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Abstract. We prove that the minimizer in the Nédélec polynomial space of some degree p ≥ 0 of a discrete
minimization problem performs as well as the continuous minimizer in H(curl), up to a constant that is
independent of the polynomial degree p. The minimization problems are posed for fields defined on a
single non-degenerate tetrahedron in R3 with polynomial constraints enforced on the curl of the field and its
tangential trace on some faces of the tetrahedron. This result builds upon [L. Demkowicz, J. Gopalakrishnan,
J. Schöberl, SIAM J. Numer. Anal. 47 (2009), 3293–3324] and [M. Costabel, A. McIntosh, Math. Z. 265 (2010),
297–320] and is a fundamental ingredient to build polynomial-degree-robust a posteriori error estimators
when approximating the Maxwell equations in several regimes leading to a curl-curl problem.

Résumé. On prouve que le minimiseur dans l’espace des polynômes de Nédélec d’un certain degré p ≥ 0 d’un
problème de minimisation discret est aussi efficace que le minimiseur dans tout H(curl), à une constante
indépendante de p près. Les problèmes de minimisation considérés concernent des champs de vecteurs
définis sur un tétraèdre non dégénéré de R3 avec des contraintes polynomiales imposées sur le rotationnel
et sur la restriction de la trace tangentielle à certaines faces du tétraèdre. Ce résultat, basé sur [L. Demkowicz,
J. Gopalakrishnan, J. Schöberl, SIAM J. Numer. Anal. 47 (2009), 3293–3324] et [M. Costabel, A. McIntosh, Math.
Z. 265 (2010), 297–320], est un outil fondamental pour construire des estimateurs a posteriori robustes vis à
vis du degré p dans le contexte de l’approximation des équations de Maxwell.
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1. Introduction

When discretizing the Poisson equation with Lagrange finite elements, flux equilibrated error es-
timators can be employed to build polynomial-degree-robust (or p-robust for short) a posteriori
error estimators [1, 9]. This property, which is particularly important for hp-adaptivity (see for
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instance [4] and the references therein), means that the local a posteriori error estimator is, up to
data oscillation, a lower bound of the local approximation error, up to a constant that is indepen-
dent of the polynomial degree (the constant can depend on the shape-regularity of the mesh). It
turns out that one of the cornerstones of p-robust local efficiency is a p-robust H(div)-stability
result of a discrete minimization problem posed in a single mesh tetrahedron. More precisely, let
K ⊂R3 be a non-degenerate tetrahedron and let ;⊆F ⊆FK be a (sub)set of its faces. Then there
is a constant C such that for every polynomial degree p ≥ 0 and all polynomial data rK ∈ Pp (K )
and rF ∈ Pp (F ) for all F ∈ F , such that (rK ,1)K = ∑

F∈F (rF ,1)F if F = FK (detailed notation is
explained below), one has

min
v p∈RTRTRT p (K )
∇·v p=rK

v p ·nK |F =rF ∀F∈F

‖v p‖0,K ≤C min
v∈H(div,K )
∇·v=rK

v ·nK |F =rF ∀F∈F

‖v‖0,K . (1)

This result is shown in [10, Lemma A.3], and its proof relies on [7, Theorem 7.1] and [3, Proposi-
tion 4.2]. Importantly, the constant C in (1) only depends on the shape-regularity of K , that is, the
ratio of its diameter to the diameter of its largest inscribed ball. Notice that the converse bound
of (1) trivially holds with constant 1. The stability result stated in (1) is remarkable since it states
that the minimizer from the discrete minimization set performs as well as the minimizer from
the continuous minimization set, up to a p-robust constant.

The main contribution of the present work is to establish the counterpart of (1) for the
Nédélec finite elements of order p ≥ 0 and the Sobolev space H(curl). As in the H(div) case, our
discrete stability result relies on two key technical tools: a stable polynomial-preserving lifting of
volume data from [3, Proposition 4.2], and stable polynomial-preserving liftings of boundary data
from [5–7]. Our main result, Theorem 2 below, may appear as a somewhat expected consequence
of these lifting operators, but our motivation here is to provide all the mathematical details of the
proofs, which turn out to be nontrivial and in particular more complex than in [10, Lemma A.3].
In particular the notion of tangential traces in H(curl) is somewhat delicate, and we employ a
slightly different definition compared to [5–7]. Theorem 2 is to be used as a building block in the
construction of a p-robust a posteriori error estimator for curl-curl problems. This construction
is in particular analyzed in [2].

The remainder of this paper is organized as follows. We introduce basic notions in Section 2
so as to state our main result, Theorem 2. Then Section 3 presents its proof.

2. Statement of the main result

2.1. Tetrahedron

Let K ⊂ R3 be an arbitrary tetrahedron. We assume that K is non-degenerate, i.e., the volume of
K is positive. We employ the notation

hK := max
x ,y∈K̄

|x − y |, ρK := max

{
d ≥ 0

∣∣∣∣ ∃ x ∈ K ; B

(
x ,

d

2

)
⊂ K

}
,

for the diameter of K and the diameter of the largest closed ball contained in K . Then κK :=
hK /ρK is the so-called shape-regularity parameter of K . Let FK be the set of faces of K , and for
every face F ∈FK , we denote by nF the unit vector normal to F pointing outward K .

2.2. Lebesgue and Sobolev spaces

The space of square-integrable scalar-valued (resp. vector-valued) functions on K is denoted by
L2(K ) (resp. L2(K )), and we use the notation ( · , · )K and ‖·‖0,K for, respectively, the inner product
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and the associated norm of both L2(K ) and L2(K ). H 1(K ) is the usual Sobolev space of scalar-
valued functions with weak gradient in L2(K ), and H 1(K ) is the space of vector-valued functions
having all their components in H 1(K ), with | · |1,K denoting the L2(K ) norm of the weak gradient.

If F ∈ FK is a face of K , then L2(F ) is the set of vector-valued functions that are square-
integrable with respect to the surfacic measure of F . For all w ∈ H 1(K ), we define the tangential
component of w on F as

πτF (w ) := w |F − (w |F ·nF )nF ∈ L2(F ). (2)

More generally, if F ⊆ FK is a nonempty (sub)set of the faces of K , we employ the notation
ΓF ⊆ ∂K for the corresponding part of the boundary of K , and L2(ΓF ) is the associate Lebesgue
space of square-integrable functions over ΓF .

2.3. Nédélec and Raviart–Thomas polynomial spaces

For any polynomial degree p ≥ 0, the notation PPP p (K ) stands for the space of vector-valued
polynomials such that all their components belong to Pp (K ) which is composed of the restriction
to K of real-valued polynomials of total degree at most p. Following [12, 13], we define the
polynomial spaces of Nédélec and Raviart–Thomas functions as follows:

NNN p (K ) :=PPP p (K )+x ×PPP p (K ) and RTRTRT p (K ) :=PPP p (K )+xPp (K ).

Let F ⊆ FK be a nonempty (sub)set of the faces of K . On ΓF , we define the (piecewise)
polynomial space composed of the tangential traces of the Nédélec polynomials

NNN τ
p (ΓF ) := {

wF ∈ L2(ΓF ) | ∃ v p ∈NNN p (K ); w F := (wF )|F =πτF (v p ) ∀ F ∈F
}

. (3)

Note that wF ∈NNN τ
p (ΓF ) if and only if w F ∈NNN τ

p (Γ{F }) for all F ∈F and whenever F contains two
or more faces, |F | ≥ 2, for every pair (F−,F+) of distinct faces in F , the compatibility condition
(w F+ )|e · τe = (w F− )|e · τe holds true on their common edge e := F+ ∩ F−, i.e., the tangential
trace is continuous along e; here τe stands for a unit tangent vector orienting the edge e. For
all wF ∈NNN τ

p (ΓF ), we define its surface curl as

curlF (w F ) := (∇×v p )|F ·nF ∀ F ∈F , (4)

where v p is any element of NNN p (K ) such that w F = πτF (v p ) for all F ∈ F . This function is well-
defined independently of the choice of v p .

2.4. Weak tangential traces for fields in H(curl,K ) by integration by parts

Let H(curl,K ) := {
v ∈ L2(K ) | ∇×v ∈ L2(K )

}
denote the Sobolev space composed of square-

integrable vector-valued fields with square-integrable curl. We equip this space with the norm
‖v‖2

curl,K := ‖v‖2
0,K +`2

K ‖∇×v‖2
0,K , where `K is a length scale associated with K , e.g., `K := hK (the

choice of `K is irrelevant in what follows).
For any field v ∈ H 1(K ), its tangential trace on a face F ∈FK can be defined by using (2). This

notion of (tangential) trace is defined (almost everywhere) on F without invoking test functions.
The situation for a field in H(curl,K ) is more delicate. The tangential trace over the whole
boundary of K can be defined by duality, but it is not straightforward to define the tangential trace
on a part of the boundary of K . While it is possible to use restriction operators [5–7], we prefer
a somewhat more direct definition based on integration by parts. This approach is also more
convenient when manipulating (curl-preserving) covariant Piola transformations (see, e.g., [8,
Section 7.2] and Section 3.3 below), which is of importance, e.g., when mapping tetrahedra of a
mesh to a reference tetrahedron.

In this work, we consider the following definition of the tangential trace on a (sub)set ΓF ⊆ ∂K .

C. R. Mathématique, 2020, 358, n 9-10, 1101-1110



1104 Théophile Chaumont-Frelet, Alexandre Ern and Martin Vohralík

Definition 1 (Tangential trace by integration by parts). Let K ⊂ R3 be a non-degenerate tetra-
hedron and let F ⊆ FK be a nonempty (sub)set of its faces. Let r F ∈ NNN τ

p (ΓF ) as well as v ∈
H(curl,K ). We will employ the notation “v |τ

F
= r F ” to say that

(∇×v ,φ)K − (v ,∇×φ)K = ∑
F∈F

(r F ,φ×nF )F ∀φ ∈ H 1
τ,F c (K ),

where

H 1
τ,F c (K ) := {

w ∈ H 1(K ) |πτF (w ) = 0 ∀ F ∈F c :=FK \F
}

.

Whenever v ∈ H 1(K ), v |τ
F

= r F if and only ifπτF (v ) = r F for all F ∈F .

2.5. Main result

We are now ready to state our main result. The proof is given in Section 3.

Theorem 2 (Stability of H(curl) discrete minimization in a tetrahedron). Let K ⊂ R3 be a non-
degenerate tetrahedron and let ; ⊆ F ⊆ FK be a (sub)set of its faces. Then, for every polynomial
degree p ≥ 0, for all r K ∈RTRTRT p (K ) such that ∇· r K = 0, and, if ; 6= F , for all r F ∈NNN τ

p (ΓF ) such
that r K ·nF = curlF (r F ) for all F ∈F , the following holds:

min
v p∈NNN p (K )
∇×v p=r K

v p |τF=r F

‖v p‖0,K ≤Cst,K min
v∈H(curl,K )
∇×v=r K
v |τ

F
=r F

‖v‖0,K , (5)

where the condition on the tangential trace in the minimizing sets is null if;=F . Both minimizers
in (5) are uniquely defined and the constant Cst,K only depends on the shape-regularity parameter
κK of K , so that it is in particular independent of p.

3. Proof of the main result

The discrete minimization set in (5), which is a subset of the continuous minimization set,
is nonempty owing to classical properties of the Nédélec polynomials and the compatibility
conditions imposed on the data r K and r F . This implies the existence and uniqueness of both
minimizers owing to standard convexity arguments.

The proof of the bound (5) proceeds in three steps. First we establish in Section 3.1 the bound
for minimization problems without trace constraints. This first stability result crucially relies
on [3] and is established directly on the given tetrahedron K ⊂R3. Then we establish in Section 3.3
the bound for minimization problems with homogeneous curl constraints. This second stability
result crucially relies on the results of [6,7]. Since the notion of tangential trace employed therein
slightly differs from the present one, we first establish in Section 3.2 some auxiliary results on
tangential traces. We then prove the stability result by first working on the reference tetrahedron
in R3 and then by mapping the fields defined on the given tetrahedron K ⊂R3 to fields defined on
the reference tetrahedron. In all cases, the existence and uniqueness of the minimizers follows
by the same arguments as above. Finally, in Section 3.4 we combine both results so as to prove
Theorem 2.

To simplify the notation we write A.B for two nonnegative numbers A and B if there exists a
constant C that only depends on the shape-regularity parameter κK of K but is independent of p
such that A ≤C B . The value of C can change at each occurrence.

C. R. Mathématique, 2020, 358, n 9-10, 1101-1110
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3.1. Step 1: Minimization without trace constraints

Lemma 3 (Minimization without trace constraint). Let K ⊂R3 be a non-degenerate tetrahedron.
Let r K ∈RTRTRT p (K ) be such that ∇· r K = 0. The following holds:

min
v p∈NNN p (K )
∇×v p=r K

‖v p‖0,K . min
v∈H(curl,K )
∇×v=r K

‖v‖0,K . (6)

Proof. (1). Let us first show that

‖r K ‖−1,K ≤ min
v∈H(curl,K )
∇×v=r K

‖v‖0,K .

Indeed, for every v ∈ H(curl,K ) such that ∇×v = r K , we have

‖r K ‖−1,K := sup
φ∈H 1

0(K )
|φ|1,K =1

(r K ,φ)K = sup
φ∈H 1

0(K )
|φ|1,K =1

(∇×v ,φ)K

= sup
φ∈H 1

0(K )
|φ|1,K =1

(v ,∇×φ)K ≤ ‖v‖0,K

 sup
φ∈H 1

0(K )
|φ|1,K =1

‖∇×φ‖0,K

≤ ‖v‖0,K ,

since ‖∇×φ‖0,K ≤ |φ|1,K for allφ ∈ H 1
0(K ). The claim follows by taking the minimum (which exists

owing to standard convexity arguments) over all v ∈ H(curl,K ) such that ∇×v = r K .

(2). Since ∇· r K = 0, [3, Proposition 4.2] ensures the existence of an element w p ∈NNN p (K ) such
that ∇×w p = r K and

‖w p‖0,K . ‖r K ‖−1,K .

We can conclude using (1) since

min
v p∈NNN p (K )
∇×v p=r K

‖v p‖0,K ≤ ‖w p‖0,K . ‖r K ‖−1,K ≤ min
v∈H(curl,K )
∇×v=r K

‖v‖0,K .

This proves (6). �

3.2. Auxiliary results on the tangential component

We first establish a density result concerning the space composed of H(curl,K ) functions with
vanishing tangential trace on ΓF in the sense of Definition 1. We consider the subspace

HΓF
(curl,K ) := {

v ∈ H(curl,K ) | v |τF = 0
}

, (7)

equipped with the ‖·‖curl,K -norm defined above.

Lemma 4 (Density). Let K ⊂R3 be a non-degenerate tetrahedron and let F ⊆FK be a nonempty
(sub)set of its faces. The space CCC ∞

ΓF
(K ) := {

v ∈CCC ∞(K )
∣∣ v |ΓF

= 0
}

is dense in HΓF
(curl,K ).

Proof. Recalling [11, Remark 3.1], if w ∈ H−1/2(∂K ), we can define its restriction w |ΓF
∈

(H 1/2
00 (ΓF ))′ by setting

〈w |ΓF
,φ〉 := 〈w ,φ̃〉∂K ∀φ ∈ H 1/2

00 (ΓF ), (8)

where φ̃ ∈ H 1/2(∂K ) denotes the zero-extension ofφ to ∂K . Following [11], we then introduce the
space

V ΓF
(K ) := {

v ∈ H(curl,K ) | (v ×n)|ΓF
= 0

}
.

Proposition 3.6 of [11] states that CCC ∞
ΓF

(K ) is dense in V ΓF
(K ). Thus, it remains to show that

HΓF
(curl,K ) ⊂ V ΓF

(K ). Let v ∈ HΓF
(curl,K ). For all θ ∈ H 1/2

00 (ΓF ), we have θ̃ ∈ H 1/2(∂K ), and

C. R. Mathématique, 2020, 358, n 9-10, 1101-1110



1106 Théophile Chaumont-Frelet, Alexandre Ern and Martin Vohralík

there exists φ ∈ H 1(K ) such that θ̃ = φ|∂K . In addition, since θ̃|∂K \ΓF
= 0, we have φ ∈ H 1

F c (K ),
and in particularφ ∈ H 1

τ,F c (K ). Then using (8), integration by parts, and Definition 1, we have

〈(v ×n)|ΓF
,θ〉 = 〈v ×n, θ̃〉∂K = 〈v ×n,φ|∂K 〉∂K = (v ,∇×φ)K − (∇×v ,φ)K = 0,

since v ∈ HΓF
(curl,K ). Hence (v ×n)|ΓF

= 0, and therefore v ∈V ΓF
(K ). �

Since we are going to invoke key lifting results established in [6, 7], we now recall the main
notation employed therein (see [6, Section 2]). Let

trcτK : H(curl,K ) → H−1/2(∂K )

be the usual tangential trace operator obtained as in Definition 1 with F :=FK and let us equip
the image space

X −1/2(∂K ) := trcτK (H(curl,K ))

with the quotient norm

‖w‖X −1/2(∂K ) := inf
v∈H(curl,K )
trcτK (v )=w

‖v‖curl,K . (9)

For each face F ∈ FK , there exists a Hilbert function space X −1/2(F ) and a (linear and
continuous) “restriction” operator RF : X −1/2(∂K ) → X −1/2(F ) that coincides with the usual
pointwise restriction for smooth functions. In particular, we have

RF (trcτK (v p )) =πτF (v p ) ∀ v p ∈NNN p (K ), (10)

with the tangential trace operator defined in (2). We have thus introduced two notions of “local
traces” for H(curl,K ) functions. On the one hand, Definition 1 defines an equality for traces on
ΓF based on integration by parts. On the other hand, the restriction operators RF provide another
notion of trace on any face F ∈F . The following result provides a connection between these two
notions.

Lemma 5 (Trace restriction). Let K ⊂ R3 be a non-degenerate tetrahedron and let F ⊆ FK be a
nonempty (sub)set of its faces. For all r F ∈NNN τ

p (ΓF ) and allφ ∈ H(curl,K ), ifφ|τ
F

= r F according
to Definition 1, then

RF (trcτK (φ)) = r F ∀ F ∈F .

Proof. Let r F ∈ NNN τ
p (ΓF ). Recalling definition (3) of NNN τ

p (ΓF ) and the last line of Definition 1,
there exists v p ∈ NNN p (K ) such that v p |τF = r F . Consider an arbitrary function φ ∈ H(curl,K )
satisfying φ|τ

F
= r F and set φ̃ :=φ− v p ∈ H(curl,K ). By linearity we have φ̃|τ

F
= 0. Using again

the fact that v p is smooth (recall that it is a polynomial), we also have

RF (trcτK (v p )) = r F ∀ F ∈F .

Thus, by linearity, it remains to show that RF (trcτK (φ̃)) = 0 for all F ∈F . Recalling (7), the identity
φ̃|τ

F
= 0 means that φ̃ ∈ HΓF

(curl,K ). By Lemma 4, there exists a sequence (φ̃m)m∈N ⊂CCC ∞
ΓF

(K )

that converges to φ̃ in HΓF
(curl,K ). Now consider a face F ∈ F . Since each function φ̃m is

smooth, we easily see that ‖RF (trcτK (φ̃m))‖X −1/2(F ) = 0. Then, since the map H(curl,K ) 3 v 7−→
‖RF (trcτK (v ))‖X −1/2(F ) ∈R is continuous, we have

‖RF (trcτK (φ̃))‖X −1/2(F ) = lim
m→+∞‖RF (trcτK (φ̃m))‖X −1/2(F ) = 0,

so that RF (trcτK (φ̃)) = 0, which concludes the proof. �

C. R. Mathématique, 2020, 358, n 9-10, 1101-1110
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3.3. Step 2: Minimization with homogeneous curl constraints

To avoid subtle issues concerning the equivalence of norms, we first establish the stability result
concerning minimization with homogeneous curl constraints on the reference tetrahedron K̂ ⊂
R3 with vertices (1,0,0), (0,1,0), (0,0,1), and (0,0,0).

Lemma 6 (Curl-free minimization, reference tetrahedron). Let K̂ ⊂R3 be the reference tetrahe-
dron and let F̂ ⊆ FK̂ be a nonempty (sub)set of its faces. Then, for every polynomial degree p ≥ 0
and for all r̂ F̂ ∈NNN τ

p (ΓF̂ ) such that curlF̂ (r̂ F̂ ) = 0 for all F̂ ∈ F̂ , the following holds:

min
v p∈NNN p (K̂ )
∇×v p=0

v p |τ
F̂
=r̂

F̂

‖v p‖0,K̂ . min
v∈H(curl,K̂ )

∇×v=0
v |τ

F̂
=r̂

F̂

‖v‖0,K̂ . (11)

Proof. The proof proceeds in two steps.

(1). Using a key lifting result that is a direct consequence of [6, 7], let us first establish that

min
v p∈NNN p (K̂ )
∇×v p=0

R F̂ (trcτ
K̂

(v p ))=r̂ F̂ ∀F̂∈F̂

‖v p‖0,K̂ . min
v∈H(curl,K̂ )

∇×v=0
R F̂ (trcτ

K̂
(v ))=r̂ F̂ ∀F̂∈F̂

‖v‖0,K̂ . (12)

Let us denote respectively by v?p ∈ NNN p (K̂ ) and v? ∈ H(curl, K̂ ) the discrete and continuous
minimizers. Let us define w? := trcτ

K̂
(v?) ∈ X −1/2(∂K̂ ). Since ∇× v? = 0, we have ‖v?‖curl,K̂ =

‖v?‖0,K̂ , and the definition (9) of the quotient norm of X −1/2(∂K ) implies that

‖w?‖X −1/2(∂K̂ ) ≤ ‖v?‖0,K̂ . (13)

Since R F̂ (trcτ
K̂

(v?)) = r̂ F̂ , we have R F̂ (w?) = r̂ F̂ for all F̂ ∈ F̂ . We assume that the faces FK̂ of

K̂ are numbered as F̂1, . . . , F̂4 in such a way that the n := |F̂ | first faces are the elements of F̂ . We
introduce a “partial lifting” ṽ p ∈NNN p (K̂ ) of w? using [6, Equation (7.1)] but taking only the n first
summands. Then, one sees from [6, Proof of Theorem 7.2] that

‖ṽ p‖curl,K̂ . ‖w?‖X −1/2(∂K̂ ) (14)

and R F̂ (trcτ
K̂

(ṽ p )) = r̂ F̂ for all F̂ ∈ F̂ . Thus, relying on (10) we have πτ
F̂

(ṽ p ) = r̂ F̂ for all F̂ ∈ F̂ , and
we notice that the last line of Definition 1 also equivalently gives ṽ p |τ

F̂
= r̂ F̂ .

We must now check that ∇× ṽ p = 0. This is possible since the H(curl, K̂ ) and H(div, K̂ )
trace liftings introduced in [6, 7] commute in an appropriate sense. Specifically, recalling that
curlF̂ (r̂ F̂ ) = 0 for all F̂ ∈ F̂ , using the identity curlF̂ (πτ

F̂
(ṽ p )) = ∇× ṽ p ·nF̂ valid for all F̂ ∈ FK̂

(recall that nF̂ conventionally points outward K̂ ), see (4), and with the help of Theorem 3.1 and
Propositions 4.1, 5.1, and 6.1 of [7], one shows by induction on the summands that ∇× ṽ p = 0.

Now, since ṽ p belongs to the discrete minimization set and using (14) and (13), (12) follows
from

‖v?p‖0,K̂ ≤ ‖ṽ p‖0,K̂ = ‖ṽ p‖curl,K̂ . ‖w?‖X −1/2(∂K̂ ) ≤ ‖v?‖0,K̂ .

(2). Let us now establish (11). We first invoke Lemma 5. If v ∈ H(curl, K̂ ) satisfies v |τ
F̂

= r̂ F̂ , it

follows that R F̂ (trcτ
K̂

(v )) = r̂ F̂ for all F̂ ∈ F̂ . As a result, we have

min
v∈H(curl,K̂ )

∇×v=0
R F̂ (trcτ

K̂
(v ))=r̂ F̂ ∀F̂∈F̂

‖v‖0,K̂ ≤ min
v∈H(curl,K̂ )

∇×v=0
v |τ

F̂
=r̂

F̂

‖v‖0,K̂ ,
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the minimization set of the left-hand side being (possibly) larger. Invoking (12) then gives

min
v p∈NNN p (K̂ )
∇×v p=0

R F̂ (trcτ
K̂

(v p ))=r̂ F̂ ∀F̂∈F̂

‖v p‖0,K̂ . min
v∈H(curl,K̂ )

∇×v=0
v |τ

F̂
=r̂

F̂

‖v‖0,K̂ ,

and we conclude the proof by observing that

min
v p∈NNN p (K̂ )
∇×v p=0

v p |τ
F̂
=r̂

F̂

‖v p‖0,K̂ = min
v p∈NNN p (K̂ )
∇×v p=0

R F̂ (trcτ
K̂

(v p ))=r̂ F̂ ∀F̂∈F̂

‖v p‖0,K̂ ,

the two notions of local trace being equivalent for the discrete functions in NNN p (K̂ ). �

To establish the counterpart of Lemma 6 in a generic non-degenerate tetrahedron K ⊂ R3, we
are going to invoke the covariant Piola mapping (see, e.g., [8, Section 7.2]). Consider any invertible
affine geometric mapping T : R3 → R3 such that K = T (K̂ ). Let JT be the (constant) Jacobian
matrix of T (we do not require that detJT is positive, and in any case we have |detJT | = |K |/|K̂ |).
The affine mapping T can be identified by specifying the image of each vertex of K̂ . The covariant
Piola mappingψc

T : H(curl,K ) → H(curl, K̂ ) is defined as follows:

v̂ :=ψc
T (v ) = (JT )T (v ◦T ) . (15)

It is well-known that ψc
T maps bijectively NNN p (K ) to NNN p (K̂ ) for any polynomial degree p ≥ 0.

Moreover, for all v ∈ H(curl,K ), we have

∇×v = 0 ⇐⇒∇× v̂ = 0, (16)

as well as the following L2-stability properties:

ρK

hK̂
‖v‖0,K ≤ |detJT |

1
2 ‖ψc

T (v )‖0,K̂ ≤ hK

ρK̂
‖v‖0,K . (17)

Finally the covariant Piola mapping preserves tangential traces. This implies in particular that for
all F ∈FK , setting F̂ := T −1(F ), we have for all v ∈ H 1(K )

πτF (v ) = 0 ⇐⇒ πτ
F̂

(v̂ ) = 0. (18)

Finally, for all v ∈ H(curl,K ), for every nonempty (sub)set F ⊆FK , and for all r F ∈NNN τ
p (ΓF ), we

have

v |τF = r F ⇐⇒ v̂ |τ
F̂

= r̂ F̂ , (19)

where F̂ := T −1(F ) and r̂ F̂ ∈NNN τ
p (ΓF̂ ) is defined such that r̂ F̂ := (r̂ F̂ )|F̂ :=πτ

F̂
(v̂ p ) for all F̂ ∈ F̂ ,

where v̂ p :=ψc
T (v p ) and v p is any function in NNN τ

p (K ) such that r F := (r F )|F := πτF (v p ) for all
F ∈ F . The equivalence (19) is established by using Definition 1, the properties of the covariant
Piola mapping, and the fact that φ ∈ H 1

τ,F c (K ) if and only if ψc
T (φ) ∈ H 1

τ,F̂ c
(K̂ ), which follows

from (18).

Lemma 7 (Curl-free minimization, generic tetrahedron). Let K ⊂ R3 be a non-degenerate
tetrahedron and let F ⊆FK be a nonempty (sub)set of its faces. Then, for every polynomial degree
p ≥ 0 and for all r F ∈NNN τ

p (ΓF ) such that curlF (r F ) = 0 for all F ∈F , the following holds:

min
v p∈NNN p (K )
∇×v p=0

v p |τF=r F

‖v p‖0,K . min
v∈H(curl,K )

∇×v=0
v |τ

F
=r F

‖v‖0,K . (20)
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Proof. Consider an invertible affine mapping T : K̂ → K and denote ψc
T the associated Piola

mapping defined in (15). Let us set

V (K̂ ) := {v̂ ∈ H(curl, K̂ ) | ∇× v̂ = 0, v̂ |τ
F̂

= r̂ F̂ }, V p (K̂ ) :=V (K̂ )∩NNN p (K̂ ),

V (K ) := {v ∈ H(curl,K ) | ∇×v = 0, v |τF = r F }, V p (K ) :=V (K )∩NNN p (K ),

where r̂ F̂ is defined from r F as above. Owing to (16) and (19), we infer that

ψc
T (V (K )) =V (K̂ ), ψc

T (V p (K )) =V p (K̂ ). (21)

One readily checks that r̂ F̂ satisfies the assumptions of Lemma 6, so that

min
v̂ p∈V p (K̂ )

‖v̂ p‖0,K̂ . min
v̂∈V (K̂ )

‖v̂‖0,K̂ .

Invoking the stability properties (17) and the identities (21), we conclude that

min
v p∈V p (K )

‖v p‖0,K ≤ hK̂

ρK
|detJT |

1
2 min

v̂ p∈V p (K̂ )
‖v̂ p‖0,K̂

.
hK̂

ρK
|detJT |

1
2 min

v̂∈V (K̂ )
‖v̂‖0,K̂ ≤ hK̂

ρK

hK

ρK̂
min

v∈V (K )
‖v‖0,K .

This completes the proof. �

3.4. Step 3: Conclusion of the proof

We are now ready to conclude the proof of Theorem 2. We first apply Lemma 3 on the tetrahedron
K and infer that there exists ξp ∈NNN p (K ) such that ∇×ξp = r K and

‖ξp‖0,K . min
v∈H(curl,K )
∇×v=r K

‖v‖0,K .

Then, we define r̃ F ∈NNN τ
p (ΓF ) by setting r̃ F := r F −πτF (ξp ) for all F ∈ F . Since curlF (πτF (ξp )) =

∇×ξp ·nF = r K ·nF , we see that curlF (r̃ F ) = 0 for all F ∈ F . It follows from Lemma 7 that there
exists ξ̃p ∈NNN p (K ) such that ∇× ξ̃p = 0, ξ̃p |τF = r̃ F , and

‖ξ̃p‖0,K . min
v∈H(curl,K )

∇×v=0
v |τ

F
=r̃ F

‖v‖0,K .

We then define w p := ξp + ξ̃p ∈NNN p (K ). We observe that w p belongs to the discrete minimization
set of (5). Thus we have

min
v p∈NNN p (K )
∇×v p=r K

v p |τF=r F

‖v p‖0,K ≤ ‖w p‖0,K ≤ ‖ξp‖0,K +‖ξ̃p‖0,K .

Finally we observe that

‖ξp‖0,K . min
v∈H(curl,K )
∇×v=r K

‖v‖0,K ≤ min
v∈H(curl,K )
∇×v=r K
v |τ

F
=r F

‖v‖0,K ,

and

‖ξ̃p‖0,K . min
v∈H(curl,K )

∇×v=0
v |τ

F
=r̃ F

‖v‖0,K = min
ṽ∈H(curl,K )
∇×ṽ=∇×ξp

ṽ |τ
F
=r̃ F+ξp |τF

‖ṽ −ξp‖0,K

= min
ṽ∈H(curl,K )
∇×ṽ=r K
ṽ |τ

F
=r F

‖ṽ −ξp‖0,K ≤ ‖ξp‖0,K + min
v∈H(curl,K )
∇×v=r K
v |τ

F
=r F

‖v‖0,K .
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