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Abstract. In this note we shall show that a lattice Zwj + Zw> in C has Q-linearly dependent quasi-periods if
and only if wy/w; is equivalent to a zero of the Eisenstein series Eo under the action of SL»(Z) on the upper
half plane of C.
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1. Introduction

Let £ = Zw, + Zw> be a lattice in C with w2/w; € H, the upper half plane of C. Let 0(z;w1,w)
and ({(z;w1,w>) respectively be the Weierstrass sigma and zeta functions associated to L. Let
g2 and gz be the invariants of £. The numbers 11 (£) = n(w1) = 2{(w1/2;w1,w2), N2(L) = N(w>)
=2{(w2/2;w1,w>) are called the quasi-periods associated to L. When L is clear from the context,
we simply write 11,7, instead of 11 (£) and 71, (£) respectively. One of the long standing open
problem in transcendental number theory is to find the dimension of the vector space V,
generated by

L, w1, w2, N1, M2, T 1)
over Q, the algebraic closure of Q. Starting from the work of Siegel [10], Schneider [9], Baker [1],
Coates [3,4] and finally by Masser [8], it is now known that for a lattice £ with algebraic invariants
g2, 83, the vector space V, has dimension 4 in the CM case and 6 in the non-CM case. This is
because in the CM case, there are two linear relations among the numbers in (1). The first one is

Tw];—wy=0
where 7 = w,/w; € Q and the other one is given by
Cny—112—Kkwy =0, 2)

where C is the constant term of the minimal polynomial of 7 over Q@ and x € Q(7, g2, g3) (see [8,
Lemma 3.1] or [2, Theorem 8] for more details). Masser also proved that the number « in (2)
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vanishes if and only if 7 is congruent to i = v/—1 or p = €?™/3 under SL,(Z); and in that case, 1;
and 7, are linearly dependent over Q(7).

Apart from lattices with algebraic invariants, there are two more cases for which we know the
dimension of V. For example, if w; = 1 and w, = i then by Siegel [10] at least one of the g, g3 is
not algebraic. And by (2), the quotient n,/1; = —i in this case. (Note that we used (2) to find the
ratio 12/11; because, as we shall see later that, ,/1; depends only on w»/w, and not on gy, gs;
this ratio can also be obtained from (4) and (9) below by choosing an appropriate y). Hence by
the Legendre’s relation [7, p. 241] the vector space V, has dimension two. Similarly, if w; =1
and w; = p then in this case also at least one of the g, g3 is not algebraic and by (2) we have
n2/m1 = p~L. Hence in this case also the vector space V, has dimension two. Except for these
cases the author is not aware of any other lattices £ for which the dimension of V. is known.
In [6] Heins shown that a pair of complex numbers (z;, z2) occur as quasi-periods of some lattice
Lifand onlyif|z;|+|z2| > 0. Thus there are lattices with Q-linearly dependent quasi-periods, and
therefore, for such lattices £ the vector space V; has dimension at most five. Unfortunately, Heins
method does not allow us to determine the lattices with Q-linearly dependent quasi-periods. The
purpose of this note is to classify all such lattices. For 7 € H, the generalised Eisenstein series of
weight 2 is defined by

G =Y Y (ct+ad)? 3)
c d

where the sum is over all integers ¢ and d with |c| + |d| > 0; while the normalised Eisenstein series
of weight 2 is defined by

o0
Ex(1) =3G()/n*=1-24) o1(m)q" 4)
n=1
where o1 (n) is the sum of all positive divisors of n, and g = €2™T _Our main result is the following.

Main Theorem. LetL =Zw;+Zwy bealatticeinC witht = z—f €H. Thenn, andn, areQ-linearly
dependent if and only if T is congruent to a zero of E>(z) under SLy(Z).

The following corollary is immediate.

Corollary 1. Let L = Zw, + Zw, be a lattice in C with T = z—f € H is equivalent to a zero of E»(z)
under SLp(Z). Then V has dimension at most 4 in the CM case and at most five in the non-CM
case.

We shall prove the Main Theorem in the next section. The proof relies on the formula express-
ing the quasi-periods in-terms of G, (see Lemma 3) and the transformation formula of E, given by

Eo(y.1) = (cT + d)?Ex (1) + i—j (cT +d) (5)

where T € Hand y = (¢ 5) € SL,(2).

2. Quasi-periods and Laurent’s expansions

Let 0(z;7) = 0(z;1,7) and {(z;7) = {(z;1,7) respectively be the Weierstrass sigma and zeta
functions associated to the lattice £; = Z + Zt with 7 € H. These two functions are connected

by the relation {(z; 1) = %
For w € L; \ {0}, we write
1 1 z z? z8

Z—w w 0 w
for z near the origin. Thus, we have
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Now summing over all non-zero periods of £; and adding the term 1/z, we obtain
1 (o]
((zT)=~=Y Gp2?®*! 6)
2 k=2

where Gy = Gar(T) = Xpe s, \0) w2k for k = 2 (the coefficients of even powers of z in (6) are zero,
since {(z; 1) is an odd function).

The next lemma gives a connection between quasi-periods and the values of generalized
Eisenstein series G».

Lemma 2. Let 1, be the quasi-period associated to the period 1 of the lattice L; = Z + Zt with
T eH. Thenny = Go(1).

Proof. We follow the strategy as given in [7, Chapter 18]. Accordingly, we express the Laurent’s
expansion of {(z; ) near the origin into two different ways and then comparing the correspond-
ing coeflicients we obtain the required representation for ;. The first one is given by (6). For
obtaining the second representation, let g, = e"*?. Consider the function
z+nr) (1 - an—z)

5 .
(1= dns)
Since 7 € H, we have |g,;| < 1/2" for large values of n, and hence, for such values

< 1
@r-1%

00 1_
$1(2)=rd) " (q:-1) [] Sl (7)
n=1

‘ dnt
(1 - an)z

It follows that the series

i ((1—qz+m)(1“7m—z) _1) 8)

2
(1= gnr)
converges absolutely and uniformly on compact subsets of C. Thus, the function ¢; is entire.
Moreover, it satisfying the following transformation formulas (see [7, p. 247] for more details):

n=1

$1(z+1)=¢1(2) and ¢1(z+71) = —é(pl(z).
On the other hand, the entire function
$2(2) = e 2M% g1 20 (z;7)
also satisfies
$2(2+1) =a(2) and pa(z+71) = _i(PZ(Z)'

Therefore, the quotient ¢,(z)/¢2(z) is elliptic. The product in (7) shows that both ¢; and
¢, have a simple zero at each point of Z + Z7 and no other zeros. Hence ¢, (z)/¢2(z) must be
constant. Taking limit z — 0 we see that the constant is 1, and therefore ¢, (z) = ¢2(z). We thus
have

< (1- 1- -
o(z7) = mi) ez (gb/2— g;V2) ] (1= eene)( e )
n=1 (1 - qm)

Since the series in (8) converges absolutely and uniformly on compact subsets of C, taking

logarithmic derivative term by term on the right side of the above equation we obtain

q:+1
qz_l

)+27‘[i§( Ani-z  Yz+m

=i\l =Gnr—z  1—Gzins

((z;7) :mz+m'(
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If we restrict the values of z such that |g;| < |q.| < |g; 1|, then we have

o [ Gni-z Gnr+z m
Z - Z Z an—z_an+z)

i\l =Gni—z 1—Qnr+z n=1 m=1

mZ:(qz -q7 (Z qm)
8 () a).

1-gmr

Near the origin, we have

o (_1\ko2k 2k-1
i(q2+1):cotnz: > (=1)727 Bor(n2) ,
q:—1 =0 (2k)!
and
[es) 2k+1
m_om_ o v 2nmz)
4" ~4: = 21,;)( b 2k+1)!

where B; is the r'" Bernoulli’s number. Thus we have,
1 k22kB Tz 2k-1 oo 00 2Tmz 2k+1
=1 Zk( ) e Z Z(_l)k( qmr ) ( ) ]

{(z;7) = TIIZ+”Z

2K)! et 1= Gm:) (k+1)!
Now comparing the coefﬁcients of z on the above equation with that of (6) we get
- 22232 P i lnz%nr
m=1 qmz
_ Mqmr )
— e

2
Sl
(%i;g )

(e o]
=3 (1 24201(71)67 ) Ga(7),
by (4). This completes the proof of the Lemma 2. U

There is a slight change in the notations used in the above lemma from that of [7, Chapter 18].
In [7], lattices in C are written in the form Zw; + Zw, with the assumption w; /w, € H. This implies
that the quasi-period associated to the period 1 of the lattice w, L(Zwy + Zw,) is denoted by 1>
in [7, Chapter 18]. Whereas, in our notation lattices in C are written in the form Zw; + Zw, with
the assumption w,/w; € H. This implies that the quasi-period associated to the period 1 of the
lattice w} “1(Zw, + Zw,) is denoted by n.

The following lemma is the homogeneous version of Lemma 2.
Lemma3. LetL =Zw, +Zwy bea lattice in C witht = z—f € H. We have

Go (1) TGy (1) —2mi

d = 9
o and 12 o 9)

m=

Proof. By the Legendre’s relation
w21 (L) —win2(L) = 27,

hence it is sufficient to show that n;(£) = % Since 11 (£) is homogeneous of degree —1, it
is enough to prove this lemma when £ = Z + Zt with 7 € H. We are thus reduced to show that
for £ = Z + Zt with 1 € H, we have 1,(£) = G2(1); but, this is a consequence of Lemma 2. This
completes the proof. d
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3. Proof of the Main Theorem

Let £ = Zw; + Zw>, be a lattice in C with 7 = Z’Tf € H. By Lemma 3, the quotient 12(£)/n1(£)
is a function of 7 and we denote it by F(7) (this function was first introduced and studied by
Heins [5]). Hence by (4) and (9) we have

_ TE, (1) +6/mi
- E> (1)

It follows from this identity that 1, (£) and 12 (£) are Q-linearly dependent if and only if F(7) is
arational number (it is convenient here to assume oo is a rational). Hence we are reduced to show
that F(7) is a rational number if and only if there exists a zero 7’ of E»(z) and a matrix y € SL,(2)
such that T =y.7’.

If F(1) = oo, then we have E> (1) = 0. If F(t) = 0, then we have TE>(7) + 6/7ni = 0; and hence
E> (=) = 12E»(1) + 67/7i = 0. Suppose that F(7) is a rational number which is neither 0 nor oo,
say q/p, with (p, g) = 1. Then, by (10) we have

F(7) (10

6
(—pr+q)EZ(r)=n—’i’. (1)

Choose 1, s € Z such that pr — gs = —1. Then the matrix
s —-r
= € SLy(2).
Y (—p q ) ?
We set 7/ = y.7. Then by (5),
/ 6p
E@)=(pr+q|(-pT1+qE:(1) - el B

which is equal to zero by (11).

Conversely, let 7’ be a zero of E»(z), and let y = (¢ 2) be an element of SL,(Z). We shall show
that F(y.7') is arational number. If ¢ = 0, then y = T? where T = (3 D). Thus E»(y.7") = 0,and hence
F(y.r) =oo.1f a=0, then y = () }), and hence y.7' = ==L, It follows from (5) that F(y.7") = 0.

Now lety = (? Z) be an element of SL,(Z) such that ac # 0. Then, by (5) we have

6
0=E@)=E(y (1)) = (~cly.t) + a)zEg (y.r) - ﬂ—j (-cy.th +a).
Since 7’ is not a rational number we must have
6
(y1' —alc)Ex(y.7)+ = =0.
i

Again by (5), we have E,(y.1') # 0, from this we conclude that F(y.t') = a/c is a rational number,
and this completes the proof of the Main Theorem.

4. Concluding remarks

It is expected that the zeros of E, are transcendental; but so far none of them is known to
be transcendental. One may ask whether transcendence of w»/w; is a necessary condition for
Zw1 +Zw- to have Q-linearly dependent quasi-periods? The answer is no. For example, the quasi-
periods associated to Z + Zi are Q-linearly dependent. It is interesting to classify all lattices with
Q-linearly dependent quasi-periods.
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