frac{-1}{\tau}\right) = \tau^2 E_2(\tau) + 6\tau/\pi i = 0$. Suppose that $F(\tau)$ is a rational number which is neither 0 nor ∞ , say q/p, with (p,q) = 1. Then, by (10) we have

$$\left(-p\tau + q\right)E_2(\tau) = \frac{6p}{\pi i}.\tag{11}$$

Choose r, s ∈ \mathbb{Z} such that pr - qs = -1. Then the matrix

$$\gamma = \begin{pmatrix} s & -r \\ -p & q \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

We set $\tau' = \gamma . \tau$. Then by (5),

$$E_2(\tau') = (-p\tau + q)\left((-p\tau + q)E_2(\tau) - \frac{6p}{\pi i}\right),$$

which is equal to zero by (11).

Conversely, let τ' be a zero of $E_2(z)$, and let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $\mathrm{SL}_2(\mathbb{Z})$. We shall show that $F(\gamma,\tau')$ is a rational number. If c=0, then $\gamma=T^b$ where $T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Thus $E_2(\gamma,\tau')=0$, and hence $F(\gamma,\tau')=\infty$. If a=0, then $\gamma=\begin{pmatrix} 0 & -1 \\ 1 & d \end{pmatrix}$, and hence $\gamma,\tau'=\frac{-1}{\tau'+d}$. It follows from (5) that $F(\gamma,\tau')=0$. Now let $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $\mathrm{SL}_2(\mathbb{Z})$ such that $ac\neq 0$. Then, by (5) we have

$$0 = E_2(\tau') = E_2(\gamma^{-1}(\gamma.\tau')) = (-c(\gamma.\tau') + a)^2 E_2(\gamma.\tau') - \frac{6c}{\pi i} (-c(\gamma.\tau') + a).$$

Since τ' is not a rational number we must have

$$(\gamma.\tau'-a/c)E_2(\gamma.\tau')+\frac{6}{\pi i}=0.$$

Again by (5), we have $E_2(\gamma.\tau') \neq 0$, from this we conclude that $F(\gamma.\tau') = a/c$ is a rational number, and this completes the proof of the Main Theorem.

4. Concluding remarks

It is expected that the zeros of E_2 are transcendental; but so far none of them is known to be transcendental. One may ask whether transcendence of ω_2/ω_1 is a necessary condition for $\mathbb{Z}\omega_1+\mathbb{Z}\omega_2$ to have $\overline{\mathbb{Q}}$ -linearly dependent quasi-periods? The answer is no. For example, the quasi-periods associated to $\mathbb{Z}+\mathbb{Z}i$ are $\overline{\mathbb{Q}}$ -linearly dependent. It is interesting to classify all lattices with $\overline{\mathbb{Q}}$ -linearly dependent quasi-periods.

Acknowledgments

I would like to thank the referee for the careful reading and helpful suggestions on the earlier version of the manuscript.

References

- [1] A. Baker, "On the quasi-periods of the Weierstrass ζ-function", *Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl.* **1969** (1970), p. 145-157.
- [2] W. D. Brownawell, K. K. Kubota, "The algebraic independence of Weierstrass functions and some related numbers", *Acta Arith.* **33** (1977), p. 111-149.
- [3] J. Coates, "Linear forms in the periods of the exponential and elliptic functions", Invent. Math. 12 (1971), p. 290-299.
- [4] ———, "The transcendence of linear forms in $\omega_1, \omega_2, \eta_1, \eta_2, 2\pi i$,", Am. J. Math. 93 (1971), p. 385-397.
- [5] M. H. Heins, "On the pseudo-periods of the Weierstrass zeta-functions", SIAM J. Numer. Anal. 3 (1966), p. 266-268.
- [6] —, "On the pseudo-periods of the Weierstrass zeta functions. II.", Nagoya Math. J. 30 (1967), p. 113-119.
- [7] S. Lang, Elliptic functions, second ed., Graduate Texts in Mathematics, vol. 112, Springer, 1987.
- [8] D. Masser, Elliptic functions and transcendence, Lecture Notes in Mathematics, vol. 437, Springer, 1975.
- [9] T. Schneider, Einführung in die transzendenten Zahlen, Grundlehren der Mathematischen Wissenschaften, vol. 81, Springer, 1957.
- [10] C. L. Siegel, "Über die Perioden elliptischer Funktionen", J. Reine Angew. Math. 167 (1932), p. 62-69.