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Nguyễn H. V. Hu,nga

a Department of Mathematics, HUS, Vietnam National University, Hanoi, 334 Nguyễn
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Abstract. Let En = (Z/p)n be regarded as the translation group on itself. It is considered as a subgroup of the
symmetric group Spn on pn letters. We completely compute the mod p Margolis homology of the Dickson–
Mùi algebra, i.e. the homology of the image of the restriction Res(Spn ,En ) : H∗(Spn ;Fp ) → H∗(En ;Fp ) with
the differential to be the Milnor operation Q j , for p an odd prime and for any n, j . The motivation for this
problem is that, the Margolis homology of the Dickson–Mùi algebra plays a key role in study of the Morava
K-theory K ( j )∗(BSm ) of the symmetric group Sm on m letters. The main tool of our work is the notion of
“critical” elements. The mod p Margolis homology of the Dickson–Mùi algebra concentrates on even degrees.
It is analogous to the mod 2 Margolis homology of the Dickson algebra.

Résumé. Soit En = (Z/p)n le groupe agissant sur lui même par les translations. On le considère comme sous-
groupe du groupe symétrique Spn en pn lettres. Dans cette note on calcule entièrement l’homologie de
Margolis modulo p de l’algèbre de Dickson–Mùi, i.e. l’homologie de l’image de la restriction Res(Spn ,En ) :
H∗(Spn ;Fp ) → H∗(En ;Fp ) en choisissant pour différentielles les opérations de Milnor Q j , pour p un nombre
premier impair et pour tout n, j . La motivation pour cette étude est le rôle clé joué par cette homologie dans
l’étude de la K-théorie de Morava K ( j )∗(BSm ) du groupe symétrique Sm en m lettres. L’outil principal de
notre travail est la notion d’éléments « critiques ». L’homologie de Margolis mod p de l’algèbre de Dickson–
Mùi concentre en degrés pairs. Elle est analogue à l’homologie de Margolis mod 2 de l’algèbre de Dickson.
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A key step toward the determination of the symmetric group’s cohomology is to apply the
Quillen restriction from this cohomology to the cohomologies of all maximal elementary abelian
subgroups of the symmetric group.

Let E n = (Z/p)n be regarded as the translation group on itself. So it is considered as a
subgroup of the symmetric group Spn on pn letters. This is the “generic” maximal elementary
abelian p-subgroup of the symmetric group Spn , where the terminology “generic” means that
the set {E n |n ≥ 1} has been used to describe all maximal elementary abelian p-subgroups of
any symmetric groups. (See Mùi [7, Prop. II.2.3].) Let us study the restriction Res(Spn ,E n) :
H∗(Spn , ;Fp ) → H∗(E n ;Fp ) induced in cohomology by the canonical inclusion E n ⊂Spn . We have

H∗(E n ;Fp ) =
{
Fp [y1, . . . , yn], p = 2,

E(x1, . . . , xn)⊗Fp [y1, . . . , yn], p > 2,
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230 Nguyễn H. V. Hu,ng

where deg(yi ) = 1 for p = 2, and deg(xi ) = 1,deg(yi ) = 2 for p an odd prime (1 ≤ i ≤ n). Here
E(x1, . . . , xn) and Fp [y1, . . . , yn] denote respectively the exterior algebra and the polynomial algebra
on the given generators.

The Weyl group, which is the quotient of the normalizer by the centralizer, of the maximal
elementary abelian subgroup E n in Spn is the general linear group GLn = GL(n,Fp ). It is well-
known that the image of the restriction Res(Spn ,E n) is a subalgebra of the invariant algebra under
the Weyl group action H∗(E n ;Fp )GLn . According to H. Mùi [7, Thm. II.6.1 and Thm. II.6.2], the
image of the restriction Res(Spn ,E n) is the Dickson algebra Dn = Fp [y1, . . . , yn]GLn for p = 2, and
a subalgebra of the algebra (E(x1, . . . , xn)⊗Fp [y1, . . . , yn])GLn for p an odd prime, where GLn acts
canonically on Fp [y1, . . . , yn] and on E(x1, . . . , xn)⊗Fp [y1, . . . , yn].

For p an odd prime, let us denote DMn := ImRes(Spn ,E n) and call it the n-th Dickson–Mùi
algebra. It should be noted that DMn 6= (E(x1, . . . , xn)⊗ Fp [y1, . . . , yn])GLn (see H. Mùi [7, I.4.17 &
II.6.1] or Theorem 1 below).

Let Q j be the Milnor operation (see [6]) of degree 2p j − 1 in the mod p Steenrod algebra A

inductively defined for j ≥ 0 as follows

Q0 =β, Q j+1 = P p j
Q j −Q j P p j

,

where β denotes the Bockstein operation. In the article, for p an odd prime, we completely
compute the mod p Margolis homology of the Dickson–Mùi algebra DMn , i.e. the homology of
DMn with the differential to be the Milnor operation Q j , for every n and j . The solution for the
similar problem on the mod 2 Margolis homology of the Dickson algebra has been announced
in [4] and published in detail in [2], where we denied the Pengelley–Sinha conjecture on the
problem. This conjecture turns out to be false because of the occurence of the so-called critical
elements, which are our main creation in the study. The Dickson–Mùi algebra DMn is not free
in the category of graded commutative algebras. Therefore, its Margolis homology is completly
different and requires new techniques, more care and details than the case of p = 2. In particular,
Definition 10 of critical elements is distinguished from the one for p = 2.

The real goal that we persue in the near future is to compute the Morava K -theory K ( j )∗(BSm)
of the symmetric group Sm on m letters. It was well known that, the Milnor operation is the first
non-zero differential, Q j = d2p j −1, in the Atiyah–Hirzebruch spectral sequence for computing
K ( j )∗(X ), the Morava K -theory of a space X . So, the Q j -homology of H∗(X ) is the E2p j -page
in the Atiyah–Hirzebruch spectral sequence for K ( j )∗(X ). (See e.g. Yagita [9, §2], although the
fact was well known before this article.) Particularly, the E2p j -page in the Atiyah–Hirzebruch
spectral sequence for K ( j )∗(BSpn ) maps to H∗(DMn ;Q j ). This is why the Margolis homology
of the Dickson–Mùi algebra is taken into account.

Let us study the n-th Dickson algebra of invariants Dn = Fp [y1, . . . , yn]GLn . Following Dick-
son [1], we set

[e1, . . . ,en] = det
(
y pek

`

)
1≤k,`≤n ,

for non-negative integers e1, . . . ,en . The right action ofω= (ωi j )n×n ∈GLn sends g ∈ Fp [y1, . . . , yn]
to (gω)(y1, . . . , yn) = g (

∑n
i=1ωi 1 yi , . . . ,

∑n
i=1ωi n yi ), while its left action sends g to (ωg )(y1, . . . , yn) =

g (
∑n

j=1ω1 j y j , . . . ,
∑n

j=1ωn j y j ). Since ωg = gωt , where ωt is the transposed matrix of ω, a poly-
nomial is a right GLn-invariant if and only if it is a left GLn-invariant. By Fermat’s little theorem,
[e1, . . . ,en]ω= det(ω)[e1, . . . ,en] forω ∈GLn (see [1]). Set Ln,s = [0,1, . . . , ŝ, . . . ,n] (0 ≤ s ≤ n), where ŝ
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means s being omitted, and Ln =Ln,n . The Dickson invariant, defined by cn,s =Ln,s /Ln (0≤ s <n),
is a GLn-invariant. It is of degree 2n − 2s for p = 2 and degree 2(pn − p s ) for p an odd prime.
Dickson proved in [1] that Dn is a polynomial algebra on the Dickson invariants

Dn = Fp [cn,0, . . . ,cn,n−1].

Let A = (ai j )n×n be an n × n matrix with entries ai j ’s in the graded commutative algebra
E(x1, . . . , xn)⊗Fp [y1, . . . , yn]. The determinant of A is defined by

det A = ∑
σ∈Sn

sgn(σ)a1σ(1) · · ·anσ(n).

Remark. As x1, . . . , xn are of odd degree, xk x` =−x`xk for any k and `, we have

det

x1 . . . xn
...

. . .
...

x1 . . . xn

= n!x1 · · ·xn ,

while

det

x1 . . . x1
...

. . .
...

xn . . . xn

= 0.

See H. Mùi [7, p. 324–325] for detail.

Let ek+1, . . . ,en be non-negative integers. H. Mùi set in [7, p. 330]:

〈k : ek+1, . . . ,en〉 = det



x1 x2 . . . xn

. . . . . .
x1 x2 . . . xn

y pek+1

1 y pek+1

2 . . . y pek+1

n

. . . . . .

y pen

1 y pen

2 . . . y pen

n


,

where there are exactly k rows (x1 x2 . . . xn) in the determinant. Further, we set

Rn,s1,...,sk = 1

k !
〈k : 0, . . . ŝ1, . . . , ŝk , . . . ,n −1〉Lp−2

n .

See H. Mùi [7, p. 330, p. 338]. The right and the left actions of ω = (ωi j )n×n ∈ GLn respectively
sends f ∈ E(x1, . . . , xn)⊗Fp [y1, . . . , yn] to

( f ω)(x1, . . . , xn , y1, . . . , yn) = f

(
n∑

i=1
ωi 1xi , . . . ,

n∑
i=1

ωi n xi ,
n∑

i=1
ωi 1 yi , . . . ,

n∑
i=1

ωi n yi

)
,

(ω f )(x1, . . . , xn , y1, . . . , yn) = f

(
n∑

j=1
ω1 j x j , . . . ,

n∑
j=1

ωn j x j ,
n∑

j=1
ω1 j y j , . . . ,

n∑
j=1

ωn j y j

)
.

Since ω f = f ωt , a generalized polynomial f is a right GLn-invariant if and only if it is a left GLn-
invariant. By Fermat’s little theorem, Rn,s1,...,sk is a GLn-invariant.

Theorem 1 (H. Mùi [7, I.4.17 & II.6.1]). For p an odd prime and n > 1, the Dickson–Mùi
algebra DMn is the subalgebra of the graded commutative algebra (E(x1, . . . , xn)⊗Fp [y1, . . . , yn])GLn

generated by
Rn,s (0 ≤ s < n), Rn,r,s (0 ≤ r < s < n), cn,s (0 ≤ s < n),

which satisfy the relations

R2
n,s = 0 (0 ≤ s < n), R2

n,r,s = 0 (0 ≤ r < s < n),

Rn,r Rn,s =−Rn,r,s cn,0 (0 ≤ r < s < n).



232 Nguyễn H. V. Hu,ng

The action of the Steenrod algebra on the Dickson–Mùi one is basically computed in [3]
and [5]. We are interested in the following element:

A j ,n,s = [0, . . . , ŝ, . . . ,n −1, j ]/Ln ∈ Dn , (for 0 ≤ s < n ≤ j ).

Proposition 2. Let p be an odd prime.

(i) For 0 ≤ s < n, and arbitrary j ,

Q j (cn,s ) = 0.

(ii) For 0 ≤ s < n,

Q j (Rn,s ) =


(−1)s cn,0, j = s,

(−1)n−1cn,0 A j ,n,s , j ≥ n,

0, otherwise.

(iii) For 0 ≤ r < s < n,

Q j (Rn,r,s ) =


(−1)r−1Rn,s , j = r,

(−1)s Rn,r , j = s,

(−1)n{A j ,n,r Rn,s −Rn,r A j ,n,s }, j ≥ n,

0, otherwise.

Following [1, 7], we set Vn = Ln/Ln−1 = ∏
λi∈Fp (λ1 y1 + ·· · +λn−1 yn−1 + yn). Generalizing the

formulas by Dickson [1] on the inductive definition for cn,s and on the expansion of Vn in terms
of cn−1,0, . . . ,cn−1,n−2, we have

Proposition 3.

(i) A j ,n,s 6= 0 in Dn for 0 ≤ s < n ≤ j . Further,

A j ,n,s = Ap
j−1,n−1,s−1 + Ap

j−1,n,n−1cn−1,sV p−1
n .

(ii) For 0 ≤ n −1 ≤ j ,

A j ,n,n−1Vn = (−1)n−1

{
n−2∑
s=0

(−1)s A j ,n−1,s y p s

n + (−1)n−1 y p j

n

}
.

Here, by convention, A j ,n,−1 = 0, An−1,n,n−1 = 1, cn−1,n−1 = 1.

Lemma 4.

(i) cn,s =
{

0 mod (yn , . . . , yn−r ), 0 ≤ s ≤ r < n,

6= 0 mod (yn , . . . , yn−r ), 0 ≤ r < s < n.
Consequently (cn,0, . . . ,cn,r ) = (yn , . . . , yn−r )∩Dn .

(ii) A j ,n,s =
{

0 mod (cn,0, . . . ,cn,r ), 0 ≤ s ≤ r < n,

6= 0 mod (cn,0, . . . ,cn,r ), 0 ≤ r < s < n.

Lemma 5. A j ,n,r and A j ,n,s are coprime in Dn for 0 ≤ r 6= s < n.

The next two theorems compute the j -th Margolis homology of DMn for the unstable cases,
i.e. for either n = 1 or 1 < n and 0 ≤ j < n.

Theorem 6. For n = 1, j ≥ 0, and c1,0 = y p−1,

H∗(DM1;Q j ) ∼= Fp [c1,0]/

(
c

p j +p−2
p−1

1,0

)
.
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Theorem 7. For p an odd prime, 1 < n and 0 ≤ j < n, the j -th Margolis homology of DMn is
isomorphic as Fp -vector spaces to the quotient of the algebra

E(Rn,r,s | 0 ≤ r < s < n; r 6= j , s 6= j )⊗Fp [cn,1, . . . ,cn,n−1]

subject to the relations

Rn,r,s Rn,t ,u = 0, if {r, s}∩ {t ,u} 6= ;,

Rn,r,s Rn,t ,u =−Rn,r,t Rn,s,u = Rn,r,uRn,s,t , (0 ≤ r < s < t < u < n).

Example 8. In the example, the equality Rn,r Rn,s =−cn,0Rn,r,s is essential.

(a) We show why the exponent of cn,0 in the denominator of Lemma 9 increases as k does. If
k = 3, then

[ 3−1
2

]+1 = 2. For 0 ≤ r < s < t < n ≤ j ,

Q j (Rn,r Rn,s Rn,t ) =Q j (Rn,r )Rn,s Rn,t −Rn,r Q j (Rn,s )Rn,t +Rn,r Rn,sQ j (Rn,t )

= (−1)n−1cn,0 A j ,n,r Rn,s Rn,t − (−1)n−1Rn,r cn,0 A j ,n,s Rn,t

+ (−1)n−1Rn,r Rn,s cn,0 A j ,n,t .

1

c2
n,0

Q j (Rn,r Rn,s Rn,t ) =−{
(−1)n+1Rn,s,t A j ,n,r + (−1)n+2Rn,r,t A j ,n,s + (−1)n+3Rn,r,s A j ,n,t

} ∈ DMn .

(b) If k is even, then the following equality proves Lemma 11(ii):

1

c

[
k−1

2

]
+1

n,0

Q j (Rn,s1 · · ·Rn,sk ) = (−1)
k
2 Q j (Rn,s1,s2 · · ·Rn,sk−1,sk ) ∈ ImQ j .

Let Dex
n be the ideal of DMn generated by Rn,0, . . . ,Rn,n−1,Rn,r,s (0 ≤ r < s < n). Remarkably,

Rn,s is of odd degree, while Rn,r,s is of even degree. Note that Dex
n is not a Q j -submodule of DMn ,

but ImQ j ∩Dex
n and KerQ j ∩Dex

n are, since Q j vanishes on these modules. The evident equality
DMn = Dn ⊕Dex

n implies

KerQ j = Dn ⊕ (KerQ j ∩Dex
n ),

ImQ j = (ImQ j ∩Dn)⊕ (ImQ j ∩Dex
n ).

In the sequel, when j and n are fixed, the elements cn,s , Rn,s , and A j ,n,s will respectively be
denoted cs , Rs , and As (0 ≤ s < n) for abbreviation.

From Theorem 1, using the argument of Example 8, we see that if α > [ k−1
2

] + 1 then
1

cα0
Q j (Rs1 · · ·Rsk ) does not belong to DMn for n ≤ j .

Lemma 9. Q j (Rs1 . . .Rsk ) = ∑k
i=1(−1)n+i Rs1 . . . R̂si . . .Rsk c0 Asi is divisible by c

[
k−1

2

]
+1

0 but not

c

[
k−1

2

]
+2

0 for n ≤ j . Particularly,

1

c

[
k−1

2

]
+1

0

Q j (Rs1 · · ·Rsk ) = 1

c

[
k−1

2

]
0

k∑
i=1

(−1)n+i Rs1 . . . R̂si . . .Rsk Asi ∈ Dex
n ,

for 0 ≤ s1 < ·· · < sk < n ≤ j , 1 < k.

The critical elements defined below are the main ingredient in determination of ImQ j ∩Dex
n

and KerQ j ∩Dex
n for 2 ≤ n ≤ j .

Definition 10. For 0 ≤ s1 < ·· · < sk < n ≤ j , 1 < k, the element

hs1,...,sk = 1

c

[
k−1

2

]
+1

0

Q j (Rs1 · · ·Rsk )

is called critical if k is odd. Here [`] is the biggest integer with [`] ≤ `.
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Lemma 11. For 0 ≤ s1 < ·· · < sk < n ≤ j and 1 < k,

(i) hs1,...,sk ∈ KerQ j ;
(ii) If k is even, then hs1,...,sk ∈ ImQ j , equivalently [hs1,...,sk ] = 0 ∈ H∗(DMn ;Q j );

(iii) If k is odd, then hs1,...,sk is not divisible by c0 in DMn ; Particularly, [hs1,...,sk ] 6= 0 ∈
H∗(DMn ;Q j ).

The partial derivation and the integral on a direction are our main tools in determination of
KerQ j ∩Dex

n and ImQ j ∩Dex
n for 2 ≤ n ≤ j .

Definition 12. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n. The s-th partial derivation
∂s : DMn → DMn is the morphism defined for 0 ≤ s < n by

∂s

(
1

cα0
Rs1 · · ·Rsk Z

)
=

{
(−1)n+i 1

cα0
Rs1 · · · R̂si · · ·Rsk c0 Asi Z , s = si ,

0, otherwise,

for α≤ [k/2] and Z ∈ Dn .

If ∂s (Rs1 · · ·Rsk ) 6= 0, then s should be one of the indices s1, . . . , sk . Obviously, Im∂s ⊂
c0 As (DMn). Proposition 2 implies

Lemma 13. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n ≤ j , and Z ∈ Dn . Then

Q j

(
1

cα0
Rs1 · · ·Rsk Z

)
=

n−1∑
s=0

∂s (
1

cα0
Rs1 · · ·Rsk Z ),

for α≤ [k/2] and Z ∈ Dn .

Definition 14. The integral on the r -th direction

Ir : c0 Ar (DMn) → DMn ,

for 0 ≤ r < n, is the morphism given by:

Ir

(
1

cα0
Rs1 · · ·Rsk c0 Ar Z

)
=

{
(−1)n−1 1

cα0
Rr Rs1 · · ·Rsk Z , r 6= s1, . . . , sk ,

0, otherwise,

where s1, . . . , sk are pairwise distinct, 0 ≤ s1, . . . , sk < n, 0 ≤ k, α≤ [k/2], Z ∈ Dn .

Lemma 15. Let s1, . . . , sk be pairwise distinct, with 0 ≤ s1, . . . , sk < n, 0 < s ≤ n, α ≤ [k/2], and
Z ∈ Dn . Then

(i) Is∂s

(
1

cα0
Rs1 · · ·Rsk Z

)
=

{
1

cα0
Rs1 · · ·Rsk Z , s ∈ {s1, . . . , sk },

0, otherwise.

(ii) ∂s Is

(
1

cα0
Rs1 · · ·Rsk c0 As Z

)
=

{
1

cα0
Rs1 · · ·Rsk c0 As Z , s 6= s1, . . . , sk ,

0, otherwise.

Let Dn = Fp [c0,c1, . . . ,cn−1] and Dn = Fp [c1, . . . ,cn−1]. Denote by hc0Dn and hDn the submod-
ules of DMn generated by the generators {hs1,...,sk |0 ≤ s1 < ·· · < sk < n,1 < k odd} over c0Dn and
Dn respectively.

Theorem 16. For p an odd prime and 2 ≤ n ≤ j ,

KerQ j ∩Dex
n = (

ImQ j ∩Dex
n

)+hDn ,

where
(
ImQ j ∩Dex

n

)∩hDn = hc0Dn ∩hDn .

The critical elements are not linear independent over Dn = Fp [c0, . . . ,cn−1].
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Lemma 17. For 0 ≤ s1 < ·· · < sk < n, 2 < k.
k∑

i=1
(−1)i hs1,...,ŝi ,...,sk Asi = 0.

In particular, the sum in Theorem 16 is not a direct sum.

Letπ : Dn → Dn be the projection, whose kernel is c0Dn . We denoteπ(Z ) by Z for abbreviation.
So Z −Z ∈ c0Dn for Z ∈ Dn . By Lemma 17,

k∑
i=1

(−1)i hs1,...,ŝi ,...,sk

(
Asi − Asi

)=−
k∑

i=1
(−1)i hs1,...,ŝi ,...,sk Asi .

This is a non-zero element in the intersection hcn,0Dn ∩hDn . Therefore,(
ImQ j ∩Dex

n

)∩hDn ⊃ hc0Dn ∩hDn 6= {0}.

Example 18. For k = 3 and 0 ≤ r < s < t < n:

(−1)1hs,t Ar + (−1)2hr,t As + (−1)3hr,s At

= (−1)n+1{(−1)1(Rt As −Rs At )Ar + (−1)2(Rt Ar −Rr At )As + (−1)3(Rs Ar −Rr As )At } = 0.

The following is the main result of our article.

Theorem 19. Let p be an odd prime. The mod p Margolis homology of the Dickson–Mùi algebra
DMn for 2 ≤ n ≤ j is given by

H∗(DMn ;Q j ) ∼= Dn(
c0 A0, . . . ,c0 An−1

) ⊕ hDn

hc0Dn ∩hDn
.

The theorem implies that the mod p Margolis homology of the Dickson–Mùi algebra concen-
trates on even degrees, as the degrees of the critical elements are even. It should be noted that the
mod 2 Margolis homology of the Dickson algebra also concentrates on even degrees. (See [2, 4].)

Example 20. For j = n ≥ 2, by definition of A j ,n,s , we have

As = An,n,s = [0, . . . , ŝ, . . . ,n −1, j ]/Ln = cs , (0 ≤ s < n).

So the critical element, which also depends on n and j , is explicitly given by

hs1,...,sk = 1

c

[
k−1

2

]
0

k∑
i=1

(−1)n+i Rs1 . . . R̂si . . .Rsk csi ∈ Dex
n ,

for 0 ≤ s1 < ·· · < sk < n, 1 < k odd.
Theorem 19 yields

H∗(DMn ;Qn) ∼= Dn(
c2

0 ,c0c1, . . . ,c0cn−1
) ⊕ hDn

hc0Dn ∩hDn

= E(c0)
⊕

F2[c1, . . . ,cn−1]
⊕ hDn

hc0Dn ∩hDn
.

When k is even and k > 2, by Lemma 17, hs2,...,sk c0 = ∑k
i=2(−1)i h0,s2,...,ŝi ...,sk csi is a nonzero

element in hc0Dn ∩hDn for 0 = s1 < ·· · < sk < n, while
∑k

i=1(−1)i hs1,...,ŝi ,...,sk csi = 0 is a linear
relationship of the critical elements over Dn for 0 < s1 < ·· · < sk < n.

Conjecture 21. For 2 ≤ n ≤ j ,

hc0Dn ∩hDn = Span

{
H S =

k∑
i=1

(−1)i hs1,...,ŝi ,...,sk Asi

}
,

where S = (s1, . . . , sk ) runs over the sequences with 0 ≤ s1 < ·· · < sk < n, 2 < k even.

The contains of this note will be published in detail elsewhere.
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