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Abstract. We prove quantifier elimination for the theory of quasi-real closed fields with a compatible valua-
tion. This unifies the same known results for algebraically closed valued fields and real closed valued fields.

Résumé. Nous prouvons l’élimination des quantificateurs pour la théorie des corps quasi-réels clos munis
d’une valuation compatible. Cela reprend et unifie les mêmes résultats connus pour les corps algébriquement
clos et les corps réels clos.
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1. Introduction

Ordered fields and valued fields share several similar features, most notably via the notion of
(order-)compatible valuations (see e.g. [9, 10, 13] and below). In the present note we illustrate
this by subsuming the following major model theoretic results: the (first order) theories of
algebraically closed fields with a non-trivial valuation, respectively real closed fields with a
compatible non-trivial valuation, both admit quantifier elimination (cf. [11], respectively [3]).
We prove that the same applies if we consider the theory of the union of these two classes in a
common language, the one of quasi-ordered fields. Quasi-ordered fields were introduced in [7]
and provide a uniform axiomatisation of ordered and valued fields. We derive a notion of quasi-
real closed field, which subsumes the classes of algebraically closed fields and real closed fields.
Note that real closed fields were developed by Artin and Schreier in [1] as maximal ordered fields,
in analogy to the notion of algebraic closure of a field.
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2. Preliminaries on quasi-ordered fields

Throughout this note, all orderings and quasi-orderings are always assumed to be total. An
ordered field is a field K equipped with an ordering ≤ (i.e. a binary, reflexive, transitive and anti-
symmetric relation) such that the following axioms are satisfied for all x, y, z ∈ K :

(O1) x ≤ y ∧ 0 ≤ z ⇒ xz ≤ y z,
(O2) x ≤ y ⇒ x + z ≤ y + z.

Orderings are in one-to-one correspondence with so-called positive cones, i.e. subsets P ⊆ K
such that PP ⊆ P, P +P ⊆ P, P ∪ (−P ) = K and −1 ∉ P : 0 ≤ x ⇔ x ∈ P .

A valuation v on a field K (in the sense of Krull [8]) is known to endow K with a quasi-ordering,
i.e. a binary, reflexive, transitive relation ¹, as follows:

a ¹ b ⇐⇒ v(b) ≤ v(a).

If ¹ is a quasi-ordering, we write x ³ y as shorthand for x ¹ y ¹ x. Note that if ¹ is an ordering,
then ³ is just equality, whereas if ¹ is induced by a valuation v as above, then x ³ y if and only if
v(x) = v(y). Moreover, we write x ≺ y as shorthand for x ¹ y and x 6³ y.

Pushing the analogy of ordered and valued fields further, Fakhruddin introduced the notion
of quasi-ordered field, that is a field K equipped with a quasi-ordering ¹ such that the following
axioms are satisfied for all x, y, z ∈ K :

(Q0) x ³ 0 ⇒ x = 0,
(Q1) x ¹ y ∧ 0 ¹ z ⇒ xz ¹ y z,
(Q2) x ¹ y ∧ z 6³ y ⇒ x + z ¹ y + z.

Evidently, quasi-ordered fields arise from ordered fields by replacing anti-symmetry with the
weaker axiom (Q0), and by weakening the compatibility with addition. The condition z 6³ y in
(Q2) relates to the fact that v(y) 6= v(z) implies v(y+z) = min{v(y), v(z)} for any valuation v on K .

Theorem 1 (Fakhruddin’s dichotomy [7, Theorem 2.1]). Let K be a field and ¹ a binary relation
on K . Then (K ,¹) is a quasi-ordered field if and only if it is either an ordered field or there is a
valuation v on K such that x ¹ y ⇔ v(y) ≤ v(x) for all x, y ∈ K .

Note that ¹ is induced by a valuation v on K if and only if 0 ≺ −1. In that case v is unique up
to equivalence of valuations, and we denote the quasi-ordering ¹ also by ¹v .

Remark 2. In [5], a locality on a field is, by definition, either an ordering or a valuation. Hence,
by Fakhruddin’s dichotomy, localities and quasi-orderings are, in fact, equivalent notions.

Baer and Krull exhibited another strong relation between orderings and valuations on fields [2,
8]: any ordering ≤ on K induces a valuation on K , the so-called natural valuation of (K ,≤). It is
the valuation on K whose valuation ring is the convex hull of Z in K , i.e. the smallest convex
subring of K w.r.t. ≤ . An ordering ≤ and a valuation v on K are called compatible, if Kv is convex.
We also say that v, respectively Kv , is convex. In [9], the authors generalised this notion to quasi-
orderings: given a quasi-ordered field (K ,¹), a valuation v on K – or equivalently a quasi-ordering
¹v – is said to be compatible with ¹, if the valuation ring Kv is ¹-convex, or equivalently, if
0 ¹ x ¹ y ⇒ x ¹v y for all x, y ∈ K . Note that if¹ is induced by a valuation w, then¹v is compatible
with ¹w if and only if v is a coarsening of w. For a further discussion on this subject we refer the
interested reader to [9] and [10].

We conclude this section by recalling some basic facts about real closed fields. An ordered field
(K ,≤) is said to be real closed if one of the following equivalent conditions is satisfied:

(RC1) ≤ does not extend to any proper algebraic extension of K .
(RC2) (K ,≤) satisfies the following conditions:

(i) any x ∈ K with 0 ≤ x has a square root in K ,
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(ii) any polynomial f ∈ K [X ] of odd degree has a root in K .

Any ordered field (K ,≤) admits a real closure, i.e. an algebraic field extension which is real
closed. It is unique up to isomorphism of ordered fields (cf. [1, Satz 8]).

3. Quasi-real closed fields

In the present section we introduce quasi-real closed fields, that way unifying algebraically closed
fields and real closed fields. To this end, we impose (RC1) on quasi-ordered fields.

Definition 3. A quasi-ordered field (K ,¹) is called quasi-real closed, if ¹ does not extend to any
proper algebraic extension of K .

Lemma 4. Let K be a field. The following are equivalent:

(1) K is algebraically closed,
(2) (K ,¹v ) is quasi-real closed for some valuation v on K ,
(3) (K ,¹v ) is quasi-real closed for any valuation v on K .

Proof. If K is algebraically closed, then K admits no proper algebraic extension, whence (K , v)
is quasi-real closed for any valuation v on K . Consequently, (1) implies (3). Moreover, since any
field admits a valuation, clearly (3) implies (2). Finally, suppose that (2) holds. Note that v extends
to any field extension L of K by an immediate consequence of Chevalley’s Extension Theorem [6,
Theorems 3.1.1 and 3.1.2]. Since (K , v) is quasi-real closed, this means that K does not admit any
proper algebraic extension, i.e. that K is algebraically closed. Thus, (2) implies (1). �

Theorem 5. The following are equivalent for any quasi-ordered field (K ,¹) :

(a) (K ,¹) is quasi-real closed.
(b) (QRC1) either ¹ is an ordering and (K ,¹) is a real closed field, or ¹ is induced by a

valuation and K is an algebraically closed field.
(c) (QRC2) (K ,¹) satisfies the following conditions:

(i) any x ∈ K with 0 ¹ x has a square root in K .
(ii) any polynomial f ∈ K [X ] of odd degree has a root in K .

Proof. The equivalence of (a) and (b) is an immediate consequence of Fakhruddin’s dichotomy
(Theorem 1) and (RC1) (if ¹ is an ordering), respectively Lemma 4 (if ¹ is induced by a valuation).

It remains to show that (b) and (c) are equivalent. If ¹ is an ordering, then this follows from
(RC2). So let ¹ be induced by some valuation. If (K ,¹) is quasi-real closed, then K is algebraically
closed according to Lemma 4, whence (c) is fulfilled. Conversely, suppose that (c) holds. Since
K = {0 ¹ x}, we obtain by (i) that all elements in K have a square root in K . Along with condition (ii)
this implies that K is algebraically closed according to [12, Theorem 2]. Hence, (K ,¹) is quasi-real
closed again by Lemma 4. �

Definition 6. Let (K ,¹) be a quasi-ordered field. A quasi-ordered field (L,¹′) is called a quasi-real
closure of (K ,¹), if

(1) (L,¹′) is a quasi-real closed field,
(2) L|K is an algebraic field extension,
(3) ¹′ is an extension of ¹, i.e. K ∩¹′=¹ .

Proposition 7. Any quasi-ordered field (K ,¹) admits a quasi-real closure. It is unique up to
isomorphism of quasi-ordered fields.

Proof. Let us consider an algebraic closure K̃ of K and the set{
(L,¹′) : (L,¹′) is a quasi-ordered field, K ⊆ L ⊆ K̃ , K∩¹′=¹}

,
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partially ordered by
(L1,¹′

1) ≤ (L2,¹′
2) ⇐⇒ L1 ⊆ L2 and L1∩¹′

2 =¹′
1 .

By Zorn’s lemma, there is a maximal quasi-ordered algebraic field extension (L,¹′) of (K ,¹).
Hence, (L,¹′) is quasi-real closed and a quasi-real closure of (K ,¹).

The proof of the uniqueness relies on Fakhruddin’s dichotomy and (QRC1). So let (K1,¹1) and
(K2,¹2) be quasi-real closures of (K ,¹). If ¹ is an ordering, then (K1,¹1) and (K2,¹2) are real
closures of (K ,¹), whence they are order-isomorphic according to [1, Satz 8].

Likewise, if ¹ is induced by some valuation on K , then K1 and K2 are algebraic closures of K .
Hence, they are isomorphic as fields. Let ¹1=¹v1 and ¹2=¹v2 . Then the corresponding valuation
rings Kv1 and Kv2 are conjugated by an element of Gal(K̃ |K ) (cf. [6, Conjugation Theorem 3.2.15]).
By composition, we obtain an isomorphism between (K1,¹1) and (K2,¹2). �

4. The theory of quasi-real closed fields and quantifier elimination

We conclude this note by proving that the theory of quasi-real closed fields with a non-trivial
compatible valuation admits quantifier elimination. Moreover, we deduce that this theory is the
model companion of the theory of quasi-ordered fields with a non-trivial compatible valuation.
To this end, we exploit Fakhruddin’s dichotomy and the fact that the theories of real closed valued
fields and algebraically closed valued fields both admit quantifier elimination.

Theorem 8 (cf. [4, Theorems 4.4.2 and 4.5.1]).

(1) The theory of algebraically closed fields with a non-trivial valuation v admits quantifier
elimination in the language of fields adjoined with ¹v .

(2) The theory of real closed fields with a non-trivial compatible valuation v admits quantifier
elimination in the language of ordered fields adjoined with ¹v .

The characterization (QRC2) from Theorem 5 allows us to formalise quasi-real closed fields in
a first order language. As language of quasi-ordered fields with a compatible valuation v , we fix
L = {+, ·,−,¹,¹v ,0,1}. Moreover, we denote by ΣQRC the following set of L -sentences:

(1) the axioms stating that (K ,+, ·,−,0,1) is a field.
(2) the axioms stating that (K ,¹) is a quasi-real closed field.
(3) the axioms stating that (K ,¹v ) is a quasi-ordered field with v non trivial.
(4) the following L -sentences that determine the relationship of ¹ and ¹v :

(i) φ1 ≡ 0 ≺−1 → (∀ x, y : 0 ¹ x ¹ y ↔ x ¹v y)
(ii) φ2 ≡−1 ≺ 0 → (∀ x, y : 0 ¹ x ¹ y → x ¹v y)

The L -sentences φ1 and φ2, respectively, state that ¹=¹v if ¹ is induced by a valuation, and
that v is ¹-compatible if ¹ is an ordering. That way, we have unified the languages of real closed
valued fields and algebraically closed valued fields that are used in Theorem 8. We refer to the
theory ofΣQRC as the theory of quasi-real closed fields with a non-trivial compatible valuation. We
also consider the theory of quasi-ordered fields with a non-trivial compatible valuation, denoted
by ΣQO, which consists of (1), (3), (4), and the axioms (Q0), (Q1) and (Q2) (see Section 2).

Theorem 9. The theory of ΣQRC admits quantifier elimination.

Proof. Any model of ΣQRC is either an algebraically closed field with a non-trivial valuation or a
real closed field with a non-trivial compatible valuation (Theorem 5). Therefore, the result follows
from the fact that each of these two classes admits quantifier elimination (Theorem 8). �

Definition 10. Let Σ ⊆ Sent(L ) for a given language L . A set Σ∗ ⊆ Sent(L ) is called a model
companion of Σ, if

(1) every model of Σ∗ is a model of Σ,
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(2) every model of Σ can be extended to a model of Σ∗,
(3) Σ∗ is model complete.

Corollary 11 (cf. [4, Corollaries 4.4.3 and 4.5.4]). The theory of ΣQRC is model complete. It is the
model companion of the theory of ΣQO.

Proof. Property 10(1) is obviously satisfied. Model completeness follows immediately from the
quantifier elimination that we obtained in Theorem 9. It remains to show that condition (2) of
Definition 10 holds in our setting.

So let (K ,¹,¹v ) be some quasi-ordered field with a non-trivial compatible valuation, and let
(L,¹′) be a quasi-real closure of (K ,¹) (Proposition 7). Then (L,¹′) is a quasi-real closed field.
Moreover, L|K is algebraic, whence [5, Theorem 20.1.1(a)] yields a unique extension ¹′

ν of ¹v

from K to L such that ν is compatible with ¹′ . If ¹ is a valuation (i.e. ¹v=¹), then the uniqueness
tells us that also ¹′

ν=¹′ . Furthermore, ν is non-trivial since v is non-trivial. Hence, (L,¹′,¹′
ν) is

an extension of (K ,¹,¹v ) and a model of the theory of quasi-real closed fields with a non-trivial
compatible valuation. �

Remark 12. The theory of ΣQRC is not complete. For example the L -sentence ∃ x : x2 +1 = 0 is
false for any real closed field, but true for any algebraically closed field. Alternatively, this follows
from the fact that for algebraically closed fields the characteristic is not fixed.

Open Question. Can we replace the L -sentencesφ1 andφ2 inΣQRC with the single L -sentence
φ≡∀ x, y : x ¹ y → x ¹v y? This is equivalent to the question, whether algebraically closed fields
admit quantifier elimination in the language of fields adjoined by ¹v and ¹w , where v and w are
valuations on K such that v is coarser than w .
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