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Abstract. In this note we shall show that a lattice Zω1 +Zω2 in C has Q-linearly dependent quasi-periods if
and only if ω2/ω1 is equivalent to a zero of the Eisenstein series E2 under the action of SL2(Z) on the upper
half plane of C.
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1. Introduction

Let L = Zω1 +Zω2 be a lattice in C with ω2/ω1 ∈ H, the upper half plane of C. Let σ(z;ω1,ω2)
and ζ(z;ω1,ω2) respectively be the Weierstrass sigma and zeta functions associated to L. Let
g2 and g3 be the invariants of L. The numbers η1(L) = η(ω1) = 2ζ(ω1/2;ω1,ω2), η2(L) = η(ω2)
= 2ζ(ω2/2;ω1,ω2) are called the quasi-periods associated to L. When L is clear from the context,
we simply write η1,η2 instead of η1(L) and η2(L) respectively. One of the long standing open
problem in transcendental number theory is to find the dimension of the vector space VL
generated by

1,ω1,ω2, η1, η2, π (1)

over Q, the algebraic closure of Q. Starting from the work of Siegel [10], Schneider [9], Baker [1],
Coates [3,4] and finally by Masser [8], it is now known that for a lattice L with algebraic invariants
g2, g3, the vector space VL has dimension 4 in the CM case and 6 in the non-CM case. This is
because in the CM case, there are two linear relations among the numbers in (1). The first one is

τω1 −ω2 = 0

where τ=ω2/ω1 ∈Q and the other one is given by

Cη1 −τη2 −κω2 = 0, (2)

where C is the constant term of the minimal polynomial of τ over Q and κ ∈ Q(τ, g2, g3) (see [8,
Lemma 3.1] or [2, Theorem 8] for more details). Masser also proved that the number κ in (2)

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.171
mailto:senthil@niser.ac.in
https://comptes-rendus.academie-sciences.fr/mathematique/


410 K. Senthil Kumar

vanishes if and only if τ is congruent to i =p−1 or ρ = e2πi /3 under SL2(Z); and in that case, η1

and η2 are linearly dependent overQ(τ).
Apart from lattices with algebraic invariants, there are two more cases for which we know the

dimension of VL. For example, if ω1 = 1 and ω2 = i then by Siegel [10] at least one of the g2, g3 is
not algebraic. And by (2), the quotient η2/η1 = −i in this case. (Note that we used (2) to find the
ratio η2/η1; because, as we shall see later that, η2/η1 depends only on ω2/ω1 and not on g2, g3;
this ratio can also be obtained from (4) and (9) below by choosing an appropriate γ). Hence by
the Legendre’s relation [7, p. 241] the vector space VL has dimension two. Similarly, if ω1 = 1
and ω2 = ρ then in this case also at least one of the g2, g3 is not algebraic and by (2) we have
η2/η1 = ρ−1. Hence in this case also the vector space VL has dimension two. Except for these
cases the author is not aware of any other lattices L for which the dimension of VL is known.
In [6] Heins shown that a pair of complex numbers (z1, z2) occur as quasi-periods of some lattice
L if and only if |z1|+|z2| > 0. Thus there are lattices withQ-linearly dependent quasi-periods, and
therefore, for such latticesL the vector space VL has dimension at most five. Unfortunately, Heins
method does not allow us to determine the lattices withQ-linearly dependent quasi-periods. The
purpose of this note is to classify all such lattices. For τ ∈ H, the generalised Eisenstein series of
weight 2 is defined by

G2(τ) =∑
c

∑
d

(cτ+d)−2 (3)

where the sum is over all integers c and d with |c|+ |d | > 0; while the normalised Eisenstein series
of weight 2 is defined by

E2(τ) = 3G2(τ)/π2 = 1−24
∞∑

n=1
σ1(n)qn (4)

whereσ1(n) is the sum of all positive divisors of n, and q = e2πiτ. Our main result is the following.

Main Theorem. Let L=Zω1+Zω2 be a lattice inCwith τ= ω2
ω1

∈H. Then η1 and η2 areQ-linearly
dependent if and only if τ is congruent to a zero of E2(z) under SL2(Z).

The following corollary is immediate.

Corollary 1. Let L = Zω1 +Zω2 be a lattice in C with τ = ω2
ω1

∈ H is equivalent to a zero of E2(z)
under SL2(Z). Then VL has dimension at most 4 in the CM case and at most five in the non-CM
case.

We shall prove the Main Theorem in the next section. The proof relies on the formula express-
ing the quasi-periods in-terms of G2 (see Lemma 3) and the transformation formula of E2 given by

E2(γ.τ) = (cτ+d)2E2(τ)+ 6c

πi
(cτ+d) (5)

where τ ∈H and γ= (
a b
c d

) ∈ SL2(Z).

2. Quasi-periods and Laurent’s expansions

Let σ(z;τ) = σ(z;1,τ) and ζ(z;τ) = ζ(z;1,τ) respectively be the Weierstrass sigma and zeta
functions associated to the lattice Lτ = Z+Zτ with τ ∈ H. These two functions are connected
by the relation ζ(z;τ) = σ′(z;τ)

σ(z;τ) .
For ω ∈Lτ \ {0}, we write

1

z −ω =− 1

ω
− z

ω2 − z2

ω3 − z3

ω4 − ·· ·
for z near the origin. Thus, we have

1

z −ω + 1

ω
+ z

ω2 =− z2

ω3 − z3

ω4 − ·· · .
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Now summing over all non-zero periods of Lτ and adding the term 1/z, we obtain

ζ(z;τ) = 1

z
−

∞∑
k=2

G2k z2k−1 (6)

where G2k = G2k (τ) =∑
ω∈Lτ \{0}ω

−2k for k ≥ 2 (the coefficients of even powers of z in (6) are zero,
since ζ(z;τ) is an odd function).

The next lemma gives a connection between quasi-periods and the values of generalized
Eisenstein series G2.

Lemma 2. Let η1 be the quasi-period associated to the period 1 of the lattice Lτ = Z+Zτ with
τ ∈H. Then η1 =G2(τ).

Proof. We follow the strategy as given in [7, Chapter 18]. Accordingly, we express the Laurent’s
expansion of ζ(z;τ) near the origin into two different ways and then comparing the correspond-
ing coefficients we obtain the required representation for η1. The first one is given by (6). For
obtaining the second representation, let qz = e2πi z . Consider the function

φ1(z) = (2πi )−1 (
qz −1

) ∞∏
n=1

(
1−qz+nτ

)(
1−qnτ−z

)(
1−qnτ

)2 . (7)

Since τ ∈H, we have |qnτ| < 1/2n for large values of n, and hence, for such values∣∣∣∣ qnτ

(1−qnτ)2

∣∣∣∣< 1

(2n −1)2 .

It follows that the series
∞∑

n=1

((
1−qz+nτ

)(
1−qnτ−z

)(
1−qnτ

)2 −1

)
(8)

converges absolutely and uniformly on compact subsets of C. Thus, the function φ1 is entire.
Moreover, it satisfying the following transformation formulas (see [7, p. 247] for more details):

φ1(z +1) =φ1(z) and φ1(z +τ) =− 1

qz
φ1(z).

On the other hand, the entire function

φ2(z) = e−
1
2 η1z2

q1/2
z σ(z;τ)

also satisfies

φ2(z +1) =φ2(z) and φ2(z +τ) =− 1

qz
φ2(z).

Therefore, the quotient φ1(z)/φ2(z) is elliptic. The product in (7) shows that both φ1 and
φ2 have a simple zero at each point of Z+Zτ and no other zeros. Hence φ1(z)/φ2(z) must be
constant. Taking limit z → 0 we see that the constant is 1, and therefore φ1(z) = φ2(z). We thus
have

σ(z;τ) = (2πi )−1e
1
2 η1z2 (

q1/2
z −q−1/2

z

) ∞∏
n=1

(
1−qz+nτ

)(
1−qnτ−z

)(
1−qnτ

)2 .

Since the series in (8) converges absolutely and uniformly on compact subsets of C, taking
logarithmic derivative term by term on the right side of the above equation we obtain

ζ(z;τ) = η1z +πi

(
qz +1

qz −1

)
+2πi

∞∑
n=1

(
qnτ−z

1−qnτ−z
− qz+nτ

1−qz+nτ

)
.
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If we restrict the values of z such that |qτ| < |qz | < |q−1
τ |, then we have

∞∑
n=1

(
qnτ−z

1−qnτ−z
− qnτ+z

1−qnτ+z

)
=

∞∑
n=1

∞∑
m=1

(
qm

nτ−z −qm
nτ+z

)
=

∞∑
m=1

(
q−m

z −qm
z

)( ∞∑
n=1

qm
nτ

)
=

∞∑
m=1

(
qmτ

1−qmτ

)(
q−m

z −qm
z

)
.

Near the origin, we have

i

(
qz +1

qz −1

)
= cotπz =

∞∑
k=0

(−1)k 22k B2k (πz)2k−1

(2k)!
,

and

q−m
z −qm

z =−2i
∞∑

k=0
(−1)k (2πmz)2k+1

(2k +1)!

where Br is the r th Bernoulli’s number. Thus we have,

ζ(z;τ) = η1z +π
∞∑

k=0

(−1)k 22k B2k (πz)2k−1

(2k)!
−4π

∞∑
m=1

∞∑
k=0

(−1)k
(

qmτ

1−qmτ

)
(2πmz)2k+1

(2k +1)!
.

Now comparing the coefficients of z on the above equation with that of (6) we get

η1 = π222B2

2
−8π2

∞∑
m=1

mqmτ

1−qmτ

= π2

3

(
1−24

∞∑
m=1

mqmτ

1−qmτ

)
= π2

3

(
1−24

∞∑
m=1

∞∑
`=1

mq`m
τ

)

= π2

3

(
1−24

∞∑
n=1

σ1(n)qn
)
= G2(τ),

by (4). This completes the proof of the Lemma 2. �

There is a slight change in the notations used in the above lemma from that of [7, Chapter 18].
In [7], lattices inC are written in the formZω1+Zω2 with the assumptionω1/ω2 ∈H. This implies
that the quasi-period associated to the period 1 of the lattice ω−1

2 (Zω1 +Zω2) is denoted by η2

in [7, Chapter 18]. Whereas, in our notation lattices in C are written in the form Zω1 +Zω2 with
the assumption ω2/ω1 ∈ H. This implies that the quasi-period associated to the period 1 of the
lattice ω−1

1 (Zω1 +Zω2) is denoted by η1.
The following lemma is the homogeneous version of Lemma 2.

Lemma 3. Let L=Zω1 +Zω2 be a lattice in Cwith τ= ω2
ω1

∈H. We have

η1 = G2(τ)

ω1
and η2 = τG2(τ)−2πi

ω1
. (9)

Proof. By the Legendre’s relation

ω2η1(L)−ω1η2(L) = 2πi ,

hence it is sufficient to show that η1(L) = G2(τ)
ω1

. Since η1(L) is homogeneous of degree −1, it
is enough to prove this lemma when L = Z+Zτ with τ ∈ H. We are thus reduced to show that
for L = Z+Zτ with τ ∈ H, we have η1(L) = G2(τ); but, this is a consequence of Lemma 2. This
completes the proof. �
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3. Proof of the Main Theorem

Let L = Zω1 +Zω2 be a lattice in C with τ = ω2
ω1

∈ H. By Lemma 3, the quotient η2(L)/η1(L)
is a function of τ and we denote it by F (τ) (this function was first introduced and studied by
Heins [5]). Hence by (4) and (9) we have

F (τ) = τE2(τ)+6/πi

E2(τ)
. (10)

It follows from this identity that η1(L) and η2(L) areQ-linearly dependent if and only if F (τ) is
a rational number (it is convenient here to assume ∞ is a rational). Hence we are reduced to show
that F (τ) is a rational number if and only if there exists a zero τ′ of E2(z) and a matrix γ ∈ SL2(Z)
such that τ= γ.τ′.

If F (τ) = ∞, then we have E2(τ) = 0. If F (τ) = 0, then we have τE2(τ)+ 6/πi = 0; and hence
E2

(−1
τ

) = τ2E2(τ)+6τ/πi = 0. Suppose that F (τ) is a rational number which is neither 0 nor ∞,
say q/p, with (p, q) = 1. Then, by (10) we have(−pτ+q

)
E2(τ) = 6p

πi
. (11)

Choose r, s ∈Z such that pr −qs =−1. Then the matrix

γ=
(

s −r
−p q

)
∈ SL2(Z).

We set τ′ = γ.τ. Then by (5),

E2(τ′) = (−pτ+q)

(
(−pτ+q)E2(τ)− 6p

πi

)
,

which is equal to zero by (11).
Conversely, let τ′ be a zero of E2(z), and let γ = ( a b

c d ) be an element of SL2(Z). We shall show
that F (γ.τ′) is a rational number. If c = 0, thenγ= T b where T = ( 1 1

0 1 ). Thus E2(γ.τ′) = 0, and hence
F (γ.τ′) = ∞. If a = 0, then γ = ( 0 −1

1 d ), and hence γ.τ′ = −1
τ′+d . It follows from (5) that F (γ.τ′) = 0.

Now let γ= ( a b
c d ) be an element of SL2(Z) such that ac 6= 0. Then, by (5) we have

0 = E2(τ′) = E2
(
γ−1(γ.τ′)

)= (−c(γ.τ′)+a
)2 E2(γ.τ′)− 6c

πi

(−c(γ.τ′)+a
)

.

Since τ′ is not a rational number we must have(
γ.τ′−a/c

)
E2(γ.τ′)+ 6

πi
= 0.

Again by (5), we have E2(γ.τ′) 6= 0, from this we conclude that F (γ.τ′) = a/c is a rational number,
and this completes the proof of the Main Theorem.

4. Concluding remarks

It is expected that the zeros of E2 are transcendental; but so far none of them is known to
be transcendental. One may ask whether transcendence of ω2/ω1 is a necessary condition for
Zω1+Zω2 to haveQ-linearly dependent quasi-periods? The answer is no. For example, the quasi-
periods associated to Z+Zi are Q-linearly dependent. It is interesting to classify all lattices with
Q-linearly dependent quasi-periods.
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