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Abstract. We study a volume related quantity KVol on the stratum H (2) of translation surfaces of genus 2,
with one conical point. We provide an explicit sequence L(n,n) of surfaces such that KVol(L(n,n)) → 2 when
n goes to infinity, 2 being the conjectured infimum for KVol over H (2).

Résumé. Nous étudions une quantité KVol liée au volume sur la strate H (2) des surfaces de translation
de genre 2, avec une singularité conique. Nous donnons une suite explicite de surfaces L(n,n) telles que
KVol(L(n,n)) → 2 quand n tend vers l’infini, 2 étant l’infimum conjectural de KVol sur H (2).
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1. Introduction

Let X be a closed surface, that is, a compact, connected manifold of dimension 2, without
boundary. Let us assume that X is oriented. Then the algebraic intersection of closed curves in X
endows the first homology H1(X ,R) with an antisymmetric, non degenerate, bilinear form, which
we denote Int( · ,· ).

Now let us assume X is endowed with a Riemannian metric g . We denote Vol(X , g ) the
Riemannian volume of X with respect to the metric g , and for any piecewise smooth closed curve
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Figure 1. Unfolding an element of H (2)

α in X , we denote lg (α) the length of α with respect to g . When there is no ambiguity we omit the
reference to g .

We are interested in the quantity

KVol(X , g ) = Vol(X , g )sup
α,β

Int(α,β)

lg (α)lg (β)
(1)

where the supremum ranges over all piecewise smooth closed curves α and β in X . The Vol(X , g )
factor is there to make KVol invariant to re-scaling of the metric g . See [5] as to why KVol is finite.
It is easy to make KVol go to infinity, you just need to pinch a non-separating closed curve α to
make its length go to zero. The interesting surfaces are those (X , g ) for which KVol is small.

When X is the torus, we have KVol(X , g ) ≥ 1, with equality if and only if the metric g is flat
(see [5]). Furthermore, when g is flat, the supremum in (1) is not attained, but for a negligible
subset of the set of all flat metrics. In [5], KVol is studied as a function of g , on the moduli space
of hyperbolic (that is, the curvature of g is −1) surfaces of fixed genus. It is proved that KVol goes
to infinity when g degenerates by pinching a non-separating closed curve, while KVol remains
bounded when g degenerates by pinching a separating closed curve.

This leaves open the question whether KVol has a minimum over the moduli space of hyper-
bolic surfaces of genus n, for n ≥ 2. It is conjectured in [5] that for almost every (X , g ) in the mod-
uli space of hyperbolic surfaces of genus n, the supremum in (1) is attained (that is, it is actually
a maximum).

In this paper we consider a different class of surfaces: translation surfaces of genus 2, with one
conical point. The set (or stratum) of such surfaces is denoted H (2) (see [3]). By [6], any surface X
in the stratum H (2) may be unfolded as shown in Figure 1, with complex parameters z1, z2, z3, z4.
The surface is obtained from the plane template by identifying parallel sides of equal length.

It is proved in [4] (see also [2]) that the systolic volume has a minimum in H (2), and it is
achieved by a translation surface tiled by six equilateral triangles. Since the systolic volume is a
close relative of KVol, it is interesting to keep the results of [4] and [2] in mind.

We have reasons to believe that KVol behaves differently in H (2), both from the systolic
volume in H (2), and from KVol itself in the moduli space of hyperbolic surfaces of genus 2; that
is, KVol does not have a minimum over H (2).

We also believe that the infimum of KVol over H (2) is 2. This paper is a first step towards
the proof: we find an explicit sequence L(n,n) of surfaces in H (2), whose KVol tends to 2 (see
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Proposition 5). These surfaces are obtained from very thin, symmetrical, L-shaped templates (see
Figure 2).

In the companion paper [1] we study KVol as a function on the Teichmüller disk (the SL2(R)-
orbit) of surfaces in H (2) which are tiled by three identical parallelograms (for instance L(2,2)),
and prove that KVol does have a minimum there, but is not bounded from above. Therefore KVol
is not bounded from above as a function on H (2). In [1] we also compute KVol for the translation
surface tiled by six equilateral triangles, and find it equals 3, so it does not minimize KVol, neither
in H (2), nor even in its own Teichmüller disk.

2. L(n,n)

2.1. Preliminaries

Following [7], for any n ∈N, n ≥ 2, we call L(n +1,n +1) the (2n +1)-square translation surface of
genus two, with one conical point, depicted in Figure 2, where the upper and rightmost rectangles
are made up with n unit squares. We call A (resp. B) the region in L(n +1,n +1) obtained, after
identifications, from the uppermost (resp. rightmost) rectangle, and C the region in L(n+1,n+1)
obtained, after identifications, from the bottom left square. Both A and B are annuli with a pair
of points identified on the boundary, while C is a square with all four corners identified. We call
e1,e2, (resp. f1, f2) the closed curves in L(n + 1,n + 1) obtained by gluing the endpoints of the
horizontal (resp. vertical) sides of A and B . The closed curve which sits on the opposite side of C
from e1 (resp. f1) is called e ′1 (resp. f ′

1), it is homotopic to e1 (resp. f1) in L(n+1,n+1). The closed
curves in L(n +1,n +1) which correspond to the diagonals of the square C are called g and h.

Figure 3 shows a local picture of L(n+1,n+1) around the singular (conical) point S, with angles
rescaled so the 6π fit into 2π.

Since e1,e2, f1, f2 do not meet anywhere but at S, the local picture yields the algebraic inter-
sections between any two of e1,e2, f1, f2, summed up in the following matrix:

Int e2 f1 e1 f2

e2 0 1 0 −1
f1 −1 0 0 0
e1 0 0 0 1
f2 1 0 −1 0

 (2)

We call TA (resp. TB ) the flat torus obtained by gluing the opposite sides of the rectangle made
with the n+1 leftmost squares (resp. with the n+1 bottom squares), so the homology of TA (resp.
TB ) is generated by e1 and the concatenation of f1 and f2 (resp. f1 and the concatenation of e1

and e2).

Lemma 1. The only closed geodesics in L(n +1,n +1) which do not intersect e1 nor f1 are, up to
homotopy, e1, f1, g , and h.

Proof. Let γ be such a closed geodesic. It cannot enter, nor leave, A, B , nor C . If it is contained
in A, and does not intersect e1, then it must be homotopic to e1, which is the soul of the annulus
from which A is obtained by identifying two points on the boundary. Likewise, if it is contained
in B , and does not intersect f1, then it must be homotopic to f1. Finally, if γ is not contained in
A nor in B , it must be contained in C . The only closed geodesics contained in C are the sides and
diagonals of the square from which C is obtained, which are e1, e ′1, f1, f ′

1, g , and h. �

Lemma 2. For any closed geodesic γ in L(n +1,n +1), we have l (γ) ≥ n|Int(γ,e1)|.
Proof. For each intersection with e1, γ must go through A, from boundary to boundary. �
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Figure 2. L(n +1,n +1)
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Figure 3. Local picture around the conical point

Obviously a similar lemma holds with f1 instead of e1. For g and h the proof is a bit different:

Lemma 3. For any closed geodesic γ in L(n +1,n +1), we have l (γ) ≥ n|Int(γ, g )|.
Proof. First, observe that between two consecutive intersections with g , γ must go through
either A or B , unless γ is g itself, or h: indeed, the only geodesic segments contained in C
with endpoints on g are segments of g , or h. Obviously Int(g , g ) = 0, and from the intersection
matrix (2), knowing that

[
g
]= [e1]− [

f1
]
, [h] = [e1]+ [

f1
]
, we see that Int(g ,h) = 0.

Thus, either Int(γ, g ) = 0, or each intersection must be paid for with a trek through A or B , of
length at least n. �

Obviously a similar lemma holds with h instead of g . Note that Lemmata 1, 2, 3 imply that the
only geodesics in L(n + 1,n + 1) which are shorter than n are e1, f1, g , h, and closed geodesics
homotopic to e1 or f1.

Lemma 4. Let I , J be positive integers, take ai j , i = 1, . . . , I , j = 1, . . . , J inR+, and b1, . . . ,bI ,c1, . . . ,c J

in R∗+. Then we have ∑
i , j ai j(∑I

i=1 bi
)(∑J

j=1 c j

) ≤ max
i , j

ai j

bi c j
.
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Proof. Re-ordering, if needed, the ai j ,bi ,c j , we may assume
ai j

bi c j
≤ a11

b1c1
∀ i = 1, . . . , I , j = 1, . . . , J .

Then ai j b1c1 ≤ a11bi c j ∀ i = 1, . . . , I , j = 1, . . . , J , so

b1c1
∑
i , j

ai j ≤ a11
∑
i , j

bi c j = a11

(
I∑

i=1
bi

)(
J∑

j=1
c j

)
. �

2.2. Estimation of KVol(L(n,n))

Proposition 5.
lim

n→+∞KVol(L(n +1,n +1)) = 2.

Proof. First observe that Vol(L(n +1,n +1)) = 2n +1, l (e1) = 1, l ( f2) = n, Int(e1, f2) = 1, so

KVol(L(n +1,n +1)) ≥ 2+ 1

n
.

To bound KVol(L(n +1,n +1)) from above, we take two closed geodesics α and β; by Lemmata 2
and 3, if either α or β is homotopic to e1, f1, g , or h, then

Int(α,β)

l (α)l (β)
≤ 1

n
,

so from now on we assume that neither α or β is homotopic to e1, f1, g , h. We cut α and β

into pieces using the following procedure: we consider the sequence of intersections of α with
e1,e ′1, f1, f ′

1, in cyclical order, and we cut α at each intersection with e1 or e ′1 which is followed
by an intersection with f1 or f ′

1, and at each intersection with f1 or f ′
1 which is followed by an

intersection with e1 or e ′1. We proceed likewise with β. We call αi , i = 1, . . . , I , and β j , j = 1, . . . , J ,
the pieces of α and β, respectively.

Note that

l (α) =
I∑

i=1
l (αi ), l (β) =

J∑
j=1

l (β j ), and |Int(α,β)| ≤∑
i , j

|Int(αi ,β j )|,

so Lemma 4 says that
|Int(α,β)|
l (α)l (β)

≤ max
i , j

|Int(αi ,β j )|
l (αi )l (β j )

.

We view each piece αi (resp. β j ) as a geodesic arc in the torus TA (resp. TB ), with endpoints on
the image in TA (or TB ) of f1 or f ′

1 (resp. e1 or e ′1), which is a geodesic arc of length 1, so we can
close each αi (resp. β j ) with a piece of f1 or f ′

1 (resp. e1 or e ′1), of length ≤ 1. We choose a closed
geodesic α̂i (resp. β̂ j ) in TA (resp. TB ) which is homotopic to the closed curve thus obtained. We
have l (α̂i ) ≤ l (αi )+1, l (β̂ j ) ≤ l (β j )+1, so

1

l (α̂i )l (β̂ j )
≥ 1

(l (αi )+1)(l (β j )+1)
.

Now recall that l (αi ), l (β j ) ≥ n, so l (αi )+1 ≤ (1+ 1
n )l (αi ), whence

1

l (α̂i )l (β̂ j )
≥ 1

l (αi )l (β j )

( n

n +1

)2
.

Next, observe that |Int(αi ,β j )| ≤ |Int(α̂i , β̂ j )|+1, because α̂i (resp. β̂ j ) is homologous to a closed
curve which contains αi (resp. β j ) as a subarc, and the extra arcs cause at most one extra
intersection, depending on whether or not the endpoints of αi and β j are intertwined. So,

|Int(αi ,β j )|
l (αi )l (β j )

≤ |Int(α̂i , β̂ j )|+1

l (α̂i )l (β̂ j )

(
n +1

n

)2

≤
(
|Int(α̂i , β̂ j )|
l (α̂i )l (β̂ j )

+ 1

n2

)(
n +1

n

)2

,
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where the last inequality stands because l (α̂i ) ≥ n, l (β̂ j ) ≥ n, since α̂i and β̂ j both have to go
through a cylinder A or B at least once. Finally, since α̂i and β̂ j are closed geodesics on a flat
torus of volume n +1, we have (see [5])

|Int(α̂i , β̂ j )|
l (α̂i )l (β̂ j )

≤ 1

n +1
, so

|Int(αi ,β j )|
l (αi )l (β j )

≤
(

1

n +1
+ 1

n2

)(
n +1

n

)2

= 1

n
+o

(
1

n

)
,

which yields the result, recalling that Vol(L(n +1,n +1)) = 2n +1. �
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